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Abstract— The scenario approach is a well-established
methodology that allows one to generate solutions from a
sample of observations (data-driven decision making). In the
recent wait-and-judge paradigm to the scenario approach, the
risk (i.e., the probability with which a scenario solution does
not satisfy new, out-of-sample, constraints) is estimated from
an observable called the complexity and this result is used
to compute intervals that contain with high confidence the
value of the risk. In this paper, we establish a new analytical
expression for these confidence intervals and we show that they
are centered around the complexity divided by the sample size
N while their width uniformly (in the complexity) shrinks to
zero for increasing N at the rate O(ln(N)/

√
N) (which is

close to the convergence rate of the central limit theorem). This
result bears profound implications: (i) it proves the asymptotic
consistency of the evaluation of the risk; (ii) as a corollary,
it shows that the complexity is an observable that carries the
fundamental information on the risk (a quantity that is not
directly accessible); (iii) it extends the result that the empirical
mean tends to the true probability of an event to the case when
the event is chosen based on observations via a scenario decision
scheme.

I. INTRODUCTION

The scenario approach, [1], is a well-established paradigm
for data-driven decision making, which allows the user to
design reliable solutions based on observations. One of the
simplest design schemes within the scenario approach is the
following, [2], [3]:

min
x∈X

c(x)

subject to: x ∈
⋂

i=1,...,N

Xδi , (1)

where x is the vector of decision variables belonging to
an optimization domain X ,1 c(x) is a cost function, and
Xδi are instances of a constraint set Xδ , which depends
on the uncertainty element δ. Parameter δ is modeled as
a random outcome from a probability space (∆,D,P) and
δi, i = 1, . . . , N , is a sample of N independent draws
from this space. The idea is that (∆,D,P) represents the
mechanism through which uncertainty is generated; however,
this mechanism is unknown to the user and the sole available
source of knowledge on uncertainty are the N observations
δ1, δ2, . . . , δN , which are called “scenarios”. The solution
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1X can be any generic space; hence, (1) can well be a program over Rd,
but also a calculus of variations problem, in which case X is an infinite
dimensional space.

to (1), denoted by x∗N and called the scenario solution,
empirically safeguards against the worst by minimizing the
cost function c(x) over the values of x that are feasible for
all the scenarios at hand.
The design scheme in (1) is already quite general and
instances of (1) have indeed found application to control
system design, [4], [5], [6], [7], [8], [9], system identification,
[10], [11], [12], [13], [14], and machine learning, [15],
[16], [17], [18]. Moreover, design schemes alternative to (1)
have been also introduced within the scenario framework,
accommodating diverse design requirements, [19], [20], [21],
[22], [23], [24], [25], [26], [27] – see also [28], [29], [30]
for general paradigms encompassing most of the existing
schemes as special cases. While in this paper we prefer to
limit ourselves to (1) for the sake of simplicity, the presented
results are generally applicable to other design schemes.
One fundamental issue when using the scenario approach
is to ascertain how guaranteed x∗N is in relation to the
satisfaction of the constraint x ∈ Xδ for out-of-sample
instances of δ ∈ ∆. In this context, the following notion
of risk is central.

Definition 1 (risk): The risk of a given x ∈ X is defined
as V (x) = P{δ ∈ ∆ : x /∈ Xδ}. ?

As is clear, we are interested in the risk of the scenario
solution V (x∗N ), that is, V (·) evaluated at x∗N . However,
it is important to remark that this risk cannot be directly
computed because it depends on the probability P, which is
unknown (or only partly known) to the user.
In [31] and [28] a new line of attack to the problem of
evaluating V (x∗N ), the so-called wait-&-judge paradigm, has
been introduced, establishing that V (x∗N ) can be assessed
by means of an observable quantity called “complexity”.
The concept of complexity is formalized in the following
definition.

Definition 2 (complexity): A constraint x ∈ Xδi of the
scenario optimization problem (1) is said to be a support
constraint if its removal (while all other constraints are
maintained) changes the solution x∗N . The complexity s∗N
is the number of support constraints of (1). ?

Differently from V (x∗N ), the complexity s∗N can be
computed once x∗N has been calculated.2 In a nutshell, the
achievement of [31] and [28] is that V (x∗N ) and s∗N seen
as functions of the scenarios δ1, δ2, . . . , δN are always,

2To this purpose it is enough to apply the definition, which requires to
solve N times a problem of the same type as (1) (each time removing
one different constraint). Note that in many circumstances shortcuts exist to
further reduce the computational burden.
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for any ∆ and P, two highly dependent random variables,
with s∗N thus carrying fundamental information about
V (x∗N ). The results of [31] and [28] have been further
refined in [29], where a more precise characterization of the
dependence between V (x∗N ) and s∗N is provided. This has
led to the computation of a complexity-dependent interval
[ε(s∗N ), ε(s∗N )] that is guaranteed to contain the risk V (x∗N )
with high confidence, yielding the remarkable property
that the non-accessible quantity V (x∗N ) can be accurately
estimated from s∗N .
As we also recall in the next Section II, the expressions
for ε(s∗N ) and ε(s∗N ) are implicit and so far only numerical
computations have revealed that the assessment of V (x∗N )
through [ε(s∗N ), ε(s∗N )] is tight and improves as N increases.
On the other hand, to date there has not been any attempt
to theoretically study the tightness of this result.
The present paper aims at filling this gap. We provide
explicit upper and lower bounds for ε(s∗N ) and ε(s∗N )
from which we show for the first time that the interval
[ε(s∗N ), ε(s∗N )] shrinks to zero at a fast rate as N increases,
uniformly with respect to the value taken by s∗N . Besides
its interest for applications, this result bears the important
theoretical implication that the complexity s∗N is indeed an
observable from which the risk can be consistently estimated.

The structure of the paper is rather simple. In the
next Section II, after briefly recalling the results of [29], the
main result of this paper, Theorem 2, is stated, followed by
a discussion about its implications. The rather long proof of
Theorem 2 is then given in Section III.

II. MAIN RESULT

We first recall the theory of [29], which serves as starting
point for the findings of this paper. The result holds true
under the following assumptions.

Assumption 1 (existence and uniqueness): For every N
and for all values of (δ1, δ2, . . . , δN ), the optimization prob-
lem (1) admits at least one solution. If more than one solution
exists, the solution x∗N is singled out by the application of a
tie-break rule, that is, by minimizing an additional function
t1(x), and, possibly, other functions t2(x), t3(x), . . . if the
tie still occurs. ?

The following is a technical non-degeneracy assumption (see
Definition 3 of [29] and the discussion therein).

Assumption 2 (non-degeneracy): For every N and with
probability one, the solution to (1) coincides with the solution
that is obtained after eliminating all the constraints x ∈ Xδi
that are not of support. ?

We next recall the result from [29] that provides a quantita-
tive evaluation of the risk V (x∗N ) through s∗N .

Theorem 1 (Theorem 2 in [29]): For a given value in
(0, 1) of the confidence parameter β, consider for any k =

0, 1, . . . , N − 1 the polynomial equation in the t variable(
N

k

)
tN−k− β

2N

N−1∑
i=k

(
i

k

)
ti−k− β

6N

4N∑
i=N+1

(
i

k

)
ti−k = 0,

(2)
and for k = N the polynomial equation

1− β

6N

4N∑
i=N+1

(
i

N

)
ti−N = 0. (3)

For any k = 0, 1, . . . , N − 1 equation (2) has exactly two
solutions in [0,+∞), which we denote with t(k) and t(k)
(t(k) ≤ t(k)). Instead, equation (3) has only one solution
in [0,+∞), which we denote with t(N), while we define
t(N) = 0. Let ε(k) := max{0, 1−t(k)} and ε(k) := 1−t(k),
k = 0, 1, . . . , N . Under Assumptions 1 and 2, for any ∆ and
P it holds that

PN{ε(s∗N ) ≤ V (x∗N ) ≤ ε(s∗N )} ≥ 1− β, (4)

i.e. the interval [ε(s∗N ), ε(s∗N )] contains the risk V (x∗N ) with
confidence 1− β. ?

The main contribution of the present paper is given by the
following Theorem 2, which provides explicit bounds for
ε(k) and ε(k) showing thus their dependence on N , k and β.

Theorem 2: Functions ε(k) and ε(k) introduced in Theo-
rem 1 are subject to the following bounds:

ε(k) ≤ k

N
+ C

√
k ln 1

β +
√
k ln k + 1

N
(5)

ε(k) ≥ k

N
− C

√
k ln 1

β +
√
k ln k + 1

N
(6)

where C is a suitable constant (independent of k, N and
β) and the bounds hold for 1 ≤ k ≤ N and β ∈ (0, 1),
while, for k = 0, we have ε(0) ≤ (ln(1/β) + 1) · C/N and
ε(0) ≥ 0. ?

Proof: see Section III ?

In (5) and (6), the dependence in β is inversely logarithmic,
which shows that “confidence is cheap”, so much so that
very small values of β can be enforced without significantly
affecting the width of [ε(k), ε(k)]. For any fixed k, we see
that ε(k) and ε(k) merge onto the same value k/N as fast
as O(1/N), while for k that grows at the same rate as N ,
say k = µN , convergence towards k/N = µ takes place
at a rate O(ln(N)/

√
N), which is almost the convergence

rate of the central limit theorem. Hence, we see that we can
construct a strip around k/N whose size goes to zero as
O(ln(N)/

√
N) and, thanks to (4), the bi-variate distribution

of risk and complexity all lies in the strip but a slim tail
that expands beyond the strip whose probability is no more
than β.
Apart from showing that V (x∗N ) can be tightly estimated
form s∗N , the result of Theorem 2 has the very important
implication that the ratio s∗N/N is always an asymptotically
exact estimator of V (x∗) irrespective of the problem at
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hand. As a matter of fact, combining Theorem 1 and 2, it is
almost immediate to show that |V (x∗N )− s∗N/N | converges
to zero both in the mean square sense and almost surely.
This result rigorously proves that s∗N is an observable
allowing one to consistently estimate V (x∗) and it grounds
the wait-&-judge paradigm of [31], [29] on a more solid
basis.

Remark 1: Before the results of [29], it was shown in [28]
that, for any ∆ and P, PN{V (x∗N ) ≤ ε̃(s∗N )} ≥ 1−β where

ε̃(k) = 1 − N−d

√
β

N(Nd)
. Let alone that in this result there

is no lower bound to V (x∗N ), it is worth noticing that the
findings of Theorem 2 are not valid for ε̃(k). In fact, for
k = µN the upper bound ε̃(k) does not converge to k/N
as N → ∞, since, as it is shown in Appendix A, ε̃(k) ≥
1−(1−k/N)(k/N)

k/N
1−k/N = 1−(1−µ)µ

µ
1−µ asymptotically.

This substantially different behavior between ε̃(k) and ε(k)
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1

Fig. 1. ε̃(k) (red dashed line), 1− (1− k/N)(k/N)
k/N

1−k/N (black dash-
dotted line), ε(k) and ε(k) (blue solid lines), and k/N (pink dotted line)
as functions of k = 0, 1 . . . , N for N = 500, N = 1000, and N = 2000.

can be also appreciated in Figure 1, where ε̃(k) along with
1−(1−k/N)(k/N)

k/N
1−k/N and ε(k) and ε(k) along with k/N

are plotted as functions of k = 0, 1 . . . , N for increasing
values of N . ?

III. PROOF OF THEOREM 2

Let v := 1−t. Equation (2) for k = 0, . . . , N−1 becomes

β

2N

N−1∑
i=k

(
i

k

)
(1− v)i−k +

β

6N

4N∑
i=N+1

(
i

k

)
(1− v)i−k

=

(
N

k

)
(1− v)N−k. (7)

The fact that (2) has two solutions in [0,+∞), as stated in
Theorem 1, translates into that equation (7) has two solutions
in (−∞, 1], namely ε(k) and ε(k). Observing that the left-
hand side of (7) is equal to β/2N > 0 for v = 1, while the
right-hand side is zero at the same point, we then conclude
that, when running backward from 1 to −∞, the left-hand
side is first above, then below, and then above again of the
right-hand side, as graphically illustrated in Figure 2.
Next consider the following two inequality conditions:

β

2N

N−1∑
i=k

(
i

k

)
(1− v)i−k ≥

(
N

k

)
(1− v)N−k, (8)

β

6N

4N∑
i=N+1

(
i

k

)
(1− v)i−k ≥

(
N

k

)
(1− v)N−k. (9)

Fig. 2. Graph of functions in (7), (8), and (9) (right-hand sides of (7) =
solid black line; left-hand side of (7) = dashed red line; left-hand sides of
(8) and (9) = dashed-dotted blue lines).

These two inequalities can be used to effectively locate a
suitable upper-bound for ε(k) (inequality (8)) and lower-
bound for ε(k) (inequality (9)). This is explained as follows.
Take the ratio of the left-hand side over the right-hand side
of equation (8):

β

2N

N−1∑
i=k

(
i
k

)(
N
k

) (1− v)i−N .

Over (−∞, 1), this function is strictly increasing, moreover

for v = 0 it is smaller than β/2 < 1 (note that (ik)
(Nk)

< 1)
while it tends to +∞ as v → 1. Therefore, it picks the value
1 in one and only one point in (0, 1), which shows that
equality is attained in (8) for only one value of v ∈ (0, 1).
Hence, the two functions showing up in the left-hand and
right-hand sides of (8) are mutually positioned as shown in
Figure 2 (note that the right-hand side of (8) coincides with
that of (7)).
Further, it is claimed that any v satisfying (8) is an
upper-bound to ε(k). Indeed, when moving from equation
(7) to (8) we have removed from the left-hand side of (7)
a positive term, so shifting to the right the point where
equality is achieved in (8); then, owing to the mutual
position of the two functions in (8) one immediately sees
the correctness of the claim.
The inequality condition (9) can be studied in full analogy
to (8) with the only advisory that the role of interval
(0, 1) is played by (1,−∞) when considering the second
inequality (9).

� Preliminary calculations

To study (8) and (9), we shall use a re-writing of the
left-hand sides of these inequalities as given in the
following.
Let

ϕH,k(v) =

H−1∑
i=k

(
i

k

)
(1− v)i−k.

Notice first that, for k = 0, we have ϕH,0(v) =
∑H−1
i=0 (1−

v)i = 1−(1−v)H
v . Next, for k ≤ H − 1, a direct verification
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proves the validity of the following updating rule

ϕH,k(v) = −1

k

d

dv
ϕH,k−1(v). (10)

A repeated use (a cumbersome but straightforward exercise)
of (10) now gives

ϕH,k(v) =
1−

∑k
i=0

(
H
i

)
vi(1− v)H−i

vk+1
(11)

=

∑H
i=k+1

(
H
i

)
vi(1− v)H−i

vk+1
. (12)

� Upper bounding ε(k)

Substituting (11) in (8), (8) becomes

β

2

(
1−

k∑
i=0

(
N

i

)
vi(1− v)N−i

)
≥ N

(
N

k

)
vk+1(1−v)N−k.

(13)
If we further decrease the left-hand side (and increase the
right-hand side) we obtain an inequality the solutions of
which are still upper-bounds to ε(k). Starting with the left-
hand side, we apply an argument first used in [8] and, for
any a > 1, write:

k∑
i=0

(
N

i

)
vi(1− v)N−i

≤ ak
k∑
i=0

(
N

i

)(v
a

)i
(1− v)N−i

≤ ak
N∑
i=0

(
N

i

)(v
a

)i
(1− v)N−i

= ak
(

1− v +
v

a

)N
= (1− (1− a))k

(
1− a− 1

a
v

)N
≤ e−(1−a)ke−

a−1
a vN , (14)

where the last inequality follows from relation 1− z ≤ e−z .
Similarly,

N

(
N

k

)
vk+1(1− v)N−k

≤ (k + 1)

(
N + 1

k + 1

)
vk+1(1− v)N+1−(k+1)

≤ (k + 1)

k+1∑
i=0

(
N + 1

i

)
vi(1− v)N+1−i

≤ (k + 1)e−(1−a)(k+1)e−
a−1
a v(N+1)

≤ (k + 1)e−(1−a)e−(1−a)ke−
a−1
a vN . (15)

Suppose now k > 0 (the case k = 0 will be considered
separately) and take a = 1 + 1/

√
k. Using (14) and (15) in

(13) yields that any v coming from the inequality

β

2

(
1− e

√
ke
− vN√

k+1

)
≥ (k + 1)e

1√
k e
√
ke
− vN√

k+1

is an upper bound to ε(k). This inequality is equivalent to

β

2(k + 1)
≥ e
√
ke
− vN√

k+1

[
β

2(k + 1)
+ e

1√
k

]
and, solving for v, we obtain

v ≥ k

N
+

√
k + 1

N

(
λ+ ln

2

β
+ ln(k + 1)

)
,

where λ = ln
[

β
2(k+1) + e

1√
k

]
+

√
k√
k+1

. This shows that

ε(k) ≤ k

N
+

√
k + 1

N

(
λ+ ln

2

β
+ ln(k + 1)

)
and the validity of (5) (for k 6= 0, N – recall that we started
from equation (2) that holds for k < N and further left
behind the case k=0) follows by noticing that λ ≤ 2.
Turn now to the case k = 0, N .
Case k = N is trivial because ε(N) = 1, which is clearly in
agreement with (5).
As for k = 0, go back to (13) and use in it (14) and (15) with
a = 1 + 1/

√
k + 1, which, after substituting k = 0, gives

a = 2 (adding 1 to k serves the purpose of avoiding division
by zero). Operating the same manipulations as before we
now obtain

v ≥ 2

N

(
ln

[
β

2
+ e

]
+ ln

2

β

)
,

which has the form of the upper bound for ε(k) given in
Theorem 2.

� Lower bounding ε(k)

First, we want to claim that for any k large enough
there is a positive v satisfying equation (9). In fact, for
v = 0 equation (9) reduces to β

6N

∑4N
i=N+1

(
i
k

)
≥
(
N
k

)
and,

using the hockey-stick identity (i.e.,
∑n
i=r

(
i
r

)
=
(
n+1
r+1

)
),

we have

β

6N

∑4N
i=N+1

(
i
k

)(
N
k

)
=

β

6N

(
4N+1
k+1

)
−
(
N+1
k+1

)(
N
k

)
=

β

6N

(4N+1) · · · (4N−k+1)− (N+1) · · · (N−k+1)

(N) · · · (N−k+1) · (k+1)

≥ β

6

2k+1(N+1) · · · (N−k+1)− (N+1) · · · (N−k+1)

(N+1) · · · (N−k+1) · (k+1)

=
β

6

2k+1 − 1

k + 1
,

which is greater than 1 for any

k ≥ c1 + c2 ln(1/β), (16)

where c1 and c2 are suitable constants. In what follows, we
assume that this latter condition is satisfied and hence seek
a positive solution of equation (9).
Using (12) to rewrite the left-hand side of equation (9) as
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∑4N
i=N+1

(
i
k

)
(1−v)i−k = ϕ4N+1,k(v)−ϕN+1,k(v), equation

(9) becomes

β

6

(
4N+1∑
i=k+1

(
4N + 1

i

)
vi(1− v)4N+1−i

−
N+1∑
i=k+1

(
N + 1

i

)
vi(1− v)N+1−i

)

≥ N
(
N

k

)
vk+1(1− v)N−k, (17)

where moving term vk+1 to the right-hand side does not
change the inequality sign because v is positive. Similarly to
what we did to find an upper bound for ε(k), here we can
decrease the left-hand side and increase the right-hand side
of (17) to find a valid lower bound for ε(k).
Notice first that

∑4N+1
i=k+1

(
4N+1
i

)
vi(1 − v)4N+1−i ≥ 1

2 for
v ≥ k+1

4N+2 .3 Thus, using also the fact N
(
N
k

)
≤ (k+1)

(
N+1
k+1

)
,

we can take

β

6

(
1

2
−

N+1∑
i=k+1

(
N + 1

i

)
vi(1− v)N+1−i

)

≥ (k + 1)

(
N + 1

k + 1

)
vk+1(1− v)N+1−(k+1) (18)

in place of (17) to obtain a lower bound to ε(k) as long as
we impose the additional condition that

v ≥ k + 1

4N + 2
. (19)

For any a > 1, we now have(
N + 1

k + 1

)
vk+1(1− v)N+1−(k+1)

≤
N+1∑
i=k+1

(
N + 1

i

)
vi(1− v)N+1−i

≤ 1

ak

N+1∑
i=k+1

(
N + 1

i

)
(av)i(1− v)N+1−i

≤ 1

ak

N+1∑
i=0

(
N + 1

i

)
(av)i(1− v)N+1−i

=
1

ak
(1 + (a− 1)v)

N+1

≤ e(a−1)v(N+1)

ak
,

where the last inequality follows from relation 1 + z ≤ ez .
Assume k > 0 and take a = 1+1/

√
k. Using the above chain

of inequalities twice in (18) (for the term in the left-hand
side of (18) we use the inequality obtained by comparing
the second with the last term in the chain), we obtain the
following condition that is more restrictive than (18)

β

6

(
1

2
− e

v(N+1)√
k

(1 + 1√
k

)k

)
≥ (k + 1)

e
v(N+1)√

k

(1 + 1√
k

)k
.

3This follows from the fact that
∑4N+1

i=k+1

(4N+1
i

)
vi(1− v)4N+1−i is

the cumulative distribution function of a Beta distribution and k+1
4N+2

is its
mean, which is greater than the median, [32].

This inequality is equivalent to

β

12(β6 + k + 1)
≥ e

v(N+1)√
k

(1 + 1√
k

)k
,

which, solved for v, gives

v ≤ k

N + 1
ln

[(
1 +

1√
k

)√k]

−
√
k

N + 1

(
ln

12

β
+ ln(

β

6
+ k + 1)

)
.

Noticing now that ln(1 + x) ≥ x − x2/2 for all x ≥ 0, we
can finally replace the latter inequality with

v ≤ k

N + 1

(
1− 1

2
√
k

)
−
√
k

N + 1

(
ln

12

β
+ ln(

β

6
+ k + 1)

)
, (20)

which, for a more handy use, we also rewrite as

v ≤ k

N
− g(k,N, β),

where function g(k,N, β) is just the difference between k/N
and the right-hand side of (20). Notice also that this equation
is valid also for k = N since (3) also leads to (9), which
has been our starting point in the derivation.

To conclude the proof, we have to put together all inequal-
ities that limit the choice of v, namely:
(i) k ≥ c1 + c2 ln(1/β) (equation (16));

(ii) v ≥ k+1
4N+2 (equation (19));

(iii) v ≤ k
N − g(k,N, β).

Recall that (iii) makes sense only for k 6= 0 (the case
k = 0 takes care of itself because Theorem 2 claims that
ε(0) ≥ 0 which is in agreement with the value of ε(0) given
in Theorem 1). For the time being, leave (i) behind. Now,
one can take the value of v that achieves equality in (iii),
i.e., v = k

N − g(k,N, β), provided that this is compatible
with (ii), that is, k

N − g(k,N, β) ≥ k+1
4N+2 . This can be

re-written as g(k,N, β) ≤ k
N −

k+1
4N+2 . Instead, for those

values of k,N, β for which this latter inequality does not
hold, we have g(k,N, β) > k

N −
k+1
4N+2 , from which an easy

calculation shows that 2g(k,N, β) ≥ k
N , or, equivalently,

k
N − 2g(k,N, β) ≤ 0. Since ε(k) ≥ 0, we conclude that in
any case ε(k) ≥ k

N − 2g(k,N, β), no matter if g(k,N, β) ≤
k
N −

k+1
4N+2 is satisfied or not. Noticing now that g(k,N, β)

can be upper bounded by C ′
√
k ln 1

β+
√
k ln k+1

N for a suitable
value of the constant C ′, we conclude that

ε(k) ≥ k

N
− C

√
k ln 1

β +
√
k ln k + 1

N
, (21)

with C = 2C ′. Consider now condition (i). When (i) is not
satisfied we have that k

N < (c1 + c2 ln(1/β))/N . However,
this latter inequality implies that the right-hand side of (21)
is negative (possibly after enlarging the constant C in (21)
to a value that, with a little abuse of notation, we still call
C), so that (21) is always a valid lower bound because ε(k)
is always non-negative. This concludes the proof. ?
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APPENDIX

A. Proof that ε̃(k) ≥ 1− (1− k/N)(k/N)
k/N

1−k/N asymptot-
ically

The proof mainly builds on the following lower and upper
bounds to the factorial of an integer, which are due to [33]:
√

2πnn+
1
2 e−ne

1
12n+1 < n! <

√
2πnn+

1
2 e−ne

1
12n . (22)

Start by noticing that

ε̃(k) ≥ 1− N−k

√
β

N
(
N
k

) = 1−
(
βk!(N − k)!

N !

) 1
N−k

.

where the first inequality derives from − ln(x) ≥ 1 − x.
Using (22) to properly bound the factorials at the numerator
and denominator in the last expression yields

ε̃(k) ≥ 1−
(
β
√

2π
) 1
N−k × e(

1
12k+

1
12(N−k)−

1
12N+1 ) 1

N−k ×

×
(
k(N − k)

N

) 1
2(N−k)

×
(

1− k

N

)(
k

N

) k
N

1− k
N
.

Take now k = µN . The first three terms in the product in
the last expression tend to 1 as N →∞. Whence,

ε̃(k) ≥ 1−
(

1− k

N

)(
k

N

) k
N

1− k
N

= 1− (1− µ)µ
µ

1−µ

as N →∞. This concludes the proof. ?
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