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A B S T R A C T

In the eyes of many control scientists, the theory of the scenario approach is a tool for determining the sample
size in certain randomized control-design methods, where an uncertain variable is replaced by a random sample
of scenarios. This point of view is rooted in the history of the scenario approach and stands on a long track
record of successful applications. However, in the last two decades the theory of the scenario approach has gone
beyond its original motivations and applications, and has unveiled some fundamental relationships between the
complexity of a design and its generalization capabilities. The new knowledge brought by the theory provides
a solid ground for a framework where data can be exploited in a flexible and wise manner throughout a
large variety of engineering activities. By this article we aim at providing an access point to a set of state-
of-the-art results in the theory of the scenario approach that can be valuable to target important challenges
in modern control-design and decision-making at large. In the first part of the article, we introduce a set-up
for decision-making where the role of prior knowledge and user preferences can, and should, be distinguished
from the role of data. Then, we show that the theory of the scenario approach offers a platform for conjugating
heuristic approaches, which in complex contexts are unavoidably based on incomplete and possibly imprecise
information, with a solid theory for certifying the validity of the output of the decision process.
(e.g., in the control of autonomous vehicles and of the sys-
tems arising from their interconnection Guanetti, Kim, & Borrelli,
2018), but also as technology-driven side-effects: for example, it
. Introduction

.1. The era of data

Opportunities and challenges intertwine in the era of data. On the
ne hand, pervasive networks of smart sensors collect, process and store
easurements in extremely fast, reliable and cheap ways. On the other
and, control scientists are haunted by the question of how one can
ake advantage of the increasing availability of data, either to improve
xisting control systems or to bring order to newly born systems of
ystems.

The weaving of opportunities with old and new challenges is appar-
nt in many fields; we mention below but a few, in full awareness that
any others could have deserved to be included in the list.

• Automotive systems control. The availability and smart pro-
cessing of real-time traffic measurements has made it possible
to deploy automatic and effective coordinated ramp metering
strategies for freeways, Papageorgiou and Papamichail (2014)
and Seo, Bayen, Kusakabe, and Asakura (2017). Complex systems
of systems arise not only from the conscious striving to go be-
yond ordinary solutions at the frontier of automotive technology
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has become urgent to deal with the disrupting effects of having
many (ordinary) human drivers in (ordinary) cars, all relying si-
multaneously on the same (ordinary) mapping and route planning
software, Macfarlane (2019).

• Power generation and dispatchment. At the dawn of the Sec-
ond Industrial Revolution, connecting steam turbines to dynamos
made large scale power generation possible. Since then, energy
has been generated and rationally distributed by leveraging well-
understood physical laws, but the increasing penetration of re-
newable energy poses new and significant challenges to the plan-
ning and operation of modern power grids. In particular, power
generation now depends on uncertain, hardly predictable, phe-
nomena, ranging from weather conditions to individual and social
human behaviors. The underpinning for modern decision and
control schemes in this field has necessarily to include, besides
physics, economic and social sciences, as well as conceptual
tools to integrate historical and real-time data in the decision
process, Li, Lian, Conejo, and Zhang (2020).

• Real-time control of biological systems. Feedback, as a mecha-
nism to ensure homeostasis, has long been recognized as a central
er 2021
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feature of life, Cannon (1939) and Hoagland and Dodson (1995),
and control scientists have been increasingly at work to design
feedback loops to re-establish homeostasis in medical patients. A
remarkable example is the development of an artificial pancreas
for keeping blood glucose into a healthy range. While the first
closed-loop algorithms computed insulin infusion rates with poor
information about the process to be controlled, modern control al-
gorithms aim at combining a better understanding of the glucose
metabolism with a refined exploitation of historical and real-time
data. An account of this evolution can be found in Quiroz (2019),
where one of the main future challenges in the design of glucose
control algorithms is identified as the ability to address the large
diversity of metabolic conditions that a diabetic patient can face
in his/her daily life.

• Medical computer-aided diagnosis. A wise combination of do-
main knowledge, which remains fundamental to direct design
efforts, and of data availability has fostered major progresses in
medical computer-aided diagnosis. We just recall here the case of
the automated classification of images of skin lesions as benign
or malignant, which might soon become a widely available tool
at the disposal of smartphone customer users, see Esteva et al.
(2017).

• Machine-Learning-in-the-loop technologies. Traditionally, an
automatic classifier returns a result to a human being who is then
responsible to make an informed decision (in the skin lesions
example, this human being is a medical doctor or directly the
patient). More and more often, however, classification algorithms,
or other machine learning algorithms that are trained on data in
a black-box manner, can be found in automated control loops,
where they play the role of soft sensors, similarly to traditional
state estimators. Examples range again from automotive systems
(where classifiers are used inter alia for obstacle detection and
avoidance, Devi, Malarvezhi, Dayana, & Vadivukkarasi, 2020;
Gruyer et al., 2017) to medical applications such as the artificial
pancreas, Cappon, Facchinetti, Sparacino, Georgiou, and Herrero
(2019). The more black-box learning algorithms enter safety-
critical decision loops, the more urgent the need for a solid,
scientific understanding of their limits and potentials.

Overall, it is clear that the increasing availability of computa-
ional power and of distributed large-scale optimization techniques
nables the deployment of innovative data-driven decisions and control
chemes, but it is also clear that this extraordinary potential cannot be
ully expressed until it gets backed by a solid theoretical understanding.

.2. Indirect vs. direct methods

In traditional model-based control, the ‘‘driving power’’ of data
s often employed by engineers in the modeling of the reality to be
ontrolled. In a typical workflow, first principles dictate the model class
nto which a reasonable representative of the reality should be sought,
nd experimental data are used to find the best parameter values to be
lugged into the model equations. At the end of this modeling effort,
he engineer has obtained a model that describes with a sufficient
ccuracy the way in which reality is expected to behave in response
o various signals. At the final stage of the workflow, the engineer is
alled to use the model to make decisions, set-up policies and control
echanisms so as to optimize the objective values. This is what is called

n indirect approach.
The increasing intricacy of many modern problems challenges this

raditional design workflow: in fact, the input–output behavior of many
odern systems is hardly captured by the class of models that can

e found in the traditional system modeling toolboxes. Even in those
ucky cases where, in the eyes of the data-analyst, available models look
ike acceptable descriptors of the reality, it is often the case that, in
2

the hands of the control engineer, they lead to unsatisfactory control
performances. The reason is that the metric according to which a model
is said to capture ‘‘well’’ the hidden nature of the complex system
is usually not tailored to the needs of the control engineer, whose
goal is optimizing specific objective functions. This explains why the
recent history of feedback control has witnessed a surge of the so-called
direct methods (see e.g. Apkarian & Noll, 2018; Åström & Hägglund,
1995; Bazanella, Campestrini, & Eckhard, 2011; Campi, Lecchini, &
Savaresi, 2002; Chiluka, Ambati, Seepana, & Babu Gara, 2021; For-
mentin, Campi, Carè, & Savaresi, 2019; Formentin, Van Heusden, &
Karimi, 2014; Gerencsér, Vágó, & Hjalmarsson, 2002; Guardabassi &
Savaresi, 2000; Hjalmarsson, 2002; Hjalmarsson, Gevers, Gunnarsson,
& Lequin, 1998; Hori, Yubai, Yashiro, & Komada, 2016; Hou & Wang,
2013; Karimi & Kammer, 2017; Moore, 2012; Novara & Milanese, 2019;
Safonov & Tsao, 1995; Sutter, Kamoutsi, Esfahani, & Lygeros, 2017;
Van Heusden, Karimi, & Bonvin, 2011). In direct methods, one uses the
available information that is carried by experiments to directly assess
how the controllers in a given class behave in various conditions, and
this forms the ground on which a controller is selected; this is opposed
to the traditional indirect methods where significant effort is spent in
preliminarily approximating reality by means of a model.

The development of direct methods for decisions and control is part
of a broader scientific trend, which is largely technology-driven and is
not limited to the control community (the reader is referred to the box
‘‘Direct, goal-oriented approaches: a cultural, technology-driven trend’’
for more discussion on this point).

Direct, goal-oriented approaches: a cultural, technology-
driven trend.

According to a highly influential paper, Breiman (2001), two
cultures abide in statistical sciences. The classic one aims at using
data for modeling the data generation mechanism: if successful,
this culture generates powerful tools not only to control but
also to describe reality (control engineering practice reflects
this culture when, e.g., the transfer function of a second-order
linear system is estimated from noisy data); on the other hand,
as the complexity of the data generation mechanism increases,
modeling becomes more and more an ambitious task, prone to
detrimental oversimplifications. Hence, the other culture aims at
using data to inform problem-oriented procedures, and to issue
certificates on the statistical effectiveness of such procedures: this
task can be accomplished under much milder and realistic as-
sumptions even in the presence of very complex data generating
mechanisms.

In the context of statistical learning, Vapnik, see Vapnik
(2013) - Section 1.9, formulated the following principle to be
applied in the presence of restricted information: ‘‘When solving
a given problem, try to avoid solving a more general problem
as an intermediate step’’. In the wake of this advice, many
recent advances in machine learning (in the fields of supervised
classification and regression, Krizhevsky, Sutskever, & Hinton,
2012; clustering, Ghased Dizaji, Herandi, Deng, Cai, & Huang,
2017; reinforcement learning, Silver, et al., 2016; etc.) share an
agnostic approach with respect to the ‘‘true’’ or ‘‘best’’ descrip-
tion of the system at hand and focus on directly optimizing a
cost function that maps the possible options that are available
to the decision-maker into a value that quantifies the level of
satisfaction with the selected option.

Generally speaking, direct approaches become more urgent
as technology enables one to address problems of increasing
complexity, which is the trend that applied science is nowadays
experiencing at an increasingly fast pace. The reader is also
referred to Norvig (2017) for a thought-provoking discussion on
matters relating to the topic of this box.
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1.3. Content of this article

In this article, we present a framework for direct data-driven
decision-making called the scenario approach that benefits from a series
of technical results that have been established in the last two decades.

In the next Section 2, the scenario approach is introduced at a rather
informal level as a general methodology to govern, in a well-grounded
manner, the interplay between prior knowledge and data in decision-
making. Some space (the whole Section 2.4) is devoted to introducing
the probabilistic point of view that allows one to assess the quality
of a decision not only with respect to the data collected before the
decision is made, but also with respect to the infinitely larger set of the
unseen cases (those that can occur at the time the decision is applied).
The section ends with a non-technical preview (based on a simple
example in Section 2.5) of the kind of statistical evaluations that are
possible thanks to the theory of the scenario approach. This prepares
the ground for the following, more technical, Section 3. Section 3
provides an easily accessible, but technical, gallery of results: moving
from simple decision schemes based on convex worst-case optimization,
the reader is gradually introduced to the state-of-the-art of the scenario
theory, which encompasses non-convex optimization and a general
decision-making framework. The article is closed by the concluding
Section 4.

2. A set-up for direct data-driven decision-making: the scenario
approach

2.1. When is a decision good?

Many decision and control problems can be abstracted as the prob-
lem of choosing an object 𝑥 from within a decision set  . For example,
n control-design, 𝑥 is a vector of parameters representing a controller
n a given class; in financial portfolio optimization, 𝑥 is a vector where
ach element is the amount of money to be invested in a given asset; in
inary classification, 𝑥 encodes, according to some predefined rule, a
unction that maps any possible relevant object into a label belonging
o {0, 1}, etc.

We will denote by 𝑥∗ the specific object that represents the final
utput of the decision process. The quality of 𝑥∗ can be judged in

relation to intrinsic and extrinsic criteria as described in what follows.

(1) INTRINSIC QUALITY
We call ‘‘intrinsic’’ a quality of 𝑥 that depends only on 𝑥 itself, in

the light of cemented knowledge and preferences that are available to
the decision-maker. Here are some examples.

Example (Filter Design). If 𝑥 is a digital filter, a good 𝑥 may be
expected to have a cut-off frequency in a certain range, to be physically
realizable, possibly simple and cheap to implement, etc.

Example (Prediction Interval). If 𝑥 is an interval used to predict an
unknown variable, its width should be small for the prediction to be
informative.

Example (Home Temperature Control System). If 𝑥 is a temperature
ontroller, it should be designed so that, in nominal conditions, the
ontrol operates fast enough, overshooting and oscillations are limited,
nergy consumption is minimized, etc.

2) EXTRINSIC QUALITY
The ‘‘extrinsic’’ quality refers to the performance of 𝑥 in relation

to various operating situations that may occur when 𝑥 is applied. A
bit more formally, we can think of the occurrence of a situation as an
ssignment of values to a vector of variables that we denote with the
ymbol 𝛿, and, hence, extrinsic quality refers to the couple (𝑥, 𝛿): for
very 𝛿, 𝑥 attains a performance as measured by a suitable indicator and
he extrinsic quality refers to the variability of performances achieved
y 𝑥 as 𝛿 takes value in its range of variability.
3

xample (Filter Design). If the aim of the filter 𝑥 is to work in a mobile
device as an audio channel equalizer and the frequency response of the
channel is 𝛿, then the extrinsic quality of 𝑥 refers to the performance
of 𝑥 in relation to a variety of channels 𝛿, and ‘‘high extrinsic quality’’
may refer to the ability of 𝑥 to perform well over a large portion of 𝛿’s
that may be encountered in the lifespan of the device.

Example (Prediction Interval). Suppose that the interval 𝑥 is used to
predict how effective a medical therapy is. Since the effectiveness
depends on the patient 𝛿 to whom the therapy is administered, the
extrinsic quality may refer to how large the portion of potential patients
for which 𝑥 provides a correct prediction is.

Example (Home Temperature Control System). The performance of a
building temperature controller 𝑥 can be affected by the weather condi-
tions and the minute actions of people in the building (which are partly
unpredictable and will certainly differ from hour to hour and from day
to day). Here, 𝛿 can be identified with a vector that includes quantities
such as the external temperature and other weather conditions, the
average amount of people in the building in a given time horizon, the
number and the size of windows that happen to be open, etc., and the
extrinsic quality may refer to the capability of the controller to keep
the temperature within admissible limits for various 𝛿.

As an additional example, we anticipate that in Section 2.5 we
shall be dealing with a simple machine learning problem where the
prediction of an inaccessible variable is given by an interval that
depends on a variable that can be measured. Similarly to the above
‘‘prediction interval’’ example, in that context the width of the interval
is the intrinsic quality, while the extrinsic quality refers to the portion
of cases that are correctly predicted by the interval model.

2.2. The limits of knowledge

In traditional decision processes, the intrinsic quality and the ex-
trinsic quality of a candidate solution are often judged at the decision-
making stage on the ground of available models.

Example (Traditional Control Design). Let 𝑥 be a controller to be applied
to a linear plant whose poles (expressed in a vector 𝛿) are somewhat
uncertain. If the variability of 𝛿 is known, imposing suitable phase and
gain margins may ensure that the design will work well for all the
relevant values of 𝛿.

On the other hand, when we move from simple to complex appli-
cation domains, we often experience that 𝛿 refers to articulated and
elusive portions of the real world for which it is extremely difficult
to obtain a satisfactory and complete model and, hence, a model-
based assessment of the extrinsic quality becomes impractical. Under
these circumstances, one may advocate the use of first-hand data,
i.e., observed instances of 𝛿, along a direct decision-making approach.
This is the condition in which the scenario approach finds its natural
application, as explained in the next section (see also the box ‘‘When
should we consider using the scenario approach?’’ for a quick summary
of the main ideas and applications domains to which the scenario
approach has been applied).

2.3. The principles of the scenario approach

We shall denote the empirical instances of 𝛿 that are available at the
decision-making stage by 𝛿(1),… , 𝛿(𝑁), and refer to them as ‘‘scenarios’’.

When the variability of 𝛿 is difficult to describe by means of a model,
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Fig. 1. A scenario algorithm is a way to generate decisions able to cope with uncertainty. The picture shows in yellow the scenario box. It is constructed on the ground of prior
knowledge about the problem at hand and is fed by a sample of situations (scenarios) elicited from a (typically infinite) population of situations.
the fact that 𝛿 impacts on the extrinsic performance suggests a different
way of proceeding and, at an informal level, the scenario approach
prescribes to choose the candidate solution 𝑥 that

(i) works well for the scenarios 𝛿(1),… , 𝛿(𝑁)

nd, subject to (i),

(ii) optimizes the intrinsic quality.

n this way, the intrinsic quality is pursued directly while the scenarios
(1),… , 𝛿(𝑁) are used as an empirical substitute of the infinite amount
f situations 𝛿 that could occur in a future use of the decision to
euristically secure the extrinsic quality.

In applications, (i) and (ii) must be formulated quantitatively and
hoosing suitable indicators is highly problem-dependent. Moreover,
hile the application may suggest the meaning of the expression ‘‘𝑥
orks well for 𝛿’’, still the decision-maker retains the right of deciding
hether to enforce that the solution works well for all the 𝑁 scenarios
(𝑖) or rather for just some of them. There is also much flexibility in con-
tructing the indicator of the intrinsic quality and the domain in which
he solution is sought: they are typically based on prior knowledge
nd background preferences, but, as we shall see in Section 2.5, they
an also be influenced by informal reasoning, second-hand information,
uesses and even conjectures about the variability of 𝛿. The workflow
or the scenario approach is illustrated in Fig. 1.

Importantly, making a wise decision based on observations requires
ools to gain confidence in that the decision is good both intrinsically
nd extrinsically. While the intrinsic quality is directly measured (and
ptimized) because it only depends on 𝑥, replacing the large set of the
nseen situations 𝛿’s with a sample of scenarios is heuristic in nature
nd, when applied naively, may suffer from excessive empiricism: the
inal decision 𝑥∗ performs well with respect to the instances 𝛿(1),… , 𝛿(𝑁)

ut it may fall short for other instances of 𝛿 that eventuates after the
ecision 𝑥∗ has been implemented. The aim of the theory of the sce-
ario approach is precisely that of taking control on this generalization
ssue.1 This is important because only a trustful evaluation of the actual

1 This theory is presented in Section 3. When the problem at hand belongs
o the field of machine learning, the scenario theory of Section 3 is in the same
ein as, and contributes to, the generalization theory of machine learning. In
his case, the ability of a solution to perform well on the sample while having
oor generalization capabilities has also been called overfitting. More generally,
4

he scenario theory applies across various fields in decision making.
extrinsic quality along with the evidence about the intrinsic quality
gives the decision-maker a handle to judge the solution. Based on a
fair judgment, the decision-maker can:

(i) decide whether to ‘‘buy’’ the solution or to discard it;
(ii) decide how to subsequently use the solution, if the latter is part

of a bigger decision process;
(iii) if the solution is not satisfactory, go back to the original choices

in the problem formulation and re-calibrate them to construct
solutions which are better aligned with the desires (for example,
the definition of the intrinsic criterion can be modified, the size
of the sample 𝛿(1),… , 𝛿(𝑁) can be re-tuned, etc.);

(iv) re-design the decision set  itself from which 𝑥∗ is selected.

The main mathematical tool the scenario approach is based on is
probability theory and the concepts introduced at a high-level in this
section will be better formalized in the light of probability theory in the
next section. Before proceeding, however, we feel advisable to highlight
here two cornerstones of the theory as it will emerge in the remainder
of this article.

(a) While one way of quantifying the extrinsic quality is by val-
idation, this requires using data points for testing rather than
designing. One key message of the scenario approach is that data
can be used to simultaneously make a design while also evaluat-
ing its extrinsic quality. This is made possible by an exploitation
of the information contained in the data beyond what traditional
approaches can do.

(b) In modern control and decision problems that deal with complex
systems, besides scenarios one wants to exploit prior knowledge
that comes from various sources, often including some that, while
not completely trustworthy, can still be of help to obtain a satis-
factory solution. However, if prior knowledge turns out to be lack-
ing, or even defective, its use may downgrade the quality of the
solution. Importantly, in the scenario approach the correctness
of the evaluation of the extrinsic quality (which is not directly
observable) remains intact independently of the correctness of
the prior. This fact (which may came to the reader’s surprise) is
established in subsequent sections and is named ‘‘separation prin-
ciple’’. The separation principle implies that the decision-maker
can always correctly judge the impact of the prior information
on the solution in terms of intrinsic (which is directly measur-
able) and extrinsic quality and decide to discard a prior if it

is deemed unreliable. In this respect, it can be said that the
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scenario approach meets the pressing need in modern data-driven
decision-making for a sound integration of domain knowledge
and priors having uneven levels of trustworthiness with first-hand
information given by data.

When should we consider using the scenario approach?

The scenario approach employs the data to directly target a
design problem, without going through an intermediate step
aiming at finding a description of the mechanism that generates
𝛿. The scenario approach is of interest when:

(I) the value taken by 𝛿 can significantly impact on the perfor-
mance;

(II) 𝛿 is made up of interconnected variables which take value
according to mechanisms that are difficult, too expensive
or even impossible to describe satisfactorily.

Because of (I), neglecting the variability of 𝛿 is not an option as
this would lead to poor decisions. At the same time, (II) makes it
impractical to find a description of the mechanism underlying
the generation of 𝛿. Hence, a good decision can be pursued
heuristically driven by a direct use of the data. In this context,
the scenario approach provides a theory to quantify the extrinsic
quality of a decision and drives the user towards a wise selection.

Conditions (I) and (II) arise in innumerable applications, for
example where the instances of 𝛿 are:

• pairs of input and output signals collected from an auto-
motive system in different operational and environmental
conditions, e.g., from a car to be controlled with different
tires and in different road conditions, Formentin, Garatti,
Rallo, and Savaresi (2018), Rallo, Formentin, Garatti, and
Savaresi (2016);

• dynamical characteristics of an electro-mechanical system
for the force control in brake-by-wire actuation, Riva, Nava,
Formentin, and Savaresi (2020);

• the power generation and load values in a power system
with intermittent and distributed sources, Geng and Xie
(2019), Geng, Xie, and Modarresi (2021), Modarresi et al.
(2019);

• the parameters (as obtained, e.g., by an Intra-Venous Glu-
cose Tolerance Test) describing the insulin–glucose sys-
tem of the individuals for which an automated blood glu-
cose regulator has to be designed, Borri et al. (2017),
Di Ferdinando, Pepe, Di Gennaro, and Palumbo (2021);

• the pharmacokinetic parameters of the individuals for which
a drug administration protocol has to be designed,
Sopasakis, Sarimveis, Macheras, and Dokoumetzidis (2018);

• the electrocardiogram of patients in cardiac arrest before
and after an emergency treatment, Carè, Ramponi, and
Campi (2018);

• stock market values, Arici, Campi, Carè, Dalai, and Ram-
poni (2021), Calafiore (2013), Pagnoncelli, Reich, and Campi
(2012), Ramponi and Campi (2018);

• inflows and outflows in systems of rivers, Nasir, Carè, and
Weyer (2018);

• the transfer functions of the different communication chan-
nels that can be encountered by a mobile communication
device, Carè, Garatti, and Campi (2015);

• various demand profiles for selling products, Carè, Garatti,
and Campi (2014);

• disturbances, Campi, Garatti and Prandini (2009), or ac-
tuation errors, Carè, Garatti, and Campi (2019), in largely
unpredictable environments.

2.4. Mathematical foundations: a probabilistic framework

Probability is, first and foremost, a measuring tool that allows us
∗
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to make statements such as ‘‘𝑥 performs well for a large portion of the
situations 𝛿’’. In fact, if we accept that various instances of 𝛿 present
themselves according to a probability distribution P, i.e., that

𝛿 is distributed according to P,

then it is possible (at least in principle) to quantify the portion of the 𝛿’s
or which 𝑥∗ does not perform satisfactorily.

In what follows, the probability that the solution 𝑥∗ does not per-
form satisfactorily is denoted with 𝑉 (𝑥∗), which we call the risk of
the solution 𝑥∗.

The risk 𝑉 (𝑥∗) is a number between 0 and 1 and is an indicator of
the extrinsic quality of 𝑥∗. A good enough extrinsic quality can then be
formalized by means of a condition of the kind 𝑉 (𝑥∗) ≤ 𝜖, where 𝜖 is a
domain-dependent user-chosen threshold.

It must be remarked that, from the decision-maker point of view,
there is a large gap between accepting that 𝛿 is distributed according to
some probability P and assuming that such P is known. In fact, when
𝛿 is the outcome of a complex generation mechanism, the availability
of a satisfactory description of P is often precluded. The theory of the
scenario approach recognizes this gap and is built upon the premise
that

P exists but is not known to the decision-maker.

P manifests itself through:

observations 𝛿(1),… , 𝛿(𝑁), which are modeled as independent draws
from P (according to a standard terminology, observations are
independent and identically distributed, ‘‘i.i.d.’’).

While this i.i.d. assumption is limiting,2 it is worth remarking that many
applications can be cast within, or drawn back to, this i.i.d. set-up. For
example, stock prices at equispaced time intervals are definitely not
independent; however, logarithmic return increments are independent
according to the Black–Scholes model, Black and Scholes (1973) (the
reader is referred to the box ‘‘How to get i.i.d. scenarios in practice’’ for
more general strategies to recast a problem into an i.i.d. framework).

Draws 𝛿(1),… , 𝛿(𝑁) are first-hand knowledge on the problem and
the scenario approach provides a well-principled framework to estimate
𝑉 (𝑥∗) from the data. As we shall see in Section 3, the estimate remains
correct even when any partial or insecure knowledge on P that has
been used at the time the decision problem was formulated turns out
to be incorrect (this is the requirement in point (b) at the end of
Section 2.3). Moreover, the theory is grounded on finite-sample results
that are rigorously valid for any sample size (the reader is referred to
the box ‘‘Asymptotic results in the era of data: the tantalizing horizon’’
for a discussion on the value of finite-sample results).

2 Relaxing the assumption of independence is at present an open and
hrilling research endeavor. Clearly, without any assumptions, no theory relat-
ng observations collected in the past to situations that shall occur in the future
s impossible. On the other hand, the assumption of independence can be
een as extreme and can be easily relaxed e.g. into 𝑀-dependence, as is done
n Campi, Calafiore and Garatti (2009). Along more general routes, one can
esort to 𝜙-mixing or 𝛼-mixing assumptions that are a natural generalization of

the condition of independence, see e.g. Bosq (1998), or to conditions that limits
the mismatch in a conditional sense from independence, as suggested in Dagan,
Daskalakis, Dikkala, and Jayanti (2019) where the Dobrushin’s condition has
been used.
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How to get i.i.d. scenarios in practice.

In many problems, scenarios are naturally i.i.d.; this is the case
for example in all problems where data are draws from a popu-
lation, with myriad applications in machine learning, prediction
and classification. Otherwise, various techniques can be used to
draw the problem back to the i.i.d. set-up. Here, two families of
strategies of wide applicability to recast non-independent data
into an independent sample are briefly touched upon.

• Prediction-based strategies: Sometimes, at least a rough
predictor for a forthcoming observation is available (e.g.,
the Weather Bureau provides us with weather predictions).
Then, any observation at time 𝑡 can be decomposed into
a prediction part, based on the best of our knowledge
until time 𝑡, and a prediction error. Often, prediction errors
at different time instants are only lightly correlated and
the sequence of the prediction errors can, at least in first
approximation, be treated as an independent sequence.

• Segmentation: The states visited by a Markov Chain do not
form an independent sequence, but an observed trajectory
can be segmented into independent episodes by exploiting
the visit of a recurrent state, restart events after entering an
absorbing state, etc., see, e.g., Vidyasagar (2014).

Instead, even when the assumption that data are identically
distributed is not overall realistic, still it is often an accept-
able approximation over relatively short time windows, or after
suitable domain-dependent preprocessing such as the removal
of seasonal trends. Some additional discussion on this point is
provided in Section 4.

Asymptotic results in the era of data: the tantalizing horizon.

Traditionally, statistics has been dominated by asymptotic re-
sults. The usage of these results in practice always introduces
approximations and is acceptable only when the number of data
points is large compared to the dimension of the solution that
is being tuned on the data set. The present era where data are
ubiquitous and largely available may seem to have lessened the
need for finite-sample results and have favored the usage of
asymptotics. However, this evaluation turns out to be incorrect.
The reason lies in the fact that in our present times the greater
availability of data fares hand in hand with the increasing scale
of the problems. As problems become larger-scale, they require
solutions of higher dimension to be satisfactorily resolved so that,
as new data become available, the decision-maker is tantalized
to resort to more articulated and complex solutions sets. This
results in a sort of receding horizon that jeopardizes the use of
asymptotic statistics.

2.5. The operation of the scenario approach illustrated on a simple example

This section illustrates, and complements, various aspects touched
upon in previous sections of this article. It is meant to provide the
reader with a more transparent understanding of the operation of the
method before delving into the more technically-oriented presentation
of Section 3.

Suppose that the severity of a disease can be quantified by a real
number 𝑦, and yet an accurate assessment of 𝑦 requires a medical test
hat is too invasive to be applied on a vast scale. On the other hand,
simpler inspection delivers a number 𝑢 that carries information on 𝑦

nd

our aim is to construct an interval predictor that associates to a
given value of 𝑢 a range of values for 𝑦.
6

To do so, we follow a workflow in line with Fig. 1.

Leveraging prior knowledge
We start by collecting the opinions of some experts. Most of them

express the educated guess that 𝑦 should increase linearly with 𝑢, while
a few of them, with a reputation of being contrarians, are more doubtful
and say that they could even expect a negative correlation between
𝑢 and 𝑦 for values of 𝑢 that are above average. None of the experts
expects that the dispersion of the values of 𝑦 changes significantly with
𝑢. Moving from this latter observation,

we set out to construct an interval predictor that maps 𝑢 into
intervals 𝐼(𝑢) = [𝜑(𝑢) − ℎ

2 , 𝜑(𝑢) +
ℎ
2 ] of fixed width ℎ, where both

the function 𝜑(⋅) and the width parameter ℎ have to be suitably
designed based on further assessments of the problem.

Next we decide to trust the first group of scientists and take 𝜑(𝑢) =
𝑎+ 𝑏 ⋅ 𝑢, a linear function of 𝑢 with 𝑎 and 𝑏 tunable parameters. Owing
to these choices, we are only left to select three parameters, 𝑎, 𝑏 and ℎ,
which form the decision variable 𝑥 = (𝑎, 𝑏, ℎ).

The quality criteria
The indicator of the intrinsic quality of an interval predictor 𝐼(𝑢)

is the width ℎ: the smaller ℎ the more accurate the prediction. While
pursuing this intrinsic quality, we also have to keep control on the
extrinsic quality, represented by the reliability of the predictor: we must
ensure that the portion of patients for which 𝑦 ∈ 𝐼(𝑢) is large enough.
More formally, letting 𝑉 (𝑥) = P{𝑦 ∉ 𝐼(𝑢)}, where P is the probability
according to which patients (corresponding to pairs (𝑢, 𝑦)) distribute,
we would like that 𝑉 (𝑥∗) ≤ 𝜖 for a suitably small 𝜖.

The scenario approach: let the data speak
Suppose that 100 patients are independently drawn from P and

tested (with both the invasive and the simpler test), and the correspond-
ing 100 scenarios 𝛿(𝑖) = (𝑢(𝑖), 𝑦(𝑖)), 𝑖 = 1,… , 100, are at our disposal.3
Based on these scenarios, we choose 𝑥∗ = (𝑎∗, 𝑏∗, ℎ∗) by the following
rule.

RULE: the parameters 𝑎∗, 𝑏∗ and ℎ∗ are those that yield the interval
predictor with minimum width ℎ subject to the condition that 𝑦(𝑖) ∈
𝐼(𝑢(𝑖)), 𝑖 = 1,… , 100.

Fig. 2 gives the result generated by the RULE using the data that
are shown in the same figure.

Assessing the quality of the solution
The intrinsic quality can be assessed from the value of ℎ∗ as soon as

the predictor is constructed. In the outcome shown in Fig. 2, ℎ∗ turned
out to be only moderately satisfactory (and indeed in this toy example it
is even visually clear that the interval predictor includes large portions
of empty space).

While ℎ∗ is an observable quantity, 𝑉 (𝑥∗) cannot be directly com-
puted because it depends on probability P, which is not known. An
evaluation of 𝑉 (𝑥∗) can however be performed by using the scenario
theory and, to understand the type of results the scenario theory
offers, in the next points we first analyze what has been observed in a
campaign of simulated examples where P was artificially manufactured,
and hence it was known.

The distribution of 𝑉 (𝑥∗)

3 In this simulation example the 𝛿(𝑖) were artificially generated and, for
reproducibility, we inform the reader that 𝑢(𝑖) is distributed uniformly on
[0, 1] and that the corresponding 𝑦(𝑖) is obtained from 𝑢(𝑖) via relation 𝑦(𝑖) =
0.21 + 1.4𝑢(𝑖) − [𝑢(𝑖)]2) + 0.02 ⋅ log((1 + 𝑤(𝑖))∕(1 − 𝑤(𝑖))) where 𝑤(𝑖) is distributed

uniformly on [−1, 1] and independent of 𝑢(𝑖); however, the scenario approach

does not use this information.
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Fig. 2. A sample of 100 scenarios: each scenario is a data point in the (𝑢, 𝑦) space.
The function 𝜑(𝑢) = 𝑎∗ + 𝑏∗ ⋅ 𝑢 is represented by the dashed line. For each value of 𝑢
the predicted interval is 𝐼(𝑢) = [𝜑(𝑢) − ℎ∗

2
, 𝜑(𝑢) + ℎ∗

2
].

Simulation campaign #1. Our first simulation campaign consists of
repeated constructions of the predictor according to the RULE, with
different sets of data.

• In 𝑀 = 1000 repetitions, we generated a data set made up
of 𝑁 = 100 observations (𝛿(1),… , 𝛿(100)) according to the same
distribution that was used to generate the data points in Fig. 2;

• for each one of the 1000 data sets, we constructed a predictor by
computing 𝑥∗ = (𝑎∗, 𝑏∗, ℎ∗) according to the RULE;

• for each 𝑥∗, we computed 𝑉 (𝑥∗) (note that we can compute the
exact value of 𝑉 (𝑥∗) because we are running an artificial example
where we know the distribution according to which the pairs (𝑢, 𝑦)
are generated; this would be impossible if data were real data
generated from an unknown distribution).

The histogram of the 1000 values of 𝑉 (𝑥∗) is given in Fig. 3.
The true distribution of 𝑉 (𝑥∗) computed analytically is represented

by the dashed line in the same figure (the histogram tends to this
distribution as 𝑀 → ∞).

Let us consider the quality threshold 𝜖 = 0.11. In our 1000 simula-
tions, the condition 𝑉 (𝑥∗) ≤ 𝜖 was always satisfied. By an analytical
computation, we found that P100{(𝛿(1),… , 𝛿(100)) ∶ 𝑉 (𝑥∗) > 𝜖} =
7.73 ⋅ 10−4 (note that the distribution of (𝛿(1),… , 𝛿(100)) is P100 because
scenarios are i.i.d. draws). Since 7.73 ⋅ 10−4 is a small number, it is not
surprising that this event did not happen in our 1000 experiments.

The knowledge of the value 7.73 ⋅ 10−4 can be used to make state-
ments like the following one:

if we run an experiment and build a predictor based on 100 scenar-
ios, the resulting predictor will have a risk smaller than 11% with
confidence 1 − 7.73 ⋅ 10−4.

A natural question now is how this story changes for a different data
generation mechanism, that is, for a different P.

Simulation campaign #2. We made a second simulation campaign as
before but, this time, we replaced the probability distribution of (𝑢, 𝑦)
with a new one: 𝑢 is uniform over [0, 1] and the distribution of 𝑦 given
𝑢 is uniform over [0.9𝑢, 0.9𝑢 + 0.1]. Unlike the distribution in campaign
#1, this distribution fits very well our linear a priori belief leading
to a small value of ℎ∗ (see Fig. 4). The histogram of 𝑉 (𝑥∗) for this
7

Fig. 3. Histogram of 𝑀 = 1000 values of 𝑉 (𝑥∗). The distribution of 𝑉 (𝑥∗), to which
the histogram tends when 𝑀 → ∞, is represented by the dashed line.

Fig. 4. An interval predictor obtained in the second simulation campaign.

second simulation campaign is shown in Fig. 5, together with the exact
distribution of 𝑉 (𝑥∗).

Surprisingly, the true distribution is the same as that for campaign
#1. This is a symptom of a general fact: any distribution of (𝑢, 𝑦) with
a density leads exactly to the same distribution of 𝑉 (𝑥∗). More on the
invariant distribution of 𝑉 (𝑥∗) will be provided in the next technical
Section 3, however, we anticipate that it is a Beta distribution with
expected value equal to 3

𝑁+1 . Interestingly, the number 3 at the numer-
ator coincides with the number of optimization variables (𝑎, 𝑏, ℎ). This
is not a fortuitous circumstance: should we use for example a predictor
that has 4 optimization variables (𝑎, 𝑏, 𝑐, ℎ), 𝑉 (𝑥∗) would distribute like
a Beta with expected value equal to 4

𝑁+1 . In this case, the probability
of the event 𝑉 (𝑥∗) > 0.11 would increase to 3.4 ⋅ 10−3.

The separation principle
The above simulation campaigns have revealed a fundamental, and

unexpected, property of the RULE: the distribution of 𝑉 (𝑥∗) remains the
same irrespective of the actual mechanism by which data are generated.
As a consequence, we can make a judgment on 𝑉 (𝑥∗) (e.g., 𝑉 (𝑥∗) ≤
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Fig. 5. Histogram of 𝑀 = 1000 values of 𝑉 (𝑥∗) for another distribution of (𝑢, 𝑦). The
true distribution of 𝑉 (𝑥∗), to which the histogram tends when 𝑀 → ∞, is given by the
dashed line and it is exactly the same as that in Fig. 3.

Fig. 6. An interval predictor obtained by fitting a function 𝜑(𝑢) = 𝑎 + 𝑏 ⋅ 𝑢 + 𝑐 ⋅ 𝑢2.

0.11 with confidence 1 − 7.73 ⋅ 10−4) and trust it despite the possible
incorrectness of the priors which were used in the formulation of
our optimization problem. This is a manifestation of the so-called
‘‘separation principle’’.

Going back to our example, in the result in Fig. 2 using the prior
that 𝑢 and 𝑦 are linearly correlated led to a poor result in terms of the
width of the prediction interval (which might suggest that our trust in
the majority of the experts was misplaced). Nonetheless, the result that
𝑉 (𝑥∗) ≤ 0.11 holds with high confidence remains intact. Next, we may
want to give a chance to the minority opinion and move to consider
a quadratic function 𝜑(𝑢) = 𝑎 + 𝑏 ⋅ 𝑢 + 𝑐 ⋅ 𝑢2 so as to incorporate a
possible negative correlation for high values of 𝑢. By using again the
RULE (extended to the additional parameter 𝑐) with the same data set
as in Fig. 2, we found the much thinner interval predictor in Fig. 6 (this
is an example of application of point (iv) in Section 2.3). In this latter
case, the confidence in the result that 𝑉 (𝑥∗) ≤ 0.11 is 1− 3.4 ⋅ 10−3 (just
8

slightly lower than before as a consequence of having used one more
optimization variable).

From the simple example to more general problems
Many real life problems differ from the above simple example in

some important respects:

• situations are typically described by large dimensional objects and
not just (𝑢, 𝑦) pairs;

• the impact of prior knowledge cannot always be described as
clearly as in this simple example where a single decision variable
ℎ accounts for the intrinsic quality of the solution, while prior
beliefs affect the shape of the predictor through the other decision
variables (𝑎, 𝑏,…);

• the distribution of 𝑉 (𝑥∗) is not an invariant as the distribution of
data changes.

These differences do not prevent the theory of the scenario approach to
be applicable. The last point is of particular interest and we anticipate
that the reason why the distribution of 𝑉 (𝑥∗) was invariant in the
example of this section was that the complexity (as defined in the
next technical section) of the solution was the same irrespective of the
sample of scenarios at hand. Importantly, when this circumstance does
not turn out to be true, certain universal statements certifying 𝑉 (𝑥∗)
independently of the data generation mechanism are still possible.
Moreover, the scenario theory is much more general than what the
previous example has shown and includes a rich framework for the
evaluation of the risk based on the complexity of the solution when the
complexity is not constant, as well as schemes allowing for the removal
of some data points with the aim to strike a suitable balance between
reliability (extrinsic quality) and accuracy (intrinsic quality).

3. The theory of the scenario approach

To better illustrate the nature of the results, we start from a special
but notable set-up (which encompasses as a special case the simple
example of Section 2.5) and we will then move gradually towards more
general frameworks.

3.1. Convex worst-case optimization

Let 𝑥 ∈ R𝑑 be the decision vector. To make precise the somehow
informal description of Section 2.3, let us introduce two real functions
𝑐(𝑥) and 𝑓 (𝑥, 𝛿) as follows:

• 𝑐(𝑥) is a cost function (to be minimized), which is used as a
quantifier of the intrinsic quality of 𝑥;

• 𝑓 (𝑥, 𝛿) models the ‘‘regret’’ for employing 𝑥 when 𝛿 occurs. Con-
dition 𝑓 (𝑥, 𝛿) ≤ 0 indicates a satisfactory performance and, cor-
respondingly, 𝑉 (𝑥) = P{𝛿 ∶ 𝑓 (𝑥, 𝛿) > 0} is the indicator of the
extrinsic quality of 𝑥.

In this section, we assume that  is a convex set; 𝑐(𝑥) is convex;
and 𝑓 (𝑥, 𝛿) is convex in 𝑥 for all 𝛿 (while the dependence of 𝑓 on 𝛿 is
arbitrary).4

The decision process aims at finding the decision with optimal
intrinsic quality (i.e., minimum cost 𝑐(𝑥)) among all the candidate
decisions that perform ‘‘well’’ for all the observed scenarios. In formal

4 As we shall see in Section 3.3, recent developments of the scenario
approach remove these convexity assumptions.
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terms, this leads to the following mathematical program:

min
𝑥∈⊆R𝑑

𝑐(𝑥)

subject to: 𝑓 (𝑥, 𝛿(𝑖)) ≤ 0, 𝑖 = 1,… , 𝑁. (1)

As is clear, one primary goal behind using (1) is that of safeguarding
gainst the worst, which motivates enforcing the constraints 𝑓 (𝑥, 𝛿(𝑖)) ≤

0 for all the scenarios. Although suitable to various contexts, this
conservative standpoint may result in a poor value of 𝑐(𝑥∗) (𝑥∗ is the
olution to problem (1)), in which case one may want to resort to more
lexible alternatives as discussed in Section 3.4.

In the remainder of this Section 3.1 we will assume that, for any 𝑁 ,
he feasibility domain of the scenario program (1) has an interior point
nd that the solution to (1) is unique.5

Before proceeding with the description of the theoretical results,
t is worth remarking that the example of Section 2.5 fits into this
ramework of convex worst-case optimization if (𝑎, 𝑏, ℎ) is identified
ith 𝑥, and (𝑢, 𝑦) with 𝛿. In fact, building a predictor by applying the
ULE in Section 2.5 amounts to solving (1) with the cost function
(𝑥) = ℎ and the regret function 𝑓 (𝑥, 𝛿) = |𝑎 + 𝑏 ⋅ 𝑢 − 𝑦| − ℎ; note also
hat, in that context, the risk 𝑉 (𝑥∗) is the probability with which a new
bservation (𝑢, 𝑦) falls outside the prediction model of width ℎ∗.6

he scenario theory for convex worst-case optimization
In Campi and Garatti (2008), it is proven that the cumulative

istribution function of 𝑉 (𝑥∗) is (first-order) stochastically dominated
y a Beta distribution with parameters (𝑑,𝑁 − 𝑑 + 1). In mathematical

terms,

P𝑁{𝑉 (𝑥∗) ≤ 𝑣} ≥ 1 −
𝑑−1
∑

𝑖=0

(

𝑁
𝑖

)

𝑣𝑖(1 − 𝑣)𝑁−𝑖. (2)

Importantly, this result is universal, in the sense that it is valid irrespec-
tive of P. An upper-bound 𝜖 for 𝑉 (𝑥∗) can then be obtained from (2) as
follows. Let 𝛽 be a small number, say 𝛽 = 10−5, and let 𝜖 be the value
that solves the equation7

𝑑−1
∑

𝑖=0

(

𝑁
𝑖

)

𝑣𝑖(1 − 𝑣)𝑁−𝑖 = 𝛽; (3)

then, 𝑉 (𝑥∗) ≤ 𝜖 holds with high probability 1 − 𝛽. Since the Beta
distribution is unimodal and thin tailed, 𝜖 gets close to its mean (which

5 The uniqueness assumption is introduced to simplify the presentation;
f the solution is not unique, a suitable tie-break rule can be intro-
uced, Campi and Garatti (2008); other variations on the theme are possible,
ee e.g. Calafiore (2010b), Nasir, Garatti, and Weyer (2016) for contributions
bout unfeasible problems.

6 Interval Predictor Models as in Figs. 2, 4 and 6 are obtained from convex
orst-case optimization problems that have a special structure for which

pecific theoretical results are available, see in particular Carè et al. (2014,
015). For other contributions on Interval Predictor Models, the reader is also
eferred to Calafiore (2010a), Campi, Calafiore et al. (2009), Crespo, Kenny,
nd Giesy (2016), Garatti, Campi, and Carè (2019), Lacerda, Martins, and
epomuceno (2018), Patelli, Broggi, Tolo, and Sadeghi (2013), Wang, Shang,
ang, Huang, and Yu (2020).

7 This equation can be easily solved by bisection. The MATLAB function
etaincinv(𝛽, 𝑑, 𝑁 − 𝑑 + 1,’upper’) solves it and returns directly the value

of 𝜖. An approximate formula that can be useful for a first pencil-and-paper
estimation of 𝜖 is

𝜖 ≤ 1
𝑁

(

𝑑 − 1 + ln 1
𝛽
+
√

2(𝑑 − 1) ln 1
𝛽

)

,

ee Alamo, Tempo, Luque, and Ramirez (2015).
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t

is 𝑑
𝑁+1 ) for a relatively small number of observations. Thus, roughly, 𝜖

depends on the ratio between 𝑑 and 𝑁 .

In applications, 𝜖 can be used as a relevant information to compare
decisions coming from various decision spaces. For instance, in the
example of Section 2.5 solving (3) for 𝛽 = 1

1000 gives 𝜖 = 0.108
hen 𝑑 = 3 (linear predictor) and 𝜖 = 0.125 when 𝑑 = 4 (predictor

entered around a quadratic function) and these values complement the
nformation coming from the intrinsic quality. The reader is referred to
he box ‘‘Dealing with multiple comparisons by the union bound’’ for
more detailed discussion on the guarantees that can be attached to a

election made out of competing alternatives.

As already mentioned, in the example of Section 2.5 the distribution
f 𝑉 (𝑥∗) is exactly a Beta distribution with parameters (𝑑,𝑁 − 𝑑 + 1),
rrespective of the data generation mechanism, provided that P has
ensity. Thus, in that case, the inequality ‘‘≤’’ in (2) holds in fact with

‘=’’, i.e.,

𝑁{𝑉 (𝑥∗) ≤ 𝑣} = 1 −
𝑑−1
∑

𝑖=0

(

𝑁
𝑖

)

𝑣𝑖(1 − 𝑣)𝑁−𝑖 (4)

the density of this distribution when 𝑁 = 100 and 𝑑 = 3 is the
ashed curve in Figs. 3 and 5). The existence of problems for which
he inequality in (2) is an equality (examples can be found for any 𝑑
nd 𝑁) shows that (2) cannot be improved unless it is specialized to
ubclasses of problems.

he notion of complexity

In the proof of (2) developed in Campi and Garatti (2008), a key
ole is played by the notion of complexity.

The complexity of 𝑥∗ is an integer 𝑠∗ ∈ {0, 1,… , 𝑁} such that 𝑥∗ can
be obtained by solving a problem similar to (1) that only contains
a subsample of scenarios from 𝛿(1),… , 𝛿(𝑁) whose cardinality is 𝑠∗

while no subsamples of scenarios with cardinality lower than 𝑠∗

exist that give the same solution 𝑥∗.8

or an example, we can go back to Fig. 2 and note that the same solu-
ion (𝑎∗, 𝑏∗, ℎ∗) would have been obtained with just 3 points, those that
ie on the boundary of the prediction model. Instead, any subsample
f scenarios that does not include these 3 points leads to a different
olution, so that 𝑠∗ = 3 in this case.

The following is a key fact in convex worst-case scenario theory.

ey Fact. For any problem in the form of (1), it holds that 𝑠∗ ≤ 𝑑.

Looking at the proof of (2) in Campi and Garatti (2008), one sees
hat (2) deeply relies on the above Key Fact. Also, the fact that the
redictor in Fig. 2 turns out to have a complexity 𝑠∗ that is equal to 𝑑
= 3) is not by chance: in Garatti et al. (2019), one can find a proof that
his problem belongs to the class of fully-supported problems, for which

8 It is worth noticing that, in the convex set-up, the scenarios that suffice
o reconstruct 𝑥∗ are always a subset of the active constraints, which makes
he evaluation of 𝑠∗ computationally easy.
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𝑠∗ = 𝑑 happens with probability 1.9 In Campi and Garatti (2008), it
is proven that relation (4) holds for all fully-supported problems and
that all other problems are dominated by the fully-supported class in
the sense that (2) holds.

Dealing with multiple comparisons by the union bound.

In the prediction problem of Section 2.5, we know that 𝑉 (𝑥∗) > 𝜖
happens with probability 𝛽 = 1

1000 , where 𝜖 = 0.108 for 𝑑 = 3
and 𝜖 = 0.125 for 𝑑 = 4. If the selection between 𝑑 = 3 and
𝑑 = 4 is made a posteriori (after seeing the prediction interval), we
might be advised by an ‘‘evil oracle’’ that indicates a ‘‘bad’’ choice
(for which 𝑉 (𝑥∗) > 𝜖) whenever one exists. However, no matter
how evil the oracle is, the probability that a data set verifies the
condition 𝑉 (𝑥∗) > 𝜖 for one of the two choices cannot be larger
than 1

1000 + 1
1000 = 2

1000 . Therefore, the certificate ‘‘𝑉 (𝑥∗) ≤ 𝜖’’
is valid with probability at least 1 − 2 ⋅ 10−3. This argument can
be extended to the case where one chooses a solution from 𝑀
possibilities leading to the conclusion that P𝑁{𝑉 (𝑥∗) ≤ 𝜖} ≥
1 − 𝑀𝛽 (where, similarly to the above example with 𝑑 = 3 or
𝑑 = 4, the value of 𝜖 depends on the choice made). Since small
values of 𝛽 (such as 10−7 or 10−8) can be enforced with reasonable
sample sizes, the value of 𝑀𝛽 can be easily kept small even when
large set of choices are tested out.

.2. The wait-and-judge perspective

The results in Section 3.1 stand on the observation that the com-
lexity 𝑠∗ is upper bounded by 𝑑 (see ‘‘Key Fact’’) and culminate in
esult (2), which is tight for fully-supported problems, that is, (4) holds.
n the other hand, (2) is only an upper bound for non fully-supported
roblems and the reader is referred to Fig. 7 for the distribution of
(𝑥∗) in two non fully-supported examples.

The conservatism inherent in the bounds that are obtained from
he Beta distribution normally worsens in large scale problems with
high dimensional optimization domain, which is a situation that is

ncountered with increasing frequency in modern applications.10

In what follows, we present results for convex worst-case optimiza-
tion that establish a connection between 𝑉 (𝑥∗) and 𝑠∗ (rather than a

9 A problem is fully-supported if 𝑠∗ = 𝑑 with probability 1 and it is non-
degenerate; a problem is non-degenerate if, for any 𝑁 , there is with probability
1 a unique choice of indexes, say 𝑖1, 𝑖2,… , 𝑖𝑘 (with 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘) from
1, 2,… , 𝑁 , such that: (a) problem (1) where only the constraints 𝑓 (𝑥, 𝛿(𝑖𝑗 )) ≤ 0,
𝑗 = 1,… , 𝑘, are enforced gives the same solution 𝑥∗ as with all constraints;
(b) if 𝑘 > 0, discarding further indexes from 𝑖1, 𝑖2,… , 𝑖𝑘 changes the solution
(irreducibility of the set of indexes). (Note that for 𝑘 = 𝑠∗ one certainly finds
one such set of indexes; the definition of non-degeneracy requires that this
set is unique within all subsets of indexes whose cardinality is equal to 𝑠∗

or larger.) Within convex optimization, degeneracy requires an anomalous
accumulation of active constraints to happen and assuming non-degeneracy is
therefore reasonable in many applications. Note for the reader: the definition of
fully-supportedness given in the scenario literature is equivalent to that given
here, but sometimes it is formulated differently.

10 In some cases, one can use a Beta in dimension 𝑑 < 𝑑 (where 𝑑 is the
actual dimension of the problem), in which case 𝑑 is called the ‘‘effective
dimension’’. Regularization mechanisms have been used to achieve this result
in Campi and Carè (2013), while Schildbach, Fagiano, and Morari (2013),
Zhang, Grammatico, Schildbach, Goulart, and Lygeros (2015) present studies
in specific contexts in which 𝑑 is derived from using the concept of ‘‘support
rank’’.
10

t

connection between 𝑉 (𝑥∗) and the upper bound 𝑑 on 𝑠∗ as in (2)). The
use of these results is that one waits until the solution is determined
and, at that time, 𝑉 (𝑥∗) is judged from the complexity 𝑠∗ that has been

easured at the solution (see also the box ‘‘Compression and risk: a
olid marriage’’).

Compression and risk: a solid marriage.

The complexity 𝑠∗ is small when the sample 𝛿(1),… , 𝛿(𝑁) can
be slimmed down to a small subsample that is sufficient to
reconstruct the solution 𝑥∗. Therefore, the complexity is related
to the compressibility of the sample 𝛿(1),… , 𝛿(𝑁). The idea that the
compressibility of the information carried by the data is related
to generalization properties is not new in machine learning, see
e.g. Barron, Rissanen, and Yu (1998), Graepel, Herbrich, and
Shawe-Taylor (2005), Hanneke and Kontorovich (2019), Little-
stone and Warmuth (1986), Ming and Vitányi (1990), Moran
and Yehudayoff (2016), Rissanen (1978, 1986). What is new
in scenario optimization is the vast applicability of this con-
cept beyond a machine learning context and that compressibility
leads to extraordinarily powerful results as in (2), (4). Recent
research efforts have been geared towards extending these results
to general schemes beyond convex optimization, see e.g. Alamo,
Tempo, and Camacho (2009), Campi (2010), Campi, Garatti,
and Ramponi (2018), Carè, Campi, and Garatti (2017), Carè
et al. (2018), Esfahani, Sutter, and Lygeros (2015), Grammatico,
Zhang, Margellos, Goulart, and Lygeros (2016), Margellos, Fal-
sone, Garatti, and Prandini (2018), Margellos, Prandini, and
Lygeros (2015), Paccagnan and Campi (2019), Ramponi and
Campi (2018). Part of these results are outlined in Sections 3.3,
3.4 and 3.5.

We start by illustrating a simulation example; later, we present the
general theory. This section contains results from Campi and Garatti
(2018), Garatti and Campi (2019, 2021), to which the reader is referred
for the proofs and more details.

Example: orthant that includes random points
A population of points 𝑝 in a 400-dimensional Euclidean space R400

is distributed according to a probability P. We want to choose an 𝑥 ∈
R400 such that ∑400

𝑗=1 𝑥𝑗 (subscript 𝑗 denotes component) is minimized
(intrinsic criterion) while relation 𝑝𝑗 − 𝑥𝑗 ≤ 0, 𝑗 = 1,… , 400, holds with
high probability (in other words, the negative orthant with vertex in 𝑥
contains most of the probabilistic mass of P – extrinsic criterion).

Worst-case scenario solution
We collected 𝑁 = 1000 points 𝑝(1),… , 𝑝(1000) (these are the scenar-

ios), and solved the scenario program:

min
𝑥∈R400

400
∑

𝑗=1
𝑥𝑗

subject to: 𝑝(𝑖)𝑗 − 𝑥𝑗 ≤ 0, 𝑗 = 1,… , 400 𝑖 = 1,… , 1000, (5)

which is a convex scenario program in the form of (1) with 𝑑 = 400
and 𝑁 = 1000, 𝑐(𝑥) = ∑400

𝑗=1 𝑥𝑗 and 𝑓 (𝑥, 𝛿) = max𝑗=1,…,400(𝑝𝑗 −𝑥𝑗 ) (where,
clearly, 𝛿 = 𝑝).

Results of two simulation campaigns
Two simulation campaigns were performed for two different prob-

ability distributions P𝐴 and P𝐵 . For each simulation campaign, we
repeated 100 000 times the sampling of 𝑁 = 1000 scenarios, and
computed the corresponding 𝑥∗ and 𝑠∗. Every time, we also computed
𝑉 (𝑥∗) by exploiting the privilege (due to the fact that we are in a
simulated set-up) of knowing the real distribution of the points.

Fig. 8 shows the empirical bivariate distribution of the values (𝑘, 𝑣)
taken by (𝑠∗, 𝑉 (𝑥∗)) over the 100 000 trials in the case of probability P𝐴.

he reader can notice that a blue slanted region is also represented in

he (𝑘, 𝑣) plane. This region is precisely introduced in the theoretical
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Fig. 7. The probability density function of the Beta distribution, as given by the right-hand side of (2) with 𝑁 = 1000 and 𝑑 = 400, is represented in blue continuous line. For a
fully-supported problem, 𝑉 (𝑥∗) distributes as the Beta distribution. The dotted and dashed lines show the distribution of 𝑉 (𝑥∗) for two examples described in Garatti and Campi
(2019): while these densities are dominated by the Beta distribution in the sense of (2), using the Beta distribution to estimate 𝑉 (𝑥∗) produces conservative evaluations in these
two cases.
Source: This figure is taken from Garatti and Campi (2019).
Fig. 8. Empirical probability distribution of (𝑠∗ , 𝑉 (𝑥∗)) when points are generated by
P𝐴.

developments presented below, and, for the time being, we just notice
that the distribution of (𝑠∗, 𝑉 (𝑥∗)) appears to be supported on this
slanted region. A similar picture for P𝐵 is given in Fig. 9. In this second
case, the slanted region is exactly as in the first case and it happens
again that the support of the distribution of (𝑠∗, 𝑉 (𝑥∗)) belongs to it.

We next make overt that the marginal distributions of 𝑉 (𝑥∗) under
P𝐴 and P𝐵 are those represented in Fig. 7 as dashed yellow and dotted
red lines respectively. As already discussed in Section 3.2, the Beta
distribution of Fig. 7 only sets an upper limit to these marginals. The
present simulations in Figs. 8 and 9 suggest that more information
can be gained from the lens of a bivariate point of view where one
variable, the risk, is estimated from the other, the complexity (which
is a measurable quantity). We anticipate that this result is true in high
generality and that the precision in the evaluation of 𝑉 (𝑥∗) that can be
achieved thanks to this new lens is comparable to the precision that
comes in fully-supported problems from using relation (4), indeed a
remarkable finding.

A general result
11
Fig. 9. Empirical probability distribution of (𝑠∗ , 𝑉 (𝑥∗)) when points are generated by
P𝐵 .

As is clear from our simulations, the distribution of the pair (𝑠∗,
𝑉 (𝑥∗)) can take various forms. However, in the two examples that
we have just seen this distribution was confined in the slanted region
which, for easy reference, is again displayed in Fig. 10.

The rule by which the boundaries of the slanted region are con-
structed is as follows.

Rule to compute the boundaries of the slanted region

Assume 𝑁 > 𝑑. Given a confidence parameter 𝛽 ∈ (0, 1), for any
𝑘 = 0,… , 𝑑 consider the polynomial equation in the 𝑡 variable
(

𝑁
𝑘

)

𝑡𝑁−𝑘 −
𝛽
2𝑁

𝑁−1
∑

𝑖=𝑘

(

𝑖
𝑘

)

𝑡𝑖−𝑘 −
𝛽
6𝑁

4𝑁
∑

𝑖=𝑁+1

(

𝑖
𝑘

)

𝑡𝑖−𝑘 = 0. (6)

For any 𝑘 = 0, 1,… , 𝑑, Eq. (6) has exactly two solutions in [0,+∞),
which we denote with 𝑡(𝑘) and 𝑡(𝑘) (𝑡(𝑘) ≤ 𝑡(𝑘)). Define 𝜖(𝑘) ∶=
max{0, 1− 𝑡(𝑘)} and 𝜖(𝑘) ∶= 1− 𝑡(𝑘), 𝑘 = 0,… , 𝑑. Function 𝜖(𝑘) is the
lower boundary of the slanted region and 𝜖(𝑘) its upper boundary.
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𝜖

𝜖

Fig. 10. The slanted blue area is the region to which at least 1 − 𝛽 = 99.9% of
the probabilistic mass of (𝑠∗ , 𝑉 (𝑥∗)) belongs for any non-degenerate convex scenario
problem (as defined in Footnote 9) in the form of (1) when 𝑑 = 400 and 𝑁 = 1000.
Moreover, for any problem in the form of (1) (degenerate or non-degenerate) at least
1−𝛽 = 99.9% of the probabilistic mass of (𝑠∗ , 𝑉 (𝑥∗)) lies below the upper boundary of the
blue area. For the sake of comparison, in the figure a red interval is represented which
is a 99.9% confidence interval of the risk for a fully-supported problem in dimension
200 (the interval has been obtained by using the Beta distribution).

A MATLAB code for computing the values of 𝜖(𝑘) and 𝜖(𝑘) according
to this rule is available in the Appendix A of Garatti and Campi (2019).

We now have the following result (it is assumed that the solution 𝑥∗

exists and is unique, possibly after the use of a suitable tie-break rule).

Wait-and-judge result for convex scenario optimization. For any
non-degenerate problem (as defined in Footnote 9) in the form of (1), it
holds that

P𝑁{𝜖(𝑠∗) ≤ 𝑉 (𝑥∗) ≤ 𝜖(𝑠∗)} ≥ 1 − 𝛽; (7)

moreover, for any problem in the form of (1), it holds that

P𝑁{𝑉 (𝑥∗) ≤ 𝜖(𝑠∗)} ≥ 1 − 𝛽. (8)

Hence, referring to Fig. 10, in non-degenerate problems the distri-
bution of (𝑠∗, 𝑉 (𝑥∗)) is confined to the blue slanted region (but a small
portion whose probability is no more than 𝛽) whereas in degenerate
problems the distribution of (𝑠∗, 𝑉 (𝑥∗)) can expand below the lower
boundary of the slanted region, while the upper boundary, that sets a
limit to 𝑉 (𝑥∗), is always valid (this latter result is proven in the recent
paper Garatti & Campi, 2021).

For the use of this result, the crucial fact to remark is that the
quantity on the horizontal axis (complexity) is measurable, while the
vertical axis corresponds to the value of the risk 𝑉 (𝑥∗) that, in real life,
is hidden to the decision-maker and can only be estimated. Thus, from
Fig. 10, one obtains a rule to bound 𝑉 (𝑥∗) based on the observable 𝑠∗

and the result in (7) provides sample-dependent bounds of the kind
𝜖(𝑠∗) ≤ 𝑉 (𝑥∗) ≤ 𝜖(𝑠∗) (or just 𝑉 (𝑥∗) ≤ 𝜖(𝑠∗), in degenerate cases thanks
to (8)) that are valid with high probability 1−𝛽. The interval [𝜖(𝑘), 𝜖(𝑘)]
for a given 𝑘 is comparable to the one that can be generated when
working with a fully-supported problem in dimension 𝑑 = 𝑘. One of
these intervals with 𝑑 = 200, is represented in Fig. 10. The quantitative
similarity between [𝜖(𝑘), 𝜖(𝑘)] and the intervals in the fully-supported
case is quite a remarkable fact and reveals the value of the information
conveyed by the complexity. From results in Campi and Garatti (2018),
Garatti and Campi (2019), one also sees that 𝛽 impacts on 𝜖(𝑘) and
̄(𝑘) logarithmically so that taking very small values of 𝛽 enlarges only
marginally the interval [𝜖(𝑘), 𝜖(𝑘)]; moreover, for any 𝑘,

̄(𝑘) − 𝜖(𝑘) → 0
12
Fig. 11. An instance of a non-convex scenario program where 𝑑 = 2 but 𝑠∗ = 6.

as 𝑁 → ∞ in such a way that the interval shrinks around 𝑘∕𝑁 as 𝑁
grows, see Campi and Garatti (2020).

3.3. Non-convex worst-case optimization

When the assumption of convexity is dropped, the bound 𝑠∗ ≤ 𝑑
loses validity. For example, let 𝑥 = (𝑥1, 𝑥2) ∈ [−1, 1]2, 𝑐(𝑥) = 𝑥2,
𝛿 ∈ [−1, 1] and 𝑓 (𝑥, 𝛿) = −|𝑥1 − 𝛿|−𝑥2. An instance of the corresponding
scenario program is pictured in Fig. 11, and the reader can easily check
that any subsample of the 6 observed scenarios yields a solution 𝑥∗

different from the one obtained with all the scenarios, so that 𝑠∗ = 6 >
2 = 𝑑 in this case. Moreover, the same example reveals that a constraint
need not be active to be necessary to reconstruct the solution in the
non-convex case. This circumstance suggests that degeneracy becomes
quite a common circumstance (the reader may want to think of the case
in which one more constraint is added in Fig. 11: degeneracy becomes
evident whenever this new constraint ‘‘shields’’ the global minimum
that opens up after removing one of the 6 constraints already in the
figure).

Remarkably, the results in the recent paper Garatti and Campi
(2021) do not require that 𝑠∗ ≤ 𝑑 and are applicable even in the
degenerate case, leading to the following result (𝑥∗ is assumed to exist
and to be unique, possibly after the use of a suitable tie-break rule).

Wait-and-judge result for non-convex scenario optimization. Use
Eq. (6) to compute 𝜖(𝑘) for 𝑘 = 0, 1,… , 𝑁 (note that the range of 𝑘 is here
extended till 𝑁).11 Then, for any problem in the form of (1), where 𝑐(𝑥)
and 𝑓 (𝑥, 𝛿) need not be convex in 𝑥 and  is any set, it holds that

P𝑁{𝑉 (𝑥∗) ≤ 𝜖(𝑠∗)} ≥ 1 − 𝛽. (9)

The curve 𝜖(𝑘) for 𝑁 = 1000 and 𝛽 = 0.1% is displayed in Fig. 12.
Note that, for 𝑘 in the range [0, 400], 𝜖(𝑘) is exactly as in Fig. 10.

3.4. Tuning of the extrinsic quality

In (1), all scenario constraints are rigidly enforced, so expressing
an attitude to safeguard against the worst. This, however, can lead to
conservative designs: the presence of just one ill scenario can forbid
a whole set of candidate solutions and confine the choice to solutions
with poor intrinsic quality 𝑐(𝑥) (see, e.g., Assif, Chatterjee, & Banavar,

11 The construction for 𝑘 = 0, 1,… , 𝑁 −1 is exactly as indicated in the ‘‘Rule
to compute the boundaries of the slanted region’’; for 𝑘 = 𝑁 , however, Eq. (6)
has only one solution 𝑡(𝑁), and one defines 𝑡(𝑁) = 0, so that 𝜖(𝑁) = 1.
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Fig. 12. The blue area is the region to which at least 1−𝛽 = 99.9% of the probabilistic
mass of (𝑠∗ , 𝑉 (𝑥∗)) belongs for any non-convex scenario problem in the form of (1)
when 𝑁 = 1000.

2020; Ramponi, 2018; Shapiro, Dentcheva, & Ruszczyński, 2009). On
the other hand, in many applications, 𝑐(𝑥) and 𝑉 (𝑥) are seen as con-
flicting objectives and in this section we focus on a class of decision
schemes that allow the decision-maker to compromise between intrinsic
and extrinsic quality.

According to the interpretation of 𝑓 (𝑥, 𝛿) provided in Section 3.1,
a violation of the condition 𝑓 (𝑥, 𝛿(𝑖)) ≤ 0 yields a regret. The first
scheme we present relaxes the rigid enforcement of constraints by
minimizing a weighted combination of the cost 𝑐(𝑥) and the sum of
the (positive) regrets ∑𝑁

𝑖=1
[

𝑓 (𝑥, 𝛿(𝑖))
]+ ([⋅]+ is positive part, that is, it

returns its argument when it is positive and zero otherwise). This yields
the following optimization program where the weight 𝛼 assigned to the
regrets is a tunable trade-off parameter12:

min
𝑥∈⊆R𝑑 ,

𝜉𝑖≥0,𝑖=1,…,𝑁

𝑐(𝑥) + 𝛼
𝑁
∑

𝑖=1
𝜉𝑖

subject to: 𝑓 (𝑥, 𝛿(𝑖)) ≤ 𝜉𝑖 𝑖 = 1,… , 𝑁. (10)

Let (𝑥∗𝛼 , 𝜉
∗
𝑖,𝛼) be the solution to (10) (assumed to exist and to be unique,

possibly after the use of a suitable tie-break rule). In this context, a suit-
able generalization of the concept of complexity allows one to estimate
the extrinsic quality of 𝑥∗𝛼 (i.e., quantity 𝑉 (𝑥∗𝛼) = P{𝛿 ∶ 𝑓 (𝑥∗𝛼 , 𝛿) > 0}).13

The generalized complexity 𝑠∗𝛼 is the cardinality of a subsample 𝑆 of sce-
narios from 𝛿(1),… , 𝛿(𝑁) defined as follows: 𝑆 contains all the violated
scenarios (i.e., the scenarios for which 𝑓 (𝑥∗𝛼 , 𝛿

(𝑖)) > 0)14 plus a minimum
subsample of the remaining scenarios such that the 𝑥-component of
the solution to (10) with only 𝑆 in place remains equal to 𝑥∗𝛼 . Then,
exactly the same result as in ‘‘Wait-and-judge result for non-convex
optimization’’ holds (without requiring any convexity assumption) with
the only warning that 𝑥∗ and 𝑠∗ must be replaced in the present context
by 𝑥∗𝛼 and 𝑠∗𝛼 .15 The value of 𝛼 (which ranges from 𝛼 = 0, corresponding

12 The set of all the optimal decisions 𝑥∗𝛼 obtained from (10) as a function of
𝛼 is known as the Pareto frontier of the multi-objective problem of minimizing
𝑐(𝑥) and ∑𝑁

𝑖=1
[

𝑓 (𝑥, 𝛿(𝑖))
]+.

13 The need for a generalization of the concept of complexity can be
recognized by noting that problem (10) is not directly in the form of (1), in
particular the number of optimization variables 𝑥, 𝜉𝑖 increases with 𝑁 .

14 The subsample 𝑆 is with repetitions, i.e., if two scenarios 𝛿(𝑖) and 𝛿(𝑗) for
which 𝑓 (𝑥∗𝛼 , 𝛿

(𝑖)) > 0 and 𝑓 (𝑥∗𝛼 , 𝛿
(𝑗)) > 0 turn out to be coincident (𝛿(𝑖) = 𝛿(𝑗)),

then they both appear in 𝑆.
15 Also in this context a concept of non-degeneracy can be applied leading

to the stronger result that 𝑉 (𝑥∗𝛼) is both upper and lower bounded, see Garatti
and Campi (2019).
13
to minimizing 𝑐(𝑥) with no concern for the observed scenarios, to
𝛼 = ∞, corresponding to the worst-case approach) influences 𝑠∗𝛼 (and,
thereby, the bounds on 𝑉 (𝑥∗𝛼)) and 𝑐(𝑥∗𝛼) and represents a tuning knob in
the hands of the decision-maker. By plotting 𝑐(𝑥∗𝛼1 ), 𝑐(𝑥

∗
𝛼2
),… against the

bounds 𝜖(𝑠∗𝛼1 ), 𝜖(𝑠
∗
𝛼2
),… for 𝑉 (𝑥∗𝛼1 ), 𝑉 (𝑥∗𝛼2 ),…, one obtains the so-called

cost-risk plot (see Garatti & Campi, 2019 for an example) by which the
user can perform a selection of a suitable value for 𝛼.

Program (10) is not the only scheme to tune the intrinsic vs. the
extrinsic quality. Alternatively, one can discard some of the constraints
from the worst-case program (1) and the reader is referred to the
papers Campi and Garatti (2011), Garatti and Campi (2013), Picallo
and Dörfler (2019), Romao, Margellos, and Papachristodoulou (2020)
for studies in this direction. Interestingly, a very precise connection can
be traced between the approach of (10) and the discarding strategy.
Suppose that 𝑓 (𝑥, 𝛿) in (10) can only take the value 0 or 1 (indicator
function). Then, as parameter 𝛼 declines, the solution to (10) explores
the optimal solutions that violate an increasing number of scenario
constraints, which is the same as computing the optimal solution
allowing for the discarding of a certain amount of the constraints.16 One
should however note that solving exactly problem (10) with indicator
functions 𝑓 (𝑥, 𝛿) is extremely complex even when the cost function
𝑐(𝑥) and the sets where 𝑓 (𝑥, 𝛿) = 0 are convex. The reason is that
the indicator functions lift the problem outside the domain of convex
optimization. For this reason, the literature on constraint discarding
has evolved towards various heuristics covering sub-optimal discarding
strategies, e.g., according to greedy procedures. Remarkably, the the-
oretical results about the risk provided in the references given above
remain rigorously valid when these heuristics are used (even though
these results do not always provide sharp evaluations). Going back
to the approach of (10), one should note that it offers an extra level
of flexibility that can accommodate various needs: (i) by the choice
of 𝑓 (𝑥, 𝛿) one can reflect problem-dependent concepts of regret; (ii) if
function 𝑓 (𝑥, 𝛿) is selected to be convex in 𝑥 for any 𝛿, then the problem
does not lift outside the domain of convex optimization so that optimal
solutions can be easily computed, and the sharp generalization theory
touched upon in this section can be applied.

3.5. A general theory for decision-making

The scenario theory carries over to an abstract decision-making
framework that encompasses all previous set-ups and many others as
special cases. Here, we briefly summarize the results in Garatti and
Campi (2019, 2021), to which the reader is referred for details.

For any 𝑁 = 0, 1, 2,… let 𝑀𝑁 be a map from any set of scenarios
𝛿(1),… , 𝛿(𝑁) to a decision 𝑧∗ ∈ , where  is a generic decision set.
The maps 𝑀0,𝑀1,… describe the rule according to which decisions
are made based on observations in an integrated data-driven set-up as
in Fig. 1. In order to evaluate whether the extrinsic criterion is met,
there is a rule to decide whether a decision 𝑧 performs ‘‘well’’ when a
situation 𝛿 occurs. This is expressed in mathematical terms by saying
that, to any situation 𝛿, there is associated a set 𝛿 ⊆  which models
the set of the decisions that perform well for 𝛿. The risk of a decision
𝑧 ∈  is then defined as 𝑉 (𝑧) ∶= P{𝛿 ∶ 𝑧 ∉ 𝛿}.

No limiting assumptions on the domain of 𝛿 and on the map
between 𝛿 and 𝛿 are necessary. The freedom of the decision-maker
in choosing the maps 𝑀0,𝑀1,… is also vast as long as the following
three properties are satisfied:

• Permutation invariance:
for every 𝑁 , every 𝛿(1),… , 𝛿(𝑁) and every permutation (𝑖1,… , 𝑖𝑁 )
of (1,… , 𝑁) it holds that

𝑀𝑁 (𝛿(1),… , 𝛿(𝑁)) = 𝑀𝑁 (𝛿(𝑖1),… , 𝛿(𝑖𝑁 )).

16 The optimal solution attains a cost 𝑐(𝑥) that has been compared to the
optimal cost of a chance-constrained problem in Theorem 6.1 of Campi and
Garatti (2011).
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• Stability in the case of confirmation:
for every integers 𝑁 and 𝑛, if 𝛿(1),… , 𝛿(𝑁), 𝛿(𝑁+1),… , 𝛿(𝑁+𝑛) are
such that

∀𝑖 ∈ {1,… , 𝑛} ∶ 𝑀𝑁 (𝛿(1),… , 𝛿(𝑁)) ∈ 𝛿(𝑁+𝑖) ,

then

𝑀𝑁 (𝛿(1),… , 𝛿(𝑁)) = 𝑀𝑁+𝑛(𝛿(1),… , 𝛿(𝑁+𝑛)).

• Responsiveness to contradiction:
for every integers 𝑁 and 𝑛, if 𝛿(1),… , 𝛿(𝑁), 𝛿(𝑁+1),… , 𝛿(𝑁+𝑛) are
such that

∃𝑖 ∈ {1,… , 𝑛} ∶ 𝑀𝑁 (𝛿(1),… , 𝛿(𝑁)) ∉ 𝛿(𝑁+𝑖) ,

then

𝑀𝑁+𝑛(𝛿(1),… , 𝛿(𝑁+𝑛)) ≠ 𝑀𝑁 (𝛿(1),… , 𝛿(𝑁)).

Note that the properties of 𝑀𝑁 as written above do not imply that
𝑧∗ ∈ 𝛿(𝑖) , 𝑖 = 1,… , 𝑁 .

Complexity and degeneracy
Given the scenarios 𝛿(1),… , 𝛿(𝑁), the complexity 𝑠∗ of the decision

𝑧∗ = 𝑀𝑁 (𝛿(1),… , 𝛿(𝑁)) is the cardinality of a minimum subsample 𝑆
(with repetitions) of scenarios from 𝛿(1),… , 𝛿(𝑁) such that 𝑀

|𝑆|(𝑆) =
𝑧∗ (| ⋅ | denotes cardinality). The decision-scheme is said to be non-
degenerate if, for every 𝑁 , there is with probability 1 a unique choice
of indexes, say 𝑖1, 𝑖2,… , 𝑖𝑘 (with 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘) from 1, 2,… , 𝑁 , such
that 𝑀𝑘(𝛿(𝑖1),… , 𝛿(𝑖𝑘)) = 𝑀𝑁 (𝛿(1),… , 𝛿(𝑁)) while, for 𝑘 > 0, discarding
further indexes from 𝑖1, 𝑖2,… , 𝑖𝑘 changes the solution.

Guarantees
Similarly to ‘‘Wait-and-judge result for non-convex optimization’’

in Section 3.3, using (6) one computes 𝜖(𝑘) for 𝑘 = 0, 1,… , 𝑁 . Then,
Eq. (9) applies where 𝑥∗ is replaced in the present context by 𝑧∗, while
𝑠∗ and 𝑉 (𝑧∗) have to be interpreted according to the definitions of
this section. Moreover, under non-degeneracy, one can also compute
𝜖(𝑘), 𝑘 = 0, 1,… , 𝑁 , by extending till 𝑘 = 𝑁 the rule for 𝜖(𝑘),

= 0, 1,… , 𝑑, in ‘‘Wait-and-judge result for convex optimization’’ in
ection 3.2 and Eq. (7) holds where again 𝑥∗ has to be replaced by 𝑧∗,
hile 𝑠∗ and 𝑉 (𝑧∗) have to be interpreted according to the definitions
f this section.

historical remark
The ‘‘responsiveness to contradiction’’ property was a key property

n important generalization results in the history of statistical learn-
ng, Littlestone and Warmuth (1986). This property, alone, is sufficient
o derive various results within the scenario theory that are applicable
o a wide range of decision schemes, Campi et al. (2018). On the other
and, the ‘‘stability in the case of confirmation’’ property plays a spe-
ial role in obtaining tight bounds (and, under non-degeneracy, small
anges [𝜖(𝑘), 𝜖(𝑘)]) and, when satisfied, confers considerable added
alue to the scenario approach. Being naturally satisfied in optimization
roblems, this property can be recognized as one of the main ‘‘secrets’’
ehind the success of the scenario approach in many applications.

. Conclusions and vision for the future

The increasing availability of data is a resource both for the real-
ime operation of human-made machines as well as for their off-line de-
ign. Although using data can be seen as a heuristic, we are witnessing
t various levels attempts to make such heuristics more theoretically-
upported, by endowing various techniques with specific guarantees
hat certify their correct functioning. This endeavor is particularly im-
ortant in relation to automated systems where machines are required
o operate autonomously, or with marginal human intervention, at
imes in safety-critical conditions.

In this article, we have presented the scenario approach, a general
14

ethodology that has come to the fore in recent years for its ability to p
make designs supported by precise, distribution-free, guarantees. Our
main goal with this publication was that of providing an easy access
point to various aspects of the scenario methodology, by also position-
ing its features in relation to current, pressing, challenges posed by
the technology of data-driven methods. Numerous are the application
contexts where the scenario approach has already proven useful and –
while we have decided to leave out of this article detailed presentations
– the interested reader has been referred to a list of publications in
the box ‘‘When should we consider using the scenario approach?’’. Cer-
tainly, this should not give the impression that the scenario approach
is a ready methodology for all seasons, and it is common experience
that the scenario theory must be adjusted, and at times expanded, to
accommodate application needs. We feel appropriate to discuss here
a specific field of current, active, research so as to provide a concrete
example.

When a human being is found in the condition of cardiac arrest,
time is a crucial variable and any hesitation reduces the probability
of survival. On the other hand, it is hard for a rescuer with little
or no medical training to decide how to act.17 Hence, the need to
provide automatic methods to direct the rescuer and assist her/his
decisions. The scenario approach has been applied to this problem with
the aim of designing classifiers that act on short ECG (Electro-Cardio-
Graphic) traces18 to determine if an immediate defibrillation shock
will be effective to restore spontaneous circulation. In this context, it
is important to distinguish between two types of error: erroneously
predicting that the defibrillation will or will not be successful (with
very different consequences in practice), and to keep under control
their respective probabilities.19 However, the separation of two types
of risks is not germane to the scenario approach, and its use for the
defibrillation problem has therefore prompted non-trivial theoretical
advances, as discussed in Carè et al. (2018). Still, no claim of final suc-
cess can be pronounced: for this problem precise limits to the specificity
and the sensitivity (50% and 95%, respectively, see Neurauter, et al.,
2007) need to be guaranteed before a classifier can be deployed on
the territory, a performance result that requires more research to be
achieved.

The above is just one among many examples in which the sce-
nario theory has been adjusted, and expanded in scope, to cover
the specific needs of applications. Indeed, accommodating application
requirements has been through the years a major driving force that has
fostered a continuing growth of the scenario theory. Despite all this, the
unexplored territory remains vast and we should note that at present
the scenario theory is articulated around a paradigm that presents some
structural limitations. Two aspects that we deem of primary importance
are discussed here, in the hope that this can also stimulate further
research.

(a) Problems with partial knowledge.

Throughout this article, and indeed everywhere in the scenario liter-
ature, it has been assumed that all uncertain elements are encapsulated

17 Even when a defibrillator is available, there are alternatives to imme-
diately administering an electrical shock, the most important of which is to
give the patient a cardiac massage: a properly given cardiac massage boosts
the chances of resuscitation when the defibrillator is subsequently applied.
The existence of alternative approaches to shocking has been emphasized by
the European Resuscitation Council guidelines: ‘‘It is possible to predict, with
varying reliability, the success of defibrillation from the fibrillation waveform.
[...] It should be possible to prevent the delivery of unsuccessful high energy
shocks and minimize myocardial injury’’, Soar, et al. (2021).

18 All modern defibrillators serve the dual function of shocking and
collecting ECGs.

19 The commonly used terminology specificity and sensitivity refers to the
omplement to 1 of these two probabilities of error, i.e., to the corresponding
robabilities of success.
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in 𝛿, so that, after a scenario has been collected, one acquires a full
picture for the particular situation referring to that 𝛿 and can ascertain
the ensuing performance achieved by any hypothetical decision 𝑥. To

ake a concrete example, in the stock market application of Arici
t al. (2021), Pagnoncelli et al. (2012), Ramponi and Campi (2018),
contains the rate-of-return of all assets in the portfolio, so that, given
scenario referring to the past, the overall return of any possible diver-

ified investment can be computed. While this assumption is completely
lausible for this application, still suppose for the sake of the argument
hat the investor is only provided with the overall return of his own
nvestment (the one corresponding to the diversification that has been
ctually adopted to buy assets) at the end of each period of investment
from this information, clearly, one cannot figure out the rate-of-return
f each single asset) and has to decide how to proceed on investing
n the next period. This set-up introduces new, non-trivial, challenges:
ince no full picture is acquired from the data, one is facing the need to
chieve the dual effect of exploring what is unknown while exploiting
hat is known. In turn, since now knowledge depends on actions, this

ules out the assumption of independence that is inherent in the current
ormulation of the scenario approach. We believe that studying active
earning schemes within the scenario approach is of primary importance
or various endeavors in control and should rank high in the research
genda.

(b) Problems with varying distribution.

An assumption the scenario approach rests on is that the distribution
y which scenarios are drawn remains the same through trials. Often,
owever, this assumption is only approximately satisfied or holds for a
imited amount of time. For example, referring again to an investment
roblem, the assumption that the rate-of-returns have invariant distri-
ution may be valid only within a restricted time horizon. Moreover,
ifferent distributions may be encountered at the time of making a
ecision and at the later time when the decision is applied, owing to
ircumstances that are not due to time-variability of the environment
ut rather to different mechanisms of exposition to observations in the
wo phases of learning and testing. For example, the emerging field of
dversarial machine learning, see, e.g., the survey paper Ortiz-Jiménez,
odas, Moosavi-Dezfooli, and Frossard (2021), addresses problems of

his nature: the input distribution can be varied, even maliciously, by an
pponent to mislead the trained classifier. One challenging and impor-
ant topic within the scenario methodology is to accommodate varying
istributions. The research on this topic may proceed at least in two
irections: (i) providing guarantees for existing schemes, e.g., worst-
ase, that remain intact under limited variations of the distribution,
ee, e.g., Erdogan and Iyengar (2006) for an early contribution in
his direction; (ii) designing scenario-based techniques that naturally
ncorporate robustness features against variability of the distribution
hile preserving the guarantees on the risk.
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