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Abstract When decisions are based on empirical observations, a trade-off arises between flexibility

of the decision and ability to generalize to new situations. In this paper, we focus on decisions that

are obtained by the empirical minimization of the Conditional Value-at-Risk (CVaR) and argue that in

CVaR the trade-off between flexibility and generalization can be understood on the ground of theoretical

results under very general assumptions on the system that generates the observations. The results have

implications on topics related to order and structure selection in various applications where the CVaR

risk-measure is used. A study on a portfolio optimization problem with real data demonstrates our

results.

Keywords Distribution-free results, empirical CVaR, generalization, order selection, risk, scenario

approach.

1 Introduction

Decision processes are often driven by data. In these cases, it is crucial to keep control on
the discrepancy between the empirical performance, which is measured on the data set, and
the actual performance, which can only be estimated. This task is difficult in general because
an optimization process intertwines with the estimation problem, see, e.g., [1].

When the decision-making procedure can be reduced to solving a convex optimization prob-
lem where observations act as constraints, strong theoretical guarantees on the statistics of “bad
events” (situations in which the decision underperforms) can be established under fairly mild
assumptions: The study of these guarantees is the subject of the so-called “scenario approach”,
see [2–6].

A prominent aspect of the scenario theory is the relation between the “complexity” of the
solution and the risk, defined as the probability of bad events. In some contexts, the complexity
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is known a priori, for example it is set by the number of optimization variables, see, e.g., [7, 8].
In other cases, the complexity of the solution can only be evaluated a posteriori, i.e., after
having solved the optimization problem, see [9, 10].

The main objective of this paper is to explore how the deep-seated results of the scenario
theory developed in [4, 8, 11] can be used as a tool for performance control in data-driven
Conditional Value-at-Risk (CVaR) decision-making. CVaR, see [12–14], is a risk measure born
in the context of financial portfolio optimization that has gained attention in various contexts in
recent years due to its remarkable properties, foremost the fact of being a coherent risk measure,
see, e.g., [13, 15, 16]. This in particular implies that CVaR leads to convex optimization
problems under mild assumptions. We present a theory that allows the user to keep control
on the actual performance, beyond what is empirically observed on the data set. Importantly,
this theory plays a key role to select a suitable flexibility of the domain in which the solution
is sought. While the results of this paper bear a promise of general applicability, a particular
emphasis is put on portfolio optimization. In this setting, we investigate how the number of
assets in the portfolio shapes the trade-off between empirical performance and the confidence
on the fact that certain significant loss thresholds will not be exceeded.

The paper is structured as follows. In Section 2, we consider data-driven CVaR optimiza-
tion and study the relation between flexibility and performance; this section builds on previ-
ous achievements in [8] and [11]. While portfolio selection is employed as a running example
throughout the paper, Section 3 more specifically focuses on this application and offers a study
with real historical data. Conclusions are drawn in Section 4.

2 Guaranteed CVaR Minimization

Let us first recall the definition of the Conditional Value-at-Risk measure. Let L be a
random variable, representing a loss, defined over a probability space (Δ,F , P), and let FL

denote the cumulative distribution function of L.
For any fixed α ∈ (0, 1), the Value-at-Risk (VaR) of L at level α (also known as the α-

quantile, or “inverse cumulative distribution”) is the quantity

VaRα(L) = min{l : FL(l) ≥ α}. (1)

Hence, VaRα(L) is the loss threshold that is exceeded with probability at most 1 − α. The
CVaR at level α is defined as

CVaRα(L) =
1

1 − α

∫ 1

α

VaRa(L) da. (2)

If L happens to be a continuous random variable, then CVaRα(L) is equal to the following
quantity:

ESα(L) = E {L |L ≥ VaRα(L)} . (3)

In words, ESα(L) is the expected loss suffered when VaRα(L) is reached or exceeded, and
happens to be the original reason for another name, Expected Shortfall, by which the CVaR is
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also known in the literature. For non-continuous distributions, CVaRα(L) and ESα(L) are not
equivalent. In fact, if the distribution of L has a concentrated mass precisely at VaRα(L), then
the definition (2) implies a suitable “split” of the concentrated mass, in such a way that exactly
a probability 1−α is taken into account in averaging, a “split” that definition (3) (or a similar
definition with > instead of ≥) cannot capture. We also note that, in some recent literature,
Expected Shortfall and Conditional Value-at-Risk are considered synonyms, the definition (2)
being the common one for both the names. CVaR was introduced as a measure of risk in the
field of financial analysis, [12], but then it attracted interest across a large variety of fields,
ranging from machine learning, [17], to medical applications, [18], and the control of extreme
events such as river floods, [19]. See [20] for a recent survey.

In several cases, the loss L depends on a decision variable x ∈ X , and minimizing the CVaR
(i.e., opting for the decision x∗ that minimizes the average loss in the (1 − α)-fraction of worst
cases) is a suitable criterion for decision-making. This leads to the CVaR minimization problem:

x∗ = argmin
x∈X

CVaRα(L(x)). (4)

Clearly, in order to solve the problem (4), the probability distribution FL(x)(l) of L(x) that
are obtained as x varies in X must be available. In most applications, however, assuming this
knowledge is not realistic, and decisions are rather made based on a collection of observations,
e.g., coming from historical series. This leads to the Empirical CVaR problem, which we
introduce in the next subsection.

2.1 Empirical CVaR

For any x, L(x) is a random variable over (Δ,F , P). A δ ∈ Δ represents uncertainty and,
when we want to indicate the value that L(x) takes corresponding to a specific δ, we write
L(x, δ). Throughout, L(·, ·) is assumed to be known, so that, if δ is observed, then the value
of L(x, δ) can be computed for all x ∈ X . This assumption is realistic and natural in several
contexts, including the Portfolio Optimization problem that we shall amply consider in this
paper. Situations of partial knowledge of L or partial observability of δ are more challenging
and fall beyond the scope of this paper.

Portfolio Optimization 1 Consider the problem where x = (x1, x2, · · · , xn) ∈ R
n rep-

resents a portfolio over n assets (i.e., xi is the percentage of capital invested on the asset i),
so that xi ∈ [0, 1], i = 1, 2, · · · , n,

∑n
i=1 xi = 1, and the outcome δ = (δ1, δ2, · · · , δn) is an

n-dimensional real vector whose components are the rates of return of the assets in a given
day (i.e., the closing price at the current day minus the closing price of the same asset in the
preceding day over the closing price in the preceding day). The loss incurred by the portfolio
x can be computed as L(x, δ) = −xTδ, that is, L(·, ·) is a known function. ∗

The data record available to a decision maker is, from now on, identified with a sample of
outcomes (δ(1), δ(2), · · · , δ(N)) ∈ ΔN . An empirical version of the problem (4) can be formulated
as the problem of minimizing the average of the k largest values among L(x, δ(1)), L(x, δ(2)), · · · ,

L(x, δ(N)), where k has to be suitably chosen, the most natural choice being such that α =
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1 − k/N . The solution to this problem is here denoted by x∗
N , i.e.,

x∗
N =argmin

x∈X

{
average of the k largest values among L(x,δ(1)),L(x,δ(2)),· · · ,L(x,δ(N))

}
. (5)

Note that, differently from the solution of (4), x∗
N is a random vector over ΔN , because it

depends on the outcomes δ(1), δ(2), · · · , δ(N).
The Empirical CVaR problem can be formulated more explicitly by defining, for all x ∈

X , L(1)(x), L(2)(x), · · · , L(N)(x) as the values L(x, δ(1)), L(x, δ(2)), · · · , L(x, δ(N)) sorted in
decreasing order (with repeats). Thus, we have L(1)(x) ≥ L(2)(x) ≥ · · · ≥ L(N)(x), and
the solution to the Empirical CVaR Problem can be written as

x∗
N = argmin

x∈X

1
k

k∑
i=1

L(i)(x) , (6)

where 1 ≤ k ≤ N .

Portfolio Optimization 2 Note that the portfolio optimization problem with a portfolio
of size n can be formulated as a problem with d = n − 1 decision variables. In fact X can be
defined as X = {x ∈ R

n−1 :
∑n−1

i=1 xi ≤ 1, xi ≥ 0, i = 1, 2, · · · , n − 1}, and the proportion
invested in the n-th asset can be obtained as xn = 1 −∑n−1

i=1 xi. Problem (5) in this case can
also be written as a linear problem in epigraphic form:

minx∈X ,λ∈R λ

subject to: λ ≥ −1
k

k∑
j=1

[
n−1∑
�=1

x�δ
(ij)
� +

(
1 −

n−1∑
�=1

x�

)
δ(ij)
n

]
,

for any choice of k indices {i1, i2, · · · , ik} ⊆ {1, 2, · · · , N}. (7)

∗
After the minimizer of (6) is computed (we assume that the minimizer exists and is unique),

each value L(i)(x∗
N ), i = 1, 2, · · · , N , can be thought of as the empirical Value-at-Risk at level

1− i−1
N of the loss at the computed solution. The question immediately arises as to whether these

empirical values reflect the true probability distribution of the loss at the computed solution.
In the next section, we address this question and characterize the generalization properties of
the empirical solution.

2.2 Statistical Framework

The following assumption is in force throughout the paper.

Assumption 1 (Independence and identical distribution) The observations δ(1),
δ(2), · · · , δ(N) are independent and distributed according to the same (unknown) probability
law P (i.i.d. observations). In other words, (δ(1), δ(2), · · · , δ(N)) is an outcome in the probability
space (ΔN ,FN , PN ), where FN is the N -fold product σ-algebra and PN is the N -fold product
measure. ∗
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We briefly discuss the validity of this assumption in the case of portfolio optimization.

Portfolio Optimization 3 The observations δ(i) for i = 1, 2, · · · , N represent the return
vectors of the assets in the portfolio in the preceding N days, and δ

(i)
j is the rate of return of

the j-th asset on the i-th day. The independence of the rates of return over disjoint periods is
a typical modeling assumption, see, e.g., [21], Subsection 14.3. On the other hand, assuming
that the rates of return are identically distributed is realistic for limited periods, within which
the market can be assumed to be stationary. Note also that, on a given day i, various rates of
return δ

(i)
j , j = 1, 2, · · · , n, can be arbitrarily correlated. ∗

To set the stage, consider first the extreme situation where the optimization domain is
restricted to a single value of x, e.g., X = {x}. In this case, no optimization is really performed,
as x∗

N is a priori known to be x∗
N = x. Thus, the values L(1)(x∗

N ), L(2)(x∗
N ), · · · , L(N)(x∗

N ) are
nothing but the ordered values of an i.i.d. sample of real random variables. In this case, the
probability that a new outcome δ incurs a loss higher than the largest i-th of the N previously
observed values can be easily studied by resorting to the theory of order statistics, [22]. However,
when optimization is performed over a nontrivial set X , the framework of order statistics is not
useful anymore. In fact, order statistics are ordered values from the real line, while, in our
setting, the empirical loss values lie on a random line passing through x∗

N , which is selected by
solving an optimization problem (see also the discussion in [23], Subsection 1.1). A moment’s
reflection reveals that the size of the decision space must play a role in determining to what
extent the empirical values are representative of the true distribution of the loss. In fact, the
more freely the decision variable is allowed to range during the optimization process, the more
biased towards small values the empirical loss will be, hence the need of theoretical instruments
to control this effect†.

For example, in portfolio optimization, one can easily observe that, as the size n of the
portfolio increases by including more and more assets, the empirical performance improves but,
at the same time, it becomes less representative of the future performance. In what follows, we
present tools that have their natural ground in the theory of the scenario approach

• to compute upper- (and lower-) bounds to the probability that meaningful thresholds on
the loss are exceeded when the solution x∗

N is applied; and

• to drive the user towards a selection of the flexibility to meet a suitable trade-off between
empirical performance and loss control.

2.3 Fundamental Results from [8]

In this subsection, we summarize results from [8]; the subsequent Subsections 2.4 and 2.5
of this paper build upon these results. We need some additional assumptions.

Assumption 2 (Convexity) L(·, δ) is convex on the set X ⊆ R
d, which is itself assumed

convex, for every δ ∈ Δ. ∗
†This phenomenon is much related to what in machine learning is known as data overfitting, and to the

complexity (or capacity) control issue, see, e.g., [1].
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This assumption is, e.g., satisfied in our running example of Portfolio Optimization, where
the loss function L(x, δ) = −xTδ is linear in x. Note, however, that we do not make any
assumption about the dependence δ �→ L(·, δ), which can be arbitrarily complex.

A direct consequence of Assumption 2 is the following proposition.

Proposition 1 For any k, (6) is a convex minimization problem. ∗
Proposition 1 is well-known in the CVaR literature, see, e.g., [12]. It easily follows from

observing that the function that is minimized in (6) is convex because it is the point-wise
maximum among the

(
N
k

)
averages of k functions that can be obtained out of the N functions

L(x, δ(1)), L(x, δ(2)), · · · , L(x, δ(N)) (recall that the function L(·, δ) is convex and any average
of convex functions is itself convex).

Assumption 3 (Existence and uniqueness) For any k, the solution x∗
N to Problem (6)

exists and is unique almost surely. ∗
The next assumption, taken from [8], requires that at most d+1 loss functions, as functions

of x ∈ R
d, meet at isolated points. This is normally satisfied when the loss is continuously

distributed, and is often a reasonable modeling simplification when losses are discrete but
fine-grained quantities. A simple sufficient condition for Assumption 4 to hold in portfolio
optimization is provided in Appendix 4.

Assumption 4 (Non-degeneracy) Suppose that δ(1), δ(2), · · · , δ(d+2) are independent
and distributed according to probability P. The event{

there exists an x ∈ X such that L(x, δ(1)) = L(x, δ(2)) = · · · = L(x, δ(d+2))
}

(8)

has probability zero. ∗
Under Assumptions 2–4, the following Proposition 2 holds, see [8].

Proposition 2 Let N ≥ k + d. Almost surely, among the cost functions L(·, δ(1)),
L(·, δ(2)), · · · , L(·, δ(N)) exactly k + d of them attain a value greater than or equal to L(k+d)(·)
at x∗

N . ∗
Let us consider the k + d indices i1, i2, · · · , ik+d from {1, 2, · · · , N} corresponding to the

functions that attain a value at x∗
N greater than or equal to L(k+d)(x∗

N ) (Proposition 2 ensures
that they are well-defined). It can be shown that the observations δ(i1), δ(i2), · · · , δ(id+k) corre-
sponding to these k+d highest-valued losses play the important role of “support observations”:
If only these k + d observations are kept while the other N − (k + d) are discarded, the solution
x∗

N to the Empirical CVaR problem does not change, and the value of L(k+d)(x∗
N ) remains

the same. On the other hand, removing some of these support observations causes the value
L(k+d)(x∗

N ) to change. This remarkable fact is the starting point for the thorough analysis
carried out in [8] to which the reader is referred for more details and the proofs of the results
that are recalled without proof in the present study. Given its prominent role, the special loss
value L(k+d)(x∗

N ) is called the Shortfall Threshold and denoted by LN (as usual, the subscript
N is used to recall that it is computed based on N observations),

LN = L(k+d)(x∗
N ). (9)
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Corresponding to LN , we introduce the Probability of Shortfall

PSN := P
{
δ ∈ Δ : L(x∗

N , δ) > LN

}
. (10)

This is the probability that a new δ ∈ Δ drawn independently of the sample (δ(1), δ(2), · · · , δ(N))
incurs a loss whose value is greater than the shortfall threshold at the solution of Problem(6).
Since x∗

N depends on the random sample (δ(1), δ(2), · · · , δ(N)), so does PSN , which is thus a
random variable on (ΔN ,FN , PN ). The following main theorem of [8] shows that the cumulative
distribution function of PSN is the same for all the problems that share the same parameters
k and d, irrespective of the probability P.

Theorem 2.1 PSN is distributed as a Beta(k + d, N + 1 − (k + d)), thus its cumulative
distribution function is

PN {PSN ≤ ε} =
∫ ε

0

(k + d)
(

N

k + d

)
pk+d−1(1 − p)N−k−ddp

= 1 −
k+d−1∑

i=0

(
N

i

)
εi(1 − ε)N−i. (11)

∗
Two corollaries are also proved in [8].

Corollary 2.2 It holds that

PN+1
{

L(x∗
N , δ(N+1)) > LN

}
= E {PSN} =

k + d

N + 1
. (12)

∗
Corollary 2.3 If N → ∞ and k is allowed to grow with N so that limN→∞ k

N = ε, then
PSN → ε in the mean-square sense. ∗

In the present contribution, we are also interested in the distribution of the probability of
exceeding other empirical costs than the Shortfall Threshold (a situation which is not considered
in [8]). For j = k + d, k + d + 1, · · · , N , define

PS
(j)
N := P

{
δ ∈ Δ : L(x∗

N , δ) > L(j)(x∗
N )
}

. (13)

PS
(j)
N is called the j-th Probability of Shortfall. Note also that PSN = PS

(k+d)
N . The following

result can be established, mutatis mutandis, by resorting to reasonings akin to those given in [11].

Theorem 2.4 For all j = k + d, k + d + 1, · · · , N , the random variable PS
(j)
N , j =

k + d, k + d + 1, · · · , N , is distributed as a Beta(j, N + 1 − j), thus its cumulative distribution
function is

PN
{
PS

(j)
N ≤ ε

}
=
∫ ε

0

j

(
N

j

)
pj−1(1 − p)N−jdp

= 1 −
j−1∑
i=0

(
N

i

)
εi(1 − ε)N−i . (14)

∗
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2.4 Useful Tools for CVaR Data-Driven Decision-Making

The results presented so far can be employed to compute confidence intervals that are guar-
anteed to include the probabilities of shortfall with very high confidence (Subsection 2.4.1). This
is instrumental to constructing a probability box that is guaranteed to contain the cumulative
distribution function of L(x∗

N , δ) with a high confidence (Subsection 2.4.2).

2.4.1 Confidence Intervals

Let β be a confidence parameter, normally set to a small value such as 10−4. By using
Theorem 2.4, a confidence interval [a, b] for PS

(j)
N at level 1 − β can be constructed. The

interval [a, b] is obtained by computing the values a and b such that

PN
{
PS

(j)
N < a

}
= PN

{
PS

(j)
N > b

}
=

β

2
. (15)

Note that a and b depend only on the parameters j and N that fully determine the distribution
of PS

(j)
N . When N is high enough, this distribution concentrates around its mean, given in (12)

for j = k + d, with a thin tail. Therefore, even with very small values of β, the confidence
interval will be small and useful.

2.4.2 Probability Boxes

A probability box is defined by a lower-bounding function Λ(l) and an upper-bounding
function Γ (l) such that the relationship

Λ(l) ≤ P{δ ∈ Δ : L(x∗
N , δ) ≤ l} ≤ Γ (l) , ∀l ∈ R (16)

holds true with confidence 1 − β. Λ(l) and Γ (l) can be obtained as follows. By using Theo-
rem 2.4, let us construct N − (k +d)+1 confidence intervals [uj, vj ] for the variables 1−PS

(j)
N ,

j = k + d, k + d + 1, · · · , N , such that

PN
{
1 − PS

(j)
N < uj

}
= PN

{
1 − PS

(j)
N > vj

}
=

β/2
N + 1 − (k + d)

. (17)

Then, by exploiting the monotonicity of the cumulative distribution function, one can easily
see that (16) is satisfied with confidence 1 − β ‡ with Λ(l) and Γ (l) defined as follows

Λ(l) =

⎧⎪⎪⎨
⎪⎪⎩

uk+d, if l ≥ L(k+d)(x∗
N ),

uj, if L(j)(x∗
N ) ≤ l < L(j−1)(x∗

N ) and j = k + d + 1, · · · , N,

0, if l < L(N)(x∗
N );

(18)

Γ (l) =

⎧⎪⎪⎨
⎪⎪⎩

1, if l > L(k+d)(x∗
N ),

vj , if L(j+1)(x∗
N ) < l ≤ L(j)(x∗

N ) and j = k + d, · · · , N − 1,

vN , if l ≤ L(N)(x∗
N ).

(19)

‡Note that the construction is based on requiring that all the N + 1 − (k + d) confidence intervals [uj , vj ]

include the value of 1−PS
(j)
N , an event that happens on a set of observations δ(1) , δ(2), · · · , δ(N) of probability

at least 1 − 2(N + 1 − (k + d)) · β/2
N+1−(k+d)

= 1 − β, which can be set small enough to guarantee “practical

certainty”.
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2.5 Balancing Shortfall Threshold and Probability of Shortfall

So far, k and d have been considered as fixed parameters. In practice, however, these
parameters are tuning knobs and the user may want to consider solutions obtained for var-
ious values of k (corresponding to different attitudes towards uncertainty) and with vari-
ous degrees of freedom d (for example, in portfolio optimization, d + 1 is the number of
assets that the decision-maker considers for possible investments). Grounded on the theo-
retical results discussed in previous sections, one can look for a satisfactory choice of the
parameters k and d with the following procedure: given N scenarios, one solves problems
of the form (6) for different choices of k and d, say (d(1), k(1)), (d(2), k(2)), · · · , (d(r), k(r)).
Correspondingly, r different solutions x∗

d(1),k(1)|N , x∗
d(2),k(2)|N , · · · , x∗

d(r),k(r)|N and r thresholds
Ld(1),k(1)|N , Ld(2),k(2)|N , · · · , Ld(r),k(r)|N are obtained. Denoting by PSd(i),k(i)|N the Proba-
bility of Shortfall for each threshold Ld(i),k(i)|N , with the corresponding confidence interval
[ad(i),k(i)|N , bd(i),k(i)|N ], an application of the probability union bound yields

PN
{
PSd(1),k(1)|N /∈ [ad(1),k(1)|N , bd(1),k(1)|N ] or · · · or PSd(r),k(r)|N /∈ [ad(r),k(r)|N , bd(r),k(r)|N ]

}

≤
r∑

i=1

PN
{
PSd(i),k(i)|N /∈ [ad(i),k(i)|N , bd(i),k(i)|N ]

}
=

r∑
i=1

β = rβ. (20)

Even when r is large, one can choose β small enough so that the overall confidence 1 − rβ

is close to 1. For example, if β = 10−4, then even with 100 different choices of k and d the
intervals for the Probability of Shortfall are simultaneously valid with confidence at least 99%.
The Shortfall Thresholds Ld(1),k(1)|N , Ld(2),k(2)|N , · · · , Ld(r),k(r)|N , the Empirical Conditional
Values-at-Risk CVaRd(1),k(1)|N , CVaRd(2),k(2)|N , · · · , CVaRd(r),k(r)|N , and the corresponding
intervals for the Probability of Shortfall can then be plotted against the different choices of k

and d in order to find the (k, d) pair that best fits the user’s preferences. Moreover, when a
more accurate analysis is required, the cumulative distribution functions of L(x∗

d,k|N , ·) for the
various values of k and d can be compared by resorting to high-confidence probability boxes
constructed as in Subsection 2.4.2.

3 A Study in Portfolio Optimization

For our study, we collected the adjusted daily closing prices of the 300 assets with highest
market capitalization as of March 1st, 2017 in S&P500 among those that reported a quote from
March 1st, 2012 to March 1st, 2017 (data from finance.yahoo.com). As a result, we created
a dataset with 1256 daily returns for each of the considered assets, starting from the most
capitalized Apple Inc., Microsoft Corp., Exxon Mobil Corp. all the way through to Illinois Tool
Works Inc.

3.1 Results

We considered portfolios with an increasing number of assets. The value k+d (that influences
both the mean and the dispersion of the distribution of PSN ) increases with the number of
assets n = d + 1 and, as n grows, one observes the beneficial effect of diversification, while also
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experiencing a progressive increase of the probability of exceeding the Shortfall Threshold.
We started with a one-asset portfolio (only Apple Inc.) and evaluated the empirical CVaR

and the empirical Shortfall Threshold. Then, we repeated the same procedure adding one asset
at a time in order of decreasing capitalization§.

Figure 1 shows the results obtained for four different values of k (1, 50, 100 and 200) and
a number of assets n that ranged from 1 to 100 using data from the last N = 1000 days of
the dataset. Notice that k = 1 corresponds to worst-case optimization and the other choices
to the 5%, 10% and 20% empirical CVaR minimization, respectively. The plots display on the
horizontal axis the portfolio dimension n = d + 1; the values of the CVaR and the Shortfall
Threshold (blue solid and black dash-dotted lines) are read on the left vertical axis while the
right vertical axis gives the values of the Probability of Shortfall.

(a) (b)

(c) (d)

Figure 1 Simulations for different values of k over N = 1000 days with portfolio

increasing according to capitalization order

The first, although obvious, fact to be noticed is that the Empirical CVaR function is
monotonically decreasing in n. In fact, when a new asset is included in the portfolio, two
situations are possible:

§Some preliminary sorting of the assets is necessary to prevent the combinatorial proliferation of possible

choices of n assets. Adding one set at a time in decreasing order of capitalization is just one sorting choice

among many.
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1. if the new asset produces an improvement in the cost function minimized in (6), then the
portfolio is changed and a positive weight is allocated in the corresponding coordinate of
x∗

N ;

2. if the addition of the new asset does not affect the optimization result, then a null weight
is assigned to the corresponding coordinate of x∗

N , the portfolio remains unchanged and
so does the Empirical CVaR value.

The Shortfall Threshold function, instead, is not always monotonically decreasing, though
it displays an overall decreasing trend (in general, including a new asset may result in a higher
value of the Shortfall Threshold; certainly, however, in Case 2 above the added asset does
not change the solution while k + d increases so that the value of the Shortfall Threshold
LN = L(k+d)(x∗

N ) decreases). We also observe a substantial increase of the gap between the
Empirical CVaR and the Shortfall Threshold at the solution point as n increases.

As n increases, the confidence interval for PSN shifts up and widens. Hence, for increasing
values of n, we obtain lower values of the Empirical CVaR (and of the Shortfall Threshold
LN ) but the guarantees on the Probability of Shortfall worsen. In our experiments we adopted
β = 10−4 and, since the number of assets in the portfolio ranged from 1 to 100, the number
r of solutions that we computed (one for each choice of assets) is 100. Therefore, the entire
plot is guaranteed with confidence 1 − rβ = 99% (see Subsection 2.5). This allows an investor
to consider different values of n, and hence different diversification levels both in terms of
Empirical CVaR, Shortfall Threshold and confidence interval for PSN .

For a more complete analysis, we performed another test with the same settings, but this
time, instead of adding assets in decreasing order of capitalization, we just sorted them ran-
domly. The outcome demonstrates that the results are not significantly affected by the partic-
ular choice of the ordering. The results are shown in Figure 2.

(a) (b)
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(c) (d)

Figure 2 Simulations for different values of k over N = 1000 days with portfolio

increasing according to a random order

3.2 Cumulative Distribution of the Loss

The results in this section are obtained by using N = 1000 scenarios from the market (as in
the other simulations) and by optimizing the Empirical CVaR at 5% (k = 50) for portfolios of
three different sizes n = 5, 10, 20 obtained from the capitalization ordering described before.
At the point of minimum Empirical CVaR, i.e., at x∗

N , we built the empirical cumulative
distribution of the loss and constructed a probability box around it according to the procedure
illustrated in Subsection 2.4.2; the probability box includes the true cumulative distribution
function of the loss with confidence at least 1 − 10−4¶.

It is worth noticing that the analysis offered in Subsection 3.1 was somehow defensive, as the
main focus was put on the highest loss thresholds and on the probability of exceeding them. Re-
ferring to the probability boxes, one can inspect the probability of incurring losses as well as the
probability of making a gain. When moving from panel (a) down to panels (b) and (c) in Fig-
ure 3, one also notes a decrease of dispersion in the portfolio loss (the cumulative distributions
climb more rapidly); this implies a reduced volatility due to diversification, a phenomenon that
plays an important role in sequential investments. Interestingly, while informative, the boxes
are rigorously guaranteed distribution-free, that is, no assumptions are made on the underlying
distribution by which the rates of return are generated (such as the assumption of log-normality
which is often advocated in investment studies).

¶With our choices of the parameters, we have that max{N − k − d + 1} = 946; therefore, a probability box

with confidence larger than 1−10−4 is obtained by using (18) and (19) with intervals [uj , vj ] for 1−PS
(j)
N that

are valid at level 1 − 10−7.
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Figure 3 Empirical cumulative distribution of the loss at the solution point and

99.99% probability box

4 Concluding Remarks

In this paper, we have presented a set of theoretical tools that offer a well-principled environ-
ment for flexibility adjustment in empirical CVaR optimization. All results hold true without
restrictive assumptions on the distributions by which observations are generated (distribution-
free results). While this paper has by and large made reference to an illustrative application
in portfolio selection, the tools here proposed are not application-dependent. In particular, it
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would be interesting to apply them to system identification and machine learning problems,
where the trade-off between flexibility and generalization relates to the long-standing dilemma
of balancing bias and variance effects.
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Appendix

A Sufficient Condition for Non-Degeneracy in Portfolio Optimization

In portfolio optimization, Assumption 4 is implied by the following condition

Condition A.1 ∀v ∈ R
d+1, c ∈ R, v and c not both zeros in their respective spaces, it

holds that P{vTδ = c} = 0. ∗
This condition is simpler than Assumption 4 because it involves only the realization of a

single outcome δ. In what follows, we prove that Condition A.1 implies Assumption 4.
We will use the symbol 1{·} to denote the indicator function: 1{statement} is equal to 1

when the statement is true and is 0 otherwise. Let D denote the matrix whose columns are
δ(1), δ(2), · · · , δ(d+1). We need the following lemma.

Lemma A.1 Under Condition A.1, Pd+1{D is invertible} = 1.

Proof Condition A.1 immediately implies that P{δ = 0} = 0, so that

Pd+1{δ(1), δ(2), · · · , δ(d+1) are all nonzero vectors} = 1.

Denote by W a generic nonzero matrix of dimension (d + 1)× d whose columns are the vectors
w1, w2, · · · , wd. Let colsp(W ) be the column space of W . Let p(·) be any vector function of W

such that p(W ) is a non-zero vector in R
d+1 and p(W )Twi = 0 for all i = 1, 2, · · · , d (i.e., p(W )

is a vector in the orthogonal complement of colsp(W )). Finally, denote by D(i) the matrix
whose columns are the d vectors among δ(1), δ(2), · · · , δ(d+1) that are not δ(i).

It holds that Pd+1{D is singular} = Pd+1{∃i ∈ {1, 2, · · · , d + 1} : δ(i) ∈ colsp(D(i))} ≤∑d+1
i=1 Pd+1{δ(i) ∈ colsp(D(i))} ≤ ∑d+1

i=1 Pd+1{δ(i)Tp(D(i)) = 0}. The Lemma is proven by

noting that Pd+1{δ(i)Tp(D(i)) = 0} = ED(i)∈Δd

[
Eδ(i)∈Δ[1{δ(i)Tp(D(i)) = 0}]

]
, and that the

argument of the external expectation is equal to zero by Condition A.1.
From now on, we assume that P satisfies Condition A.1 and hence that D is invertible by

Lemma A.1 (the zero-probability event where this does not happen is unimportant and here
neglected). When the event (8) is true, there exists a nonzero z such that zTδ(1) = zTδ(2) =
· · · = zTδ(d+1) = zTδ(d+2). Then, it holds that zT(δ(i) − δ(d+2)) = 0, i = 1, 2, · · · , d + 1, which
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implies that the d+1 vectors (δ(i)−δ(d+2)), i = 1, 2, · · · , d+1, are not linearly independent. This
in turn entails that there exists a nonzero vector y = [y1, y2, · · · , yd+1]T such that

∑d+1
i=1 yi(δ(i)−

δ(d+2)) = 0. Note that if
∑d+1

i=1 yi = 0, then D would be singular, which is ruled out under the
present conditions. Hence, δ(d+2) can be written as

δ(d+2) =
d+1∑
i=1

yi∑d+1
j=1 yj

δ(i), (21)

which can also be expressed as
δ(d+2) = Dy, (22)

where y is a vector whose components sum to 1. Letting u = [1, 1, · · · , 1]T be the vector made
of d + 1 ones, we can define v̂ = (DT)−1u. Multiplying both sides of the equation (22) by v̂T

gives the equality v̂Tδ(d+2) = 1. With this result in mind, we get

Pd+2{event (8)}
≤ Eδ(1),··· ,δ(d+1)∈Δd+1

[
Eδ(d+2)∈Δ[1{v̂Tδ(d+2) = 1}]

]

≤ Eδ(1),··· ,δ(d+1)∈Δd+1

[
sup

v
Eδ(d+2)∈Δ[1{vTδ(d+2) = 1}]

]

= Eδ(1),··· ,δ(d+1)∈Δd+1

[
sup

v
P{vTδ = 1}

]
= 0,

by an application of Condition A.1.


