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Abstract: In previous contributions, it has been shown that the “complexity” is a key indicator
to quantify the “risk” associated to data-driven scenario-based solutions. Depending on the
context of application, risk is interpreted as probability of misprediction, or probability of
underperforming or meeting shortfalls in various control endeavors, and the acquired ability
to tightly evaluate the risk is a vital element in a world where data-driven methods are being
increasingly used not only for decision support but also for automated decision making. The
present contribution is meant to significantly expand the area of applicability of these results: all
achievements so far have been based on an assumption, called “non-degeneracy”, that hardly
applies e.g. to optimization problems that are not convex. Here, we show that these results
maintain their integrity in a non-convex optimization setup, and beyond into a broad domain
of decision making that contains non-convex optimization as a particular case.
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1. INTRODUCTION AND PROBLEM STATEMENT

The scenario approach, Campi et al. (2009b); Campi and
Garatti (2018a), is a relatively recent – and yet well es-
tablished – approach to make data-driven designs in the
presence of uncertainty. The driving idea of the method
is that the effect of uncertainty can be controlled by
knowledge that draws on past experience: one collects
a sample of instances of the uncertain elements in the
problem (the so-called “scenarios”) and makes a decision
that is somehow robust against these instances. The goal
of the scenario approach is to build decision schemes
endowed with precise guarantees against future, and yet
unseen, realizations of the uncertainty. Originally, the sce-
nario approach was developed in the context of empiri-
cal worst-case optimization, Calafiore and Campi (2005,
2006); Campi and Garatti (2008); Campi and Carè (2013);
Schildbach et al. (2013); Carè et al. (2014); Grammatico
et al. (2016); Mohajerin Esfahani et al. (2015); Zhang
et al. (2015); Campi and Garatti (2018b); Assif et al.
(2020); Shang and You (2020), but ever since then various
alternative paradigms have emerged and the gallery of
approaches has been enriched with methods that include
constraints removal and relaxation, Campi and Garatti
(2011); Garatti and Campi (2013, 2019); Picallo and
Dörfler (2019); Romao et al. (2020), expected shortfall
optimization, Ramponi and Campi (2017), variational in-
equalities and games, Paccagnan and Campi (2019); Fele
and Margellos (2020), multi-agent budget constrained op-
timization, Falsone et al. (2017).
This paper specifically refers to a general and unitary
framework – called “scenario decision-making” – that has
been introduced in (Garatti and Campi, 2019, Section 5),

which covers most of the existing paradigms. Let us briefly
review the salient elements of this theoretical framework.
Denote by Z the domain from which a decision z has to
be drawn and let δ be a quantity cumulatively containing
all the uncertain elements in the problem. It is assumed
that δ lives in a probability space (∆,D,P), where P is a
descriptor of the mechanisms through which uncertainty
manifests, but the method does not assume any knowledge
on P; this accommodates conditions of partial knowledge
– or even absence of knowledge – about the mechanisms
governing uncertainty that is germane to many decision-
making endeavors, especially those relating to complex
systems. In the theory, no specific structure, e.g. that of
vector space, is required for both Z and ∆, which are
completely generic sets. To each δ, there is associated a
set Zδ ⊆ Z describing the solutions that are “suitable” for
that δ, where what suitable means is up to the designer of
the method who can capture by an appropriate selection
of Zδ various needs that range from performance require-
ments to satisfaction of constraints of various nature, and
the reader is referred to Garatti and Campi (2019) for
more discussion on this point. Scenarios δi, i = 1, . . . ,m,
are i.i.d. (independent and identically distributed) draws
from (∆,D,P) and one considers decision maps

Mm : ∆m → Z, m = 0, 1, 2, . . .

from them-dimensional uncertainty domain to the domain
of decisions. Mm are required to satisfy the following
Assumption 1 in which z∗m = Mm(δ1, . . . , δm).

Assumption 1. (consistency). For every non-negative in-
tegers m and n, and for every choice of δ1, . . . , δm, and
δm+1, . . . , δm+n, the following three properties hold:
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1. INTRODUCTION AND PROBLEM STATEMENT

The scenario approach, Campi et al. (2009b); Campi and
Garatti (2018a), is a relatively recent – and yet well es-
tablished – approach to make data-driven designs in the
presence of uncertainty. The driving idea of the method
is that the effect of uncertainty can be controlled by
knowledge that draws on past experience: one collects
a sample of instances of the uncertain elements in the
problem (the so-called “scenarios”) and makes a decision
that is somehow robust against these instances. The goal
of the scenario approach is to build decision schemes
endowed with precise guarantees against future, and yet
unseen, realizations of the uncertainty. Originally, the sce-
nario approach was developed in the context of empiri-
cal worst-case optimization, Calafiore and Campi (2005,
2006); Campi and Garatti (2008); Campi and Carè (2013);
Schildbach et al. (2013); Carè et al. (2014); Grammatico
et al. (2016); Mohajerin Esfahani et al. (2015); Zhang
et al. (2015); Campi and Garatti (2018b); Assif et al.
(2020); Shang and You (2020), but ever since then various
alternative paradigms have emerged and the gallery of
approaches has been enriched with methods that include
constraints removal and relaxation, Campi and Garatti
(2011); Garatti and Campi (2013, 2019); Picallo and
Dörfler (2019); Romao et al. (2020), expected shortfall
optimization, Ramponi and Campi (2017), variational in-
equalities and games, Paccagnan and Campi (2019); Fele
and Margellos (2020), multi-agent budget constrained op-
timization, Falsone et al. (2017).
This paper specifically refers to a general and unitary
framework – called “scenario decision-making” – that has
been introduced in (Garatti and Campi, 2019, Section 5),

which covers most of the existing paradigms. Let us briefly
review the salient elements of this theoretical framework.
Denote by Z the domain from which a decision z has to
be drawn and let δ be a quantity cumulatively containing
all the uncertain elements in the problem. It is assumed
that δ lives in a probability space (∆,D,P), where P is a
descriptor of the mechanisms through which uncertainty
manifests, but the method does not assume any knowledge
on P; this accommodates conditions of partial knowledge
– or even absence of knowledge – about the mechanisms
governing uncertainty that is germane to many decision-
making endeavors, especially those relating to complex
systems. In the theory, no specific structure, e.g. that of
vector space, is required for both Z and ∆, which are
completely generic sets. To each δ, there is associated a
set Zδ ⊆ Z describing the solutions that are “suitable” for
that δ, where what suitable means is up to the designer of
the method who can capture by an appropriate selection
of Zδ various needs that range from performance require-
ments to satisfaction of constraints of various nature, and
the reader is referred to Garatti and Campi (2019) for
more discussion on this point. Scenarios δi, i = 1, . . . ,m,
are i.i.d. (independent and identically distributed) draws
from (∆,D,P) and one considers decision maps

Mm : ∆m → Z, m = 0, 1, 2, . . .

from them-dimensional uncertainty domain to the domain
of decisions. Mm are required to satisfy the following
Assumption 1 in which z∗m = Mm(δ1, . . . , δm).

Assumption 1. (consistency). For every non-negative in-
tegers m and n, and for every choice of δ1, . . . , δm, and
δm+1, . . . , δm+n, the following three properties hold:
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Schildbach et al. (2013); Carè et al. (2014); Grammatico
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(i) if δi1 , . . . , δim is a permutation of δ1, . . . , δm, then it
holds that Mm(δ1, . . . , δm) = Mm(δi1 , . . . , δim);

(ii) if z∗m ∈ Zδm+i
for all i = 1, . . . , n, then it holds that

z∗m+n=Mm+n(δ1, . . . , δm+n)=Mm(δ1, . . . , δm)=z∗m;
(iii) if z∗m /∈ Zδm+i

for one or more i = 1, . . . , n,
then it holds that z∗m+n = Mm+n(δ1, . . . , δm+n) �=
Mm(δ1, . . . , δm) = z∗m. �

The interpretation is that z∗m is a decision made according
to a rule Mm based on a sample of scenarios δ1, δ2, . . . , δm.
Zδ is the set of suitable decisions when uncertainty takes
value δ and Assumption 1 enforces restrictions on the
mechanism by which decisions are made from scenarios.
Specifically, (i) requires thatMm is permutation-invariant;
(ii) requires that, given m scenarios δ1, . . . , δm, leading
to a decision z∗m, if more scenarios δm+1, . . . , δm+n are
introduced for which z∗m is “suitable”, then the decision
does not change. Instead, if z∗m is not suitable for at least
one of the δm+i, then according to (iii) the decision must
change.
As anticipated, the framework here described bears great
generality and accommodates various algorithms that pur-
sue diverse objectives. For the sake of concreteness we
introduce here a couple of examples that are relevant to
data-driven modeling.

Example 1. (scenario worst-case optimization). Let
θ ∈ Rd be a vector of optimization variables and let f(θ, δ)
be a cost function that also depends on the uncertain
element δ. Given δ1, · · · , δm, let

θ∗m = arg min
θ∈Rd

max
i=1,...,m

f(θ, δi),

h∗
m = max

i=1,...,m
f(θ∗m, δi),

(1)

i.e., the cost is minimized worst-case with respect to the
scenarios, which gives θ∗m (for simplicity assume that θ∗m is
unique) and the value h∗

m. In this context, we let z = (θ, h)
and we take the definition Zδ := {(θ, h) : f(θ, δ) ≤ h}
that expresses the wish that h is a valid upper bound
to the cost corresponding to θ for the given δ. Formula
(1) defines a map Mm that associates z∗m = (θ∗m, h∗

m)
to δ1, · · · , δm. This map is clearly permutation invariant.
Moreover, when n scenarios δm+1, . . . , δm+n are added to
the original pool, if z∗m ∈ Zδm+i for i = 1, . . . , n, then
maxi=1,...,m+n f(θ

∗
m, δi) = maxi=1,...,m f(θ∗m, δi) and, since

for all other θ it clearly holds that maxi=1,...,m+n f(θ, δi) ≥
maxi=1,...,m f(θ, δi), θ

∗
m remains the optimal solution and

h∗
m does not change as well; if instead z∗m /∈ Zδm+i ,

then h∗
m �= maxi=1,...,m+n f(θ

∗
m, δi) and the decision has

to change. Hence, Mm as defined by (1) satisfies the
consistency Assumption 1. �

Example 2. (scenario expected shortfall optimiza-
tion). Consider again the setup of Example 1 and, for
a given θ, denote by 1m(θ) the index i among {1, . . . ,m}
attaining the largest value of f(θ, δi), by 2m(θ) that attain-
ing the second largest value, and so on. Choose a k ≤ m
and define

θ∗k,m = arg min
θ∈Rd

1

k

k∑
j=1

f(θ, δjm(θ))

h∗
k,m = f(θ∗k,m, δkm(θ∗

k,m
))

(2)

(again, for simplicity, assume that θ∗k,m is unique). In

(2), θ∗k,m is chosen by minimizing the average of the k

largest costs (this quantity is called expected-shortfall in

the literature as the k scenarios that return the largest
costs for a given θ are interpreted as “shortfalls”); h∗

k,m

is the k-th largest cost value corresponding to θ∗k,m and
is meant to be a guarantee on the cost value besides
shortfalls. Note that θ∗1,m = θ∗m and h∗

1,m = h∗
m, while

for k > 1 the expect-shortfall decision can reduce the
intrinsic conservatism of the worst-case decision. If we
take z and Zδ as in Example 1, formula (2) defines
a new map Mk,m that associates z∗k,m = (θ∗k,m, h∗

k,m)
to δ1, · · · , δm, which again is easily seen to satisfy the
consistency Assumption 1. Indeed, Mk,m is permutation
invariant and, similarly to the worst-case case, when
n new scenarios δm+1, . . . , δm+n are added, if z∗k,m ∈
Zδm+i

for i = 1, . . . , n, then 1
k

∑k
j=1 f(θ

∗
k,m, δjm+n(θ∗

k,m
)) =

1
k

∑k
j=1 f(θ

∗
k,m, δjm(θ∗

k,m
)) and, since for all other θ it

holds that 1
k

∑k
j=1 f(θ, δjm+n(θ)) ≥ 1

k

∑k
j=1 f(θ, δjm(θ)),

θ∗k,m remains the optimal solution and also h∗
k,m does not

change; if instead z∗m /∈ Zδm+i
for some i, then h∗

k,m �=
f(θ∗k,m, δkm+n(θ∗

k,m
)) and the decision has to change. �

Example 3. (Examples 1 and 2 cont’d: application
to modeling). We here apply the setup of Examples 1
and 2 to what we name “coverage models”, Campi et al.
(2009a); Crespo et al. (2015); Garatti et al. (2019). In this
context, δ is an input-output couple: δ = (u, y), where
u ∈ Rq is an input and y ∈ R is the corresponding
output and scenarios δ1, · · · , δm are i.i.d. input/output
pairs (u1, y1), . . . , (um, ym). We define the cost function
as f(θ, δ) = |y − �θ(u)|, where �θ(u) is any parametric
map from the input space to the output space (obtained
e.g. by means of polynomial or spline expansions or by
a neural network). Using (1) one constructs a “layer” in
the input/output domain delimited by the two functions
�θ∗

m
(u) − h∗

m and �θ∗
m
(u) + h∗

m (notice that this layer
contains all the observations (ui, yi)), which can be used to
provide prediction intervals for the output y corresponding
to a new value of the input u. As we shall see below, the
theoretical achievements of this paper rigorously quantify
the probability that this prediction is incorrect.
The worst-case layer described above may be adversely
affected by the presence of outliers, resulting in wide
and hence poorly informative intervals. Resorting to (2),
one mitigates this difficulty and the layer [�θ∗

k,m
(u) −

h∗
k,m, �θ∗

k,m
(u) + h∗

k,m] has higher accuracy (i.e., smaller

width), but, as is intuitive, reduced guarantees of correct-
ness. Again, the theory of the present paper can be used
as a tool to rigorously certify the prediction correctness of
the layer, a result that can also be profitably used to tune
the value of k. �

In what follows, we indicate with N the actual number of
scenarios we have available to make a decision (our using
a generic m before was because, to derive the result for
a given N , we need to refer to any generic size m of the
sample – see the proof of the main theorem). The goal of
this study is to provide rigorous and generally-applicable
tools to evaluate the probability with which the solution
z∗N is “unsuitable” for a new δ, that is z∗N /∈ Zδ. We start
with the notion of risk for a generic z.

Definition 1. Given any z ∈ Z, the risk associated to z is
V (z) = P{δ ∈ ∆ : z /∈ Zδ}. �
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θ ∈ Rd be a vector of optimization variables and let f(θ, δ)
be a cost function that also depends on the uncertain
element δ. Given δ1, · · · , δm, let

θ∗m = arg min
θ∈Rd

max
i=1,...,m

f(θ, δi),

h∗
m = max

i=1,...,m
f(θ∗m, δi),

(1)

i.e., the cost is minimized worst-case with respect to the
scenarios, which gives θ∗m (for simplicity assume that θ∗m is
unique) and the value h∗

m. In this context, we let z = (θ, h)
and we take the definition Zδ := {(θ, h) : f(θ, δ) ≤ h}
that expresses the wish that h is a valid upper bound
to the cost corresponding to θ for the given δ. Formula
(1) defines a map Mm that associates z∗m = (θ∗m, h∗

m)
to δ1, · · · , δm. This map is clearly permutation invariant.
Moreover, when n scenarios δm+1, . . . , δm+n are added to
the original pool, if z∗m ∈ Zδm+i for i = 1, . . . , n, then
maxi=1,...,m+n f(θ

∗
m, δi) = maxi=1,...,m f(θ∗m, δi) and, since

for all other θ it clearly holds that maxi=1,...,m+n f(θ, δi) ≥
maxi=1,...,m f(θ, δi), θ

∗
m remains the optimal solution and

h∗
m does not change as well; if instead z∗m /∈ Zδm+i ,

then h∗
m �= maxi=1,...,m+n f(θ

∗
m, δi) and the decision has

to change. Hence, Mm as defined by (1) satisfies the
consistency Assumption 1. �

Example 2. (scenario expected shortfall optimiza-
tion). Consider again the setup of Example 1 and, for
a given θ, denote by 1m(θ) the index i among {1, . . . ,m}
attaining the largest value of f(θ, δi), by 2m(θ) that attain-
ing the second largest value, and so on. Choose a k ≤ m
and define

θ∗k,m = arg min
θ∈Rd

1

k

k∑
j=1

f(θ, δjm(θ))

h∗
k,m = f(θ∗k,m, δkm(θ∗

k,m
))

(2)

(again, for simplicity, assume that θ∗k,m is unique). In

(2), θ∗k,m is chosen by minimizing the average of the k

largest costs (this quantity is called expected-shortfall in

the literature as the k scenarios that return the largest
costs for a given θ are interpreted as “shortfalls”); h∗

k,m

is the k-th largest cost value corresponding to θ∗k,m and
is meant to be a guarantee on the cost value besides
shortfalls. Note that θ∗1,m = θ∗m and h∗

1,m = h∗
m, while

for k > 1 the expect-shortfall decision can reduce the
intrinsic conservatism of the worst-case decision. If we
take z and Zδ as in Example 1, formula (2) defines
a new map Mk,m that associates z∗k,m = (θ∗k,m, h∗

k,m)
to δ1, · · · , δm, which again is easily seen to satisfy the
consistency Assumption 1. Indeed, Mk,m is permutation
invariant and, similarly to the worst-case case, when
n new scenarios δm+1, . . . , δm+n are added, if z∗k,m ∈
Zδm+i

for i = 1, . . . , n, then 1
k

∑k
j=1 f(θ

∗
k,m, δjm+n(θ∗

k,m
)) =

1
k

∑k
j=1 f(θ

∗
k,m, δjm(θ∗

k,m
)) and, since for all other θ it

holds that 1
k

∑k
j=1 f(θ, δjm+n(θ)) ≥ 1

k

∑k
j=1 f(θ, δjm(θ)),

θ∗k,m remains the optimal solution and also h∗
k,m does not

change; if instead z∗m /∈ Zδm+i
for some i, then h∗

k,m �=
f(θ∗k,m, δkm+n(θ∗

k,m
)) and the decision has to change. �

Example 3. (Examples 1 and 2 cont’d: application
to modeling). We here apply the setup of Examples 1
and 2 to what we name “coverage models”, Campi et al.
(2009a); Crespo et al. (2015); Garatti et al. (2019). In this
context, δ is an input-output couple: δ = (u, y), where
u ∈ Rq is an input and y ∈ R is the corresponding
output and scenarios δ1, · · · , δm are i.i.d. input/output
pairs (u1, y1), . . . , (um, ym). We define the cost function
as f(θ, δ) = |y − �θ(u)|, where �θ(u) is any parametric
map from the input space to the output space (obtained
e.g. by means of polynomial or spline expansions or by
a neural network). Using (1) one constructs a “layer” in
the input/output domain delimited by the two functions
�θ∗

m
(u) − h∗

m and �θ∗
m
(u) + h∗

m (notice that this layer
contains all the observations (ui, yi)), which can be used to
provide prediction intervals for the output y corresponding
to a new value of the input u. As we shall see below, the
theoretical achievements of this paper rigorously quantify
the probability that this prediction is incorrect.
The worst-case layer described above may be adversely
affected by the presence of outliers, resulting in wide
and hence poorly informative intervals. Resorting to (2),
one mitigates this difficulty and the layer [�θ∗

k,m
(u) −

h∗
k,m, �θ∗

k,m
(u) + h∗

k,m] has higher accuracy (i.e., smaller

width), but, as is intuitive, reduced guarantees of correct-
ness. Again, the theory of the present paper can be used
as a tool to rigorously certify the prediction correctness of
the layer, a result that can also be profitably used to tune
the value of k. �

In what follows, we indicate with N the actual number of
scenarios we have available to make a decision (our using
a generic m before was because, to derive the result for
a given N , we need to refer to any generic size m of the
sample – see the proof of the main theorem). The goal of
this study is to provide rigorous and generally-applicable
tools to evaluate the probability with which the solution
z∗N is “unsuitable” for a new δ, that is z∗N /∈ Zδ. We start
with the notion of risk for a generic z.

Definition 1. Given any z ∈ Z, the risk associated to z is
V (z) = P{δ ∈ ∆ : z /∈ Zδ}. �

In the context of data-driven decision making, one would
like to evaluate V (z∗N ), which, however, is not directly
computable because it depends on the unknown P and in-
deed most of the results within the scenario theory aim at
providing assessments of the unaccessible quantity V (z∗N ).
One of the latest directions of investigation pursued in
Campi and Garatti (2018b) and Garatti and Campi (2019)
is the so-called wait-&-judge approach. The breakthrough
result consists in recognizing that there exists an ob-
servable, the so called “complexity”, from which one can
construct an universal estimator of the risk V (z∗N ). To de-
scribe the result, we first give the definition of complexity,
which also requires to introduce the notion of support set.

Definition 2. (support set and complexity). Given a
sample δ1, . . . , δm, a support set is a tuple of elements
extracted from δ1, . . . , δm, i.e., δi1 , . . . , δik with i1 < i2 <
· · · < ik, that:

i. gives the same solution as the original sample, that
is, Mm(δ1, . . . , δm) = Mk(δi1 , . . . , δik);

ii. is irreducible, that is, no element can be further
removed from δi1 , . . . , δik leaving the solution un-
changed.

The smallest cardinality of a support set of δ1, . . . , δm is
denoted by s∗m and is called complexity. 1 Note that the
support set can be void (while odd-looking, this situation
is possible when the solution with no scenarios is suitable
for the drawn scenarios) and in this case s∗m = 0. �

For the given decision problem at hand, once δ1, . . . , δN
have been collected, s∗N can be computed from the def-
inition 2 and hence is an observable quantity. The main
achievement of Garatti and Campi (2019) is provided in
Theorem 2, which claims that, irrespective of Mm and P,
there exists a high correlation between the hidden quantity
of interest V (z∗N ) (the risk) and the observable quantity s∗N
(the complexity), so that V (z∗N ) can be tightly estimated
from s∗N . However, this result of Garatti and Campi (2019)
requires a non-degeneracy assumption, which considerably
limits its applicability.

Assumption 2. (non-degeneracy). For anym, with prob-
ability 1 there is a unique support set for δ1, . . . , δm. �

Unfortunately, degeneracy occurs in many scenario schemes
of interest. For example, in the context of Example 1
degeneracy is almost the rule for non-convex cost func-
tions (inspect Figure 2 for an example where there are
two support sets). Likewise, non-convexity hampers non-
degeneracy in scenario expected shortfall optimization.
While the list of examples might be made longer, we limit
to these cases in the belief that they suffice to illustrate
the stiffness of the non-degeneracy assumption.
This paper moves a fundamental step forward: Theorem
1 – presented and demonstrated for the first time in this
1 This definition of complexity is stated differently from the defi-
nition of complexity in Garatti and Campi (2019) (Definition 2 for
the case of optimization, then extended to generic decision maps in
Section 5). However, under the non-degeneracy Assumption 2 stated
below, which can be proven to be equivalent to Assumption 4 in
Garatti and Campi (2019), the two definitions of complexity coincide.
2 A direct application of the definition requires to consider all
the combinations of scenarios, which can be a hard combinatorial
problem; however, in many cases shortcuts exist to evaluate the
complexity, see e.g. Campi et al. (2018).

Fig. 1. An instance of scenario worst-case optimization
with non-convex f(x, δ). Both δ1, δ2 and δ1, δ3 are
(minimal) support sets, since both δ1, δ2 and δ1, δ3
alone suffice to obtain the solution (θ∗m, h∗

m), while
the solution with one single δi in place changes.

contribution – proves that V (z∗N ) can be tightly bounded
based on s∗N without any non-degeneracy assumption. We
believe that this new finding will foster the use of the
scenario approach well beyond its present boundaries.

Theorem 1. Consider decision maps Mm, m = 0, 1, . . .
satisfying Assumptions 1. Given a confidence parameter
β ∈ (0, 1), for any k = 0, 1, . . . , N − 1 consider the
polynomial equation in the v variable

(
N

k

)
(1− v)N−k − β

N

N−1∑
m=k

(
m

k

)
(1− v)m−k = 0, (3)

and let ε(k) be the unique solution over the interval
(0, 1). 3 Also define ε(N) = 1. For any P it holds that 4

PN
{
V (z∗N ) > ε(s∗N )

}
≤ β, (4)

where z∗N = MN (δ1, . . . , δN ) and s∗N is the complexity as
defined in Definition 2. �

In words, the theorem says that V (z∗N ) ≤ ε(s∗N ) holds
true with high confidence 1− β irrespective of Mm and P
(distribution-free result). Notice that the definition of ε(k)
has already appeared in Garatti and Campi (2019); the
novelty of the present result is that (4) holds true without
any non-degeneracy assumption. By setting β to very small
values, like 10−6 or 10−7, that are negligible for practical
purposes, the result provides usable estimations of the risk
V (z∗N ). It is perhaps worth noticing that, though universal,
the provided bound ε(s∗N ) is very tight and the interested
reader is referred to the discussion in Garatti and Campi
(2019) for this aspect.
The proof of Theorem 1 takes a major departure from the
proof of the analogous result in Garatti and Campi (2019)
and is highly technical. The rest of the paper is devoted
to provide this derivation.
3 The fact that the solution is unique is easily seen since, over (0, 1),
the equation is equivalent to

1 =
β

N

N−1∑
m=k

(
m
k

)
(
N
k

) 1

(1− v)N−m

whose right-hand side is a continuous strictly increasing function that
takes value no bigger than β for v = 0 and goes to +∞ as v → 1.
4 PN is the probability distribution for (δ1, . . . , δN ) and it is a
product probability because of the assumption that scenarios are
independently drawn.
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2. PROOF OF THEOREM 1

The proof becomes more straightforward in case of no
concentrated masses, an assumption which is not satisfied
in general by the distribution P for δ. Hence, to conform to
the non-concentrated mass setup, we are well-advised to
first augment δ with a second variable η drawn indepen-
dently of δ in such a way that (δ, η) has no concentrated
masses, and then we shall see that the results obtained
for (δ, η) can be traced back to δ only. Let U be the

uniform distribution over [0, 1] and define ∆̃ = ∆ × [0, 1],

D̃ = D ⊗ B[0,1] (B[0,1] are the Borel sets in [0, 1]), and

P̃ = P × U. For any m, let δ̃i = (δi, ηi), i = 1, . . . ,m, be

i.i.d. draws from (∆̃, D̃, P̃). While having no concentrated
masses plays a crucial role in some of the derivations
to follows, introducing η also allows us to single out a
unique support set of minimal cardinality associated to
δ1, . . . , δm. Precisely, let Sm : ∆̃m →

⋃m
k=0 ∆̃

k be the map

that select a subsample from δ̃1, . . . , δ̃m, say δ̃i1 , . . . , δ̃ik ,
1 ≤ i1 < · · · < ik ≤ m, such that the first components
δi1 , . . . , δik form a support set for δ1, . . . , δm of minimal
cardinality and, in case this set is not unique, the second
components ηi1 , . . . , ηik minimize the following criterion:
for any other support set δj1 , . . . , δjk of minimal cardinality

it holds that
∑k

�=1 ηi� <
∑k

�=1 ηj� . Since a choice of
minimal sum exists with probability one, the previous con-
dition defines Sm(δ̃1, . . . , δ̃m) except for a zero-probability
set. This zero-probability set plays no role in the following
derivations and hence Sm(δ̃1, . . . , δ̃m) can be arbitrarily
specified over it.
Turning now back to the problem of evaluating PN{V (z∗N )>

ε(s∗N )}, clearly |SN (δ̃1, . . . , δ̃m)| = s∗N and thus we have
that

PN
{
V (z∗N ) > ε(s∗N )

}

= P̃N
{
V (z∗N ) > ε(s∗N )

}

= P̃N
{
V (z∗N ) > ε(|SN (δ̃1, . . . , δ̃N )|)

}

=
N∑

k=0

P̃N
{
|SN (δ̃1, . . . , δ̃N )| = k and V (z∗N ) > ε(k)

}

=
N∑

k=0

P̃N
( ⋃

i1<i2<···<ik:
{i1,...,ik}⊆{1,...,N}

{
SN (δ̃1, . . . , δ̃N ) = δ̃i1 , . . . , δ̃ik

and V (z∗N ) > ε(k)
})

=
N∑

k=0

∑
i1<i2<···<ik:

{i1,...,ik}⊆{1,...,N}

P̃N
{
SN (δ̃1, . . . , δ̃N ) = δ̃i1 , . . . , δ̃ik

and V (z∗N ) > ε(k)
}
, (5)

where the last equality is true because η1 �= η2 �= · · · �= ηm
holds with probability one, which implies that subsamples
δ̃i1 , . . . , δ̃ik are all different from each other with prob-

ability one, and, hence, the equality SN (δ̃1, . . . , δ̃N ) =

δ̃i1 , . . . , δ̃ik holds for one and only one choice of the indexes
with probability one.
Now, for any fixed k, all the probabilities in the inner

summation of (5) are equal because the δ̃i’s are i.i.d.
draws 5 and so we can write

N∑
k=0

∑
i1<i2<···<ik:

{i1,...,ik}⊆{1,...,N}

P̃N
{
SN (δ̃1, . . . , δ̃N ) = δ̃i1 , . . . , δ̃ik

and V (z∗N ) > ε(k)
}

=
N∑

k=0

(
N

k

)
P̃N

{
SN (δ̃1, . . . , δ̃N ) = δ̃1, . . . , δ̃k

and V (z∗N ) > ε(k)
}

=
N∑

k=0

(
N

k

)
P̃N

{
SN (δ̃1, . . . , δ̃N ) = δ̃1, . . . , δ̃k

and V (z∗k) > ε(k)
}

(
this is because, by definition of support set,

z∗N = z∗k if SN (δ̃1, . . . , δ̃N ) = δ̃1, . . . , δ̃k
)

=
N∑

k=0

(
N

k

)∫

(ε(k),1]

dm+
k,N , (6)

where m+
k,N is a (positive) measure on [0, 1] defined as

follows (for future use we introduce a definition that
holds for a generic m, and not just for m = N): for all
m = 0, 1, . . . and k = 0, . . . ,m, let

m+
k,m(B)

= P̃m
{
Sm(δ̃1, . . . , δ̃m) = δ̃1, . . . , δ̃k and V (z∗k) ∈ B

}
,

with B any Borel set in [0, 1].
Next we show that Assumption 1 implies that measures
m+

k,m satisfies conditions (i) and (ii) below. Later, these
conditions will be enforced when maximizing the right-
hand side of (6) with the goal of finding an upper bound
to PN{V (z∗N ) > ε(s∗N )}.
(i) For m = 0, 1, . . ., it holds that

m∑
k=0

(
m

k

)∫

[0,1]

dm+
k,m = 1; (7)

(ii) For m = 0, 1, . . . and k = 0, . . . ,m, it holds that∫

B

dm+
k,m+1 −

∫

B

(1− v) dm+
k,m ≤ 0, (8)

for any Borel set B ⊆ [0, 1].

For any given B, the left-hand side of (8) returns a
numerical value and, when B ranges over the Borel sets
in [0, 1], the left-hand side of (8) defines a signed measure.
Condition (8) means that this measure is in fact negative.
In the following, this measure will be denoted by m+

k,m+1−
(1− v)m+

k,m, 6 and condition (ii) can also be written as

5 Since MN is permutation invariant and, in case of ties in the
support sets of minimal cardinality, the criterion to break the tie

(minimizing
∑k

�=1
ηi� ) does not alter the permutation invariance,

SN applied to a permutation of δ̃1, . . . , δ̃N returns the same elements
as SN (δ̃1, . . . , δ̃N ) re-ordered according to the permutation. On the
other hand, permutation preserves probability because of the i.i.d.
property.
6 Note that (1 − v)m+

k,m
cannot be interpreted as a product since

(1 − v) is not a number as it depends on v; hence, “m+
k,m+1

− (1 −
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2. PROOF OF THEOREM 1

The proof becomes more straightforward in case of no
concentrated masses, an assumption which is not satisfied
in general by the distribution P for δ. Hence, to conform to
the non-concentrated mass setup, we are well-advised to
first augment δ with a second variable η drawn indepen-
dently of δ in such a way that (δ, η) has no concentrated
masses, and then we shall see that the results obtained
for (δ, η) can be traced back to δ only. Let U be the

uniform distribution over [0, 1] and define ∆̃ = ∆ × [0, 1],

D̃ = D ⊗ B[0,1] (B[0,1] are the Borel sets in [0, 1]), and

P̃ = P × U. For any m, let δ̃i = (δi, ηi), i = 1, . . . ,m, be

i.i.d. draws from (∆̃, D̃, P̃). While having no concentrated
masses plays a crucial role in some of the derivations
to follows, introducing η also allows us to single out a
unique support set of minimal cardinality associated to
δ1, . . . , δm. Precisely, let Sm : ∆̃m →

⋃m
k=0 ∆̃

k be the map

that select a subsample from δ̃1, . . . , δ̃m, say δ̃i1 , . . . , δ̃ik ,
1 ≤ i1 < · · · < ik ≤ m, such that the first components
δi1 , . . . , δik form a support set for δ1, . . . , δm of minimal
cardinality and, in case this set is not unique, the second
components ηi1 , . . . , ηik minimize the following criterion:
for any other support set δj1 , . . . , δjk of minimal cardinality

it holds that
∑k

�=1 ηi� <
∑k

�=1 ηj� . Since a choice of
minimal sum exists with probability one, the previous con-
dition defines Sm(δ̃1, . . . , δ̃m) except for a zero-probability
set. This zero-probability set plays no role in the following
derivations and hence Sm(δ̃1, . . . , δ̃m) can be arbitrarily
specified over it.
Turning now back to the problem of evaluating PN{V (z∗N )>

ε(s∗N )}, clearly |SN (δ̃1, . . . , δ̃m)| = s∗N and thus we have
that

PN
{
V (z∗N ) > ε(s∗N )

}

= P̃N
{
V (z∗N ) > ε(s∗N )

}

= P̃N
{
V (z∗N ) > ε(|SN (δ̃1, . . . , δ̃N )|)

}

=
N∑

k=0

P̃N
{
|SN (δ̃1, . . . , δ̃N )| = k and V (z∗N ) > ε(k)

}

=
N∑

k=0

P̃N
( ⋃

i1<i2<···<ik:
{i1,...,ik}⊆{1,...,N}

{
SN (δ̃1, . . . , δ̃N ) = δ̃i1 , . . . , δ̃ik

and V (z∗N ) > ε(k)
})

=
N∑

k=0

∑
i1<i2<···<ik:

{i1,...,ik}⊆{1,...,N}

P̃N
{
SN (δ̃1, . . . , δ̃N ) = δ̃i1 , . . . , δ̃ik

and V (z∗N ) > ε(k)
}
, (5)

where the last equality is true because η1 �= η2 �= · · · �= ηm
holds with probability one, which implies that subsamples
δ̃i1 , . . . , δ̃ik are all different from each other with prob-

ability one, and, hence, the equality SN (δ̃1, . . . , δ̃N ) =

δ̃i1 , . . . , δ̃ik holds for one and only one choice of the indexes
with probability one.
Now, for any fixed k, all the probabilities in the inner

summation of (5) are equal because the δ̃i’s are i.i.d.
draws 5 and so we can write

N∑
k=0

∑
i1<i2<···<ik:

{i1,...,ik}⊆{1,...,N}

P̃N
{
SN (δ̃1, . . . , δ̃N ) = δ̃i1 , . . . , δ̃ik

and V (z∗N ) > ε(k)
}

=
N∑

k=0

(
N

k

)
P̃N

{
SN (δ̃1, . . . , δ̃N ) = δ̃1, . . . , δ̃k

and V (z∗N ) > ε(k)
}

=
N∑

k=0

(
N

k

)
P̃N

{
SN (δ̃1, . . . , δ̃N ) = δ̃1, . . . , δ̃k

and V (z∗k) > ε(k)
}

(
this is because, by definition of support set,

z∗N = z∗k if SN (δ̃1, . . . , δ̃N ) = δ̃1, . . . , δ̃k
)

=
N∑

k=0

(
N

k

)∫

(ε(k),1]

dm+
k,N , (6)

where m+
k,N is a (positive) measure on [0, 1] defined as

follows (for future use we introduce a definition that
holds for a generic m, and not just for m = N): for all
m = 0, 1, . . . and k = 0, . . . ,m, let

m+
k,m(B)

= P̃m
{
Sm(δ̃1, . . . , δ̃m) = δ̃1, . . . , δ̃k and V (z∗k) ∈ B

}
,

with B any Borel set in [0, 1].
Next we show that Assumption 1 implies that measures
m+

k,m satisfies conditions (i) and (ii) below. Later, these
conditions will be enforced when maximizing the right-
hand side of (6) with the goal of finding an upper bound
to PN{V (z∗N ) > ε(s∗N )}.
(i) For m = 0, 1, . . ., it holds that

m∑
k=0

(
m

k

)∫

[0,1]

dm+
k,m = 1; (7)

(ii) For m = 0, 1, . . . and k = 0, . . . ,m, it holds that∫

B

dm+
k,m+1 −

∫

B

(1− v) dm+
k,m ≤ 0, (8)

for any Borel set B ⊆ [0, 1].

For any given B, the left-hand side of (8) returns a
numerical value and, when B ranges over the Borel sets
in [0, 1], the left-hand side of (8) defines a signed measure.
Condition (8) means that this measure is in fact negative.
In the following, this measure will be denoted by m+

k,m+1−
(1− v)m+

k,m, 6 and condition (ii) can also be written as

5 Since MN is permutation invariant and, in case of ties in the
support sets of minimal cardinality, the criterion to break the tie

(minimizing
∑k

�=1
ηi� ) does not alter the permutation invariance,

SN applied to a permutation of δ̃1, . . . , δ̃N returns the same elements
as SN (δ̃1, . . . , δ̃N ) re-ordered according to the permutation. On the
other hand, permutation preserves probability because of the i.i.d.
property.
6 Note that (1 − v)m+

k,m
cannot be interpreted as a product since

(1 − v) is not a number as it depends on v; hence, “m+
k,m+1

− (1 −

m+
k,m+1 − (1− v)m+

k,m ∈ M−,

where M− is the cone of negative finite measures on [0, 1].

Proof of (i): follow the same derivation in (5) and (6)
replacing throughout “N” with “m” and both “V (z∗N ) >
ε(s∗N )” and “V (z∗N ) > ε(k)” with “0 ≤ V (z∗m) ≤ 1”; then,
notice that Pm{0 ≤ V (z∗m) ≤ 1} = 1. �

Proof of (ii): for any given Borel set B in [0, 1], we have
that ∫

B

dm+
k,m+1 = P̃m+1

{
Sm+1(δ̃1, . . . , δ̃m+1) =

δ̃1, . . . , δ̃k and V (z∗k) ∈ B
}
. (9)

Over the set where Sm+1(δ̃1, . . . , δ̃m+1) = δ̃1, . . . , δ̃k
(which is part of the condition defining the set on the right-
hand side of (9)) it must hold that z∗k ∈ Zδm+1

. As a matter
of fact, if z∗k /∈ Zδm+1

, then, by (iii) in Assumption 1, z∗k :=
Mk(δ1, . . . , δk) �= Mm+1(δ1, . . . , δk, δk+1, . . . , δm+1) =:
z∗m+1. This implies that δ1, . . . , δk is not a support set

for δ1, . . . , δm+1 and, therefore, that Sm+1(δ̃1, . . . , δ̃m+1) �=
δ̃1, . . . , δ̃k, which is a contradiction.
Over the set where Sm+1(δ̃1, . . . , δ̃m+1) = δ̃1, . . . , δ̃k it

must also hold that Sm(δ̃1, . . . , δ̃m) = δ̃1, . . . , δ̃k. The
proof is by contradiction again. Note first that it is
not possible that z∗m �= z∗k. Indeed, by (ii) in Assump-
tion 1, Mm(δ1, . . . , δk, δk+1, . . . , δm) =: z∗m �= z∗k :=
Mk(δ1, . . . , δk) implies that z∗k /∈ Zδj for some j ∈ {k +
1, . . . ,m} and, by (iii) in Assumption 1, this gives z∗m+1 :=
Mm+1(δ1, . . . , δk, δk+1, . . . , δm, δm+1) �= Mk(δ1, . . . , δk) =:

z∗k, which is not possible given that Sm+1(δ̃1, . . . , δ̃m+1) =

δ̃1, . . . , δ̃k. Hence, it must be that z∗m = z∗k and this implies
that δ1, . . . , δk is a support set for δ1, . . . , δm (note that
the irreducibility of δ1, . . . , δk – which is in the definition
of support set – follows from the fact that δ1, . . . , δk is
a support set for δ1, . . . , δm+1). To close the proof that

Sm(δ̃1, . . . , δ̃m) = δ̃1, . . . , δ̃k, suppose for the sake of con-

tradiction that Sm(δ̃1, . . . , δ̃m) = δ̃i1 , . . . , δ̃i� �= δ̃1, . . . , δ̃k.
This means that δi1 , . . . , δi� is another support set for

δ1, . . . , δm and that δ̃i1 , . . . , δ̃i� is “preferred” by Sm either

because δ̃i1 , . . . , δ̃i� has smaller cardinality than δ̃1, . . . , δ̃k
or because δ̃i1 , . . . , δ̃i� ranks better according to the ηi’s. If
so, however, we would have M�(δi1 , . . . , δi�) = z∗m = z∗k =
z∗m+1, which means that δi1 , . . . , δi� would be a support
set for δ1, . . . , δm+1 too. This gives a contradiction because

δ̃i1 , . . . , δ̃i� would be preferred to δ̃1, . . . , δ̃k while, instead,

Sm+1(δ̃1, . . . , δ̃m+1) = δ̃1, . . . , δ̃k.

Summarizing, we have proven that Sm+1(δ̃1, . . . , δ̃m+1) =

δ̃1, . . . , δ̃k implies that z∗k ∈ Zδm+1
and that Sm(δ̃1, . . . , δ̃m)

= δ̃1, . . . , δ̃k, yielding

P̃m+1
{
Sm+1(δ̃1, . . . , δ̃m+1) = δ̃1, . . . , δ̃k and V (z∗k) ∈ B

}

≤ P̃m+1
{
z∗k ∈ Zδm+1 and Sm(δ̃1, . . . , δ̃m) = δ̃1, . . . , δ̃k

and V (z∗k) ∈ B
}
, (10)

v)m+
k,m

” has to be interpreted just as a symbol that indicates the

measure defined via the left-hand side of equation (8).

because the set on the left-hand side is included in the set
on the right-hand side. Using (10) in (9) now gives (1(·) is
the indicator function)

∫

B

dm+
k,m+1

≤ P̃m+1
{
z∗k ∈ Zδm+1

and Sm(δ̃1, . . . , δ̃m) = δ̃1, . . . , δ̃k

and V (z∗k) ∈ B
}

=

∫

∆̃m+1

1z∗
k
∈Zδm+1

1Sm(δ̃1,...,δ̃m)=δ̃1,...,δ̃k and V (z∗
k
)∈B

dP̃m+1(δ̃1, . . . , δ̃m, δ̃m+1)

=

∫

∆̃m

(∫

∆̃

1z∗
k
∈Zδm+1

dP̃(δ̃m+1)

)
·

1Sm(δ̃1,...,δ̃m)=δ̃1,...,δ̃k and V (z∗
k
)∈B dP̃m(δ̃1, . . . , δ̃m)

=

∫

∆̃m

(
1− V (z∗k)

)
· 1Sm(δ̃1,...,δ̃m)=δ̃1,...,δ̃k and V (z∗

k
)∈B

dP̃m(δ̃1, . . . , δ̃m)

=

∫

B

(1− v) dm+
k,m,

where the last equality is justified in view of (Rudin, 1970,
Theorem 1.29). This concludes the proof of (ii). �

We are now ready to upper-bound P {V (z∗N ) > ε(s∗N )} by
taking the sup of the right-hand side of (6) under condi-
tions (i) and (ii) (in addition to the fact that measures
m+

k,m belong to the cone M+ of positive finite measures

on [0, 1]). This gives

PN {V (z∗N ) > ε(s∗N )} ≤ γ,

where γ is defined as the value of the optimization problem

γ = sup
m+

k,m
∈M+

m=0,1,...,
k=0,...,m

N∑
k=0

(
N

k

)∫

(ε(k),1]

dm+
k,N (11a)

s.t.
m∑

k=0

(
m

k

)∫

[0,1]

dm+
k,m = 1, m = 0, 1, . . . (11b)

m+
k,m+1 − (1− v)m+

k,m ∈ M−, (11c)

m = 0, 1, . . . ; k = 0, . . . ,m.

Problem (11) involves infinitely many constraints. On the
other hand, as shown below, it is a fact that all constraints
(11b) withm > N and all constraints (11c) withm > N−1
are superfluous and can be removed without changing the
optimal value of the problem. In formulas,

γ = sup
m+

k,m
∈M+

m=0,...,N,
k=0,...,m

N∑
k=0

(
N

k

)∫

(ε(k),1]

dm+
k,N (12a)

s.t.
m∑

k=0

(
m

k

)∫

[0,1]

dm+
k,m = 1, m = 0, . . . , N (12b)

m+
k,m+1 − (1− v)m+

k,m ∈ M−, (12c)

m = 0, . . . , N − 1; k = 0, . . . ,m.

To see this, first notice that the optimal value of (11)
cannot be bigger than the optimal value of (12) because
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(11) has more constraints than (12). On the other hand, for
any feasible point of (12), say m̄+

k,m for m = 0, . . . , N and

k = 0, . . . ,m, by letting: m+
k,m = m̄+

k,m for m = 0, . . . , N

and k = 0, . . . ,m; m+
k,m = 0 for m = N +1, N +2, . . . and

k = 0, . . . ,m − 1; and m+
m,m be a unitary concentrated

mass in v = 1 for m = N + 1, N + 2, . . ., we obtain a
feasible point of (11) that clearly achieves the same cost
value as that of m̄+

k,m in (12). Hence, it is also true that

the optimal value of (11) cannot be smaller than that of
(12), and therefore the two optimal values must coincide.
To evaluate γ, we proceed by dualizing (12). A derivation,
here omitted due to space limitations and that the reader
can find in Garatti and Campi (2020), shows that there is
no duality gap and γ can be computed by the dual problem

γ = inf
λm, m=0,...,N

N∑
m=0

λm (13a)

s.t.

(
N

k

)
(1− v)N−k1v∈(ε(k),1] ≤

N∑
m=k

λm

(
m

k

)
(1− v)m−k,

∀v ∈ [0, 1], k = 0, . . . , N. (13b)

Summarizing the results so far achieved, we have

PN {V (z∗N ) > ε(s∗N )} ≤ γ,

where γ is given by (13). The proof of the theorem is
concluded by showing that γ ≤ β.
To this purpose, take λm = β

N for m = 0, . . . , N − 1 and
λN = 0. These λm’s are feasible for (13) because (13b)
for k = N becomes 0 ≤ 0 (recall that ε(N) = 1 so that
the indicator function is 1 over an empty set), which is
true, while (13b) for k = 0, . . . , N − 1 are satisfied in
view of the definition of ε(k) through (3): for v = ε(k),
equation (3) implies that (13b) holds with equality, while
the monotonicity property shown in Footnote 3 suggests
the validity of (13b) for all values of v ∈ [0, 1]. Given the

feasibility of these λm’s, we then have γ ≤
∑N

m=0 λm = β
and this concludes the proof. �
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