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State Conditional Filtering
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Abstract—In many dynamical state estimation problems, not
all the values that the state can take have the same importance;
hence, missing to deliver an appropriate estimate has more
severe consequences for certain state values than for others.
In many applications, such important state values correspond
to events that have low a priori probability to happen (e.g.,
unsafe situations or conditions that one tries to avoid by design).
Provably, Kalman filtering techniques are inadequate to correctly
estimate such rare events. In this paper, a new state estimation
paradigm is introduced to build confidence regions that contain
the true state value, whatever this value is, with a user-chosen
probability. Among regions having this property, an algorithm
is introduced that generates in a Gaussian setup the region that
satisfies a minimum-volume condition.

Index Terms—Optimal Filtering, Kalman Filtering, State Con-
ditional Property, Estimation Theory, Gaussian Process

NOMENCLATURE

KF Kalman Filter.
SCF State Conditional Filter.

Dynamical system variables and dimensions
xt (n× 1)-dimensional system state.
yt (q × 1)-dimensional measurement.
vt (n× 1)-dimensional state noise.
wt (q × 1)-dimensional measurement noise.
F n× n state transition matrix.
H q × n output transform matrix.
Γ, V , W Covariance matrices of xt, vt and wt.
Fb Backward state transition matrix.
vbt , V

b
t Backward state noise and its covariance matrix.

[y]t1 Short form for vector [y>1 , . . . , y
>
t ]>.

ζt (s×1)-dimensional sub-vector of xt (components
of xt to be estimated).

Dynamical point estimates and set estimates
α probability that the set estimate includes xt

(user-chosen value).
x̂KF
t , XKF

t KF point estimate and KF set estimate (of xt
given the measurements y1, . . . , yt).

x̂t, X SCF
t SCF point estimate and SCF set estimate (of xt

given the measurements y1, . . . , yt).
ζ̂t, ZSCF

t SCF point estimate and SCF set estimate (of ζt
given the measurements y1, . . . , yt).

Static estimation variables and dimensions
x (n× 1)-dimensional vector to be estimated.
y (p× 1)-dimensional output vector.
ν (p× 1)-dimensional noise vector.
A p× n regressor matrix (Ax+ ν = y).

A. Carè and M.C. Campi are with the Department of Electrical
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ment of Electrical and Electronic Engineering, The University of Melbourne,
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ζ (s × 1)-dimensional sub-vector of x (compo-
nents of x to be estimated).

Static estimation tools and operators
X, Y, Z The linear span of the random variables in

vector x, y and ζ, respectively.
PX(·),PY(·),

PZ(·)
Component-wise projection of random vector
onto X, Y and Z, respectively.

PU The unconstrained minimum variance linear
estimation problem.

x̂U Solution to problem PU (Bayesian estimator).
ZU Matrix such that PX(x̂U ) = ZUx.
PC(Z) The constrained minimum variance linear es-

timation problem instantiated with a matrix Z.
x̂CZ Solution to problem PC(Z).
P ′
C(Z) Reformulation of PC(Z) in matrix terms.

TZ Matrix solution to problem P ′
C(Z) (relation

TZy = x̂CZ holds).
U Shorthand for TZU .
X Set estimate of x, with conditional property,

minimum-volume as per Theorem 1.
C n × p matrix representing a generic linear

compression.
S(·) Generic map from a vector in Rn to a subset

of Rn.
Other symbols and shorthands
Pr{E} Probability of the event E.
Pr{E1|E2} Probability of the event E1 conditional on E2.
E[ · ] Expectation operator.
G(µ,Σ) Gaussian distribution with mean µ and covari-

ance matrix Σ.
χ2(α, n) Quantile at probability α of the Chi-square

distribution with n degrees of freedom.
EαΣ(µ) Minimum volume ellipsoid covering a proba-

bility α of the G(µ,Σ) distribution.
Br Closed ball centered in 0 with radius r.
Vol(S) Lebesgue measure of the set S.
1(·) The indicator function (1 when statement is

true; 0 otherwise).
Matrices
M> Transpose of matrix M .
M−1 Inverse matrix of M .
M1 �M2 Matrix M2 −M1 is positive semidefinite.

I. INTRODUCTION

We consider a process {xt, yt}, xt ∈ Rn and yt ∈ Rq
generated by a linear time-invariant system{

xt+1 = Fxt + vt

yt = Hxt + wt,
(1)
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where {vt} and {wt} are Gaussian stationary white
processes, independent of each other. The state xt is not
directly accessible and the goal is to estimate xt based on the
measurements y1, . . . , yt. One way to address this problem
is to use the Kalman Filter (KF), [1], [2], which has found
ubiquitous applications in myriad fields, see e.g. [3-11]. In
this paper, we argue that KF lacks to satisfy a property –
which we call “state-conditional property” – that plays a
significant role in various applications (see e.g. Example 1
below and the comments thereafter). Therefore, we introduce
a new state estimation method, called State Conditional Filter
(SCF), which has this property.

To better understand the new estimation method, we first
revisit the KF approach. In the Gaussian case, KF recursively
computes the conditional density of xt given the measurements
y1, . . . , yt. Once this density has been found, the region of
minimum volume that contains a given percentage α, say
α = 99%, of the conditional distribution can be constructed.
This region, which we name XKF

t , is the ellipsoid centered
at the conditional mean x̂KF

t of xt given y1, . . . , yt while its
shape is determined by the conditional variance of xt given
y1, . . . , yt, which does not depend on the measurements and is
obtained by solving the Riccati equation. As a result, XKF

t has
the same shape and volume irrespective of the measurements
while its location in the state space is measurement-dependent.
Moreover, since for any given value of the measurements the
conditional probability with which xt ∈ XKF

t equals α, α is
also the total probability with which xt ∈ XKF

t :

Pr{xt ∈ XKF
t } = α. (2)

In this paper we are interested in constructing a region Xt
that, regardless of the actual value of the system state xt, has
the additional property to contain xt with a given probability
α. We call this property the “state-conditional property”, which
is formalized in the following.

Property 1 (state conditional property). For a given α ∈
(0, 1), it holds that Pr{xt ∈ Xt|xt = x̄} = α, x̄-almost
everywhere (a.e.). ∗

Although the state value is not a measurable quantity, we shall
see that Property 1 can be rigorously enforced in SCF. While
Property 1 implies that Pr{xt ∈ Xt} = α as in KF, it also
bears additional implications that determine a major paradigm
shift from KF, and we feel advisable to introduce at this early
stage a simple example to highlight the differences between
KF and SCF. In Section II, a more concrete example in mobile
robotics will also be presented which further motivates the new
approach of this paper.

Example 1 (gambling with a game value v(x)). Consider the
system (1). At a given time t, the player has to deliver a set
Xt and wins the bet if xt ∈ Xt. Before the game starts, the
dealer chooses a function v(x), called the value of the bet.
In case of win, the player is given the amount v(xt); on the
other hand, if xt /∈ Xt the player loses the bet and has to pay
the amount 99 · v(xt). Hence, the average return over N bets

is given by

rN =
1

N

N∑
i=1

v(x
(i)
t )
[
1(x

(i)
t ∈ X

(i)
t )− 99 · 1(x

(i)
t /∈ X (i)

t )
]
,

where 1(·) is indicator function and superscript (i) indicates
the bet number.

Suppose that a player wishes to construct
a set Xt so that the game is fair, that is,
E [v(xt) [1(xt ∈ Xt)− 99 · 1(xt /∈ Xt)]] = 0 (under mild
assumptions on v(x), in a fair game rN almost surely
tends to zero in the long run). It is a fact that XKF

t with
α = 99% does not obtain this result. To see this, consider
for concreteness the scalar case where n = q = 1, assume
F =

√
5
6 , H = 1 and {vt} and {wt} to be zero mean

with E[v2
t ] = E[w2

t ] = 1. Let x̂KF
t = E[xt|y1, . . . , yt] be

the Kalman filter estimate and let pt = E[(x̂KF
t − xt)

2] be
its error variance. A simple application of the KF equations
gives limt→∞ pt = 3

5 =: p̄. The conditional probability of
xt given the observations is Gaussian and, if t is large,
XKF
t is the interval [x̂KF

t − ρ, x̂KF
t + ρ], where ρ is such

that
∫ ρ
−ρ

1√
2πp̄

exp
(
−x

2

p̄

)
dx = 0.99, which gives ρ ≈ 2.

Note that the size of the interval ρ does not depend on the
observations. Now, the density of x̂KF

t conditional on the state
value xt = x̄ is a Gaussian with mean

(
1− pt

E[x2
t ]

)
x̄ (which

tends to 0.9x̄ as t→∞) and variance pt
(

1− pt
E[x2

t ]

)
(which

tends to 0.54 as t → ∞).1 Hence, asymptotically, the center
of the KF interval (which is x̂KF

t ) has a mean value 0.9x̄
that takes a gap from x̄ that increases with x̄; consequently,
the probability of {xt ∈ XKF

t } conditional on xt = x̄ goes
to zero for increasing values of x̄, see also Figure 1. As a
consequence, if v(x) is large for large values of x and small
otherwise, e.g.,

v(x) =

{
100 if |x| > 100

0 otherwise,

the game is unfair. This result is perhaps not surprising since
KF implements a Bayesian logic that relies on the use of the
prior belief that large values of x seldom happen: according
to this logic, in this example the optimal exploitation of the
information contained in the measurements results in pulling
back the value x̄ to 0.9x̄ (which only results in a severe penalty
for large values of x̄, a condition that rarely happens) because
this allows the algorithm to become less sensitive to noise.

1To see this, note that the vector [x̂KF
t xt]> is Gaussian so that the

conditional mean of x̂KF
t given xt = x̄ is linear in x̄ with coefficient c =

E[x̂KF
t xt]/E[x2t ]. On the other hand, it is known that E[(x̂KF

t −xt)x̂KF
t ] = 0

(orthogonality between the estimation error and the estimate in KF), which
gives pt = E[(x̂KF

t − xt)2] = −E[(x̂KF
t − xt)xt] = −E[x̂KF

t xt] + E[x2t ].
Substituting this equation in the expression for c yields c = 1 − pt

E[x2t ]
,

which provides the result on the mean. As for the variance, recall that the
conditional variance of jointly Gaussian variables does not depend on the
conditioning value (here x̄) and can therefore be computed as a total variance:

E

[(
x̂KF
t −

(
1− pt

E[x2t ]

)
xt

)2
]

= E

[(
(x̂KF
t − xt) + pt

E[x2t ]
xt

)2
]

=

pt +
p2t

E[x2t ]
− 2 pt

E[x2t ]
pt = pt

(
1− pt

E[x2t ]

)
.
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Figure 1: Violation of the state-conditional property with the
Kalman filter. The plot shows the asymptotic probability with
which xt ∈ XKF

t for values x̄ of xt in the range [-50,50].

Suppose now that the state conditional Property 1 is en-
forced in the estimation method. Then,

E [v(xt) [1(xt ∈ Xt)− 99 · 1(xt /∈ Xt)]]
= E [v(x̄) · E [1(xt ∈ Xt)− 99 · 1(xt /∈ Xt)|xt = x̄]]

= E [v(x̄) · 0] = 0,

that is, the game now becomes fair. As we shall see in
Section IV, a filter that constructs an estimation with the state
conditional property can be built in full generality and, like KF,
it admits a recursive implementation. For the problem at hand,
the state-conditional filter builds an interval that, for large t,
is given by

[
1

0.9 x̂
KF
t −

√
1

0.9ρ,
1

0.9 x̂
KF
t +

√
1

0.9ρ
]
, where ρ is

as before. Note that the center is the KF estimate rescaled by
a factor 1

0.9 and that the square root of the same factor 1
0.9

amplifies the size of the interval. Provably, this choice ensures
a fair game with the smallest possible enlargement of the size
of the prediction region as compared to KF. Before closing this
example, we also want to note that the game is fair regardless
of the choice of the value function v(x), which can also be
unknown to the player. ∗

The situation described in this example where not all state
values are equally important is found in many applications.
For example, in mobile robotics importance is placed on
avoiding collisions with fixed objects or among robots.
Section II gives an example in this context. Similarly, in
aerial or marine navigation, a reliable prediction of the actual
position is crucial in relation to safety critical locations.
Moreover, not all operating states are equally important in
industrial and medical applications. For instance, in fluidized
bed combustors, the rise of the coal load above a certain
threshold significantly increases the generation of pollutants;
in die casting machines, one is concerned about conditions
possibly leading to hazardous overpressures; and, in various
medical applications, certain conditions (e.g. even slight
increases in lung density) can be a sign of an emerging
disease. Often, critical state conditions have low marginal
(prior to observations) probability, so that they are not
included in XKF

t . In contrast, Property 1 enforces that,
whatever the value of the system state is, it is included in the

set Xt with a probability chosen by the user irrespective of
its marginal probability.

Property 1 enforces an inclusion condition irrespective of
the state value. This is relevant to situations where important
state values are not a priori known, which happens e.g. where
different units perform their own state evaluation and the
critical conditions depend on a simultaneous occurrence of
certain values of the state of various units. As an example, one
can think of the position of various vehicles in a navigation
problem where each vehicle computes a value set for its
own position and communicates it to a centralized control
unit which, based on the communicated positions, delivers
instructions to avoid collisions. On the other hand, in many
applications prior knowledge about the important state values
is available. Including such knowledge in the construction of
the filter is not considered in the present paper and future
work is expected to extend in this direction the theory here
developed.

The set X SCF
t constructed by the State Conditional

Filter introduced in this paper turns out to depend on
an n-dimensional linear compression of y1, . . . , yt, which
provides a finite information state that enables a recursive
implementation of the filter. It will also be shown that X SCF

t

has a minimum volume property; more specifically, X SCF
t

achieves minimum of the cost index supy1,...,yt Vol(Xt) over
all regions Xt that satisfy Property 1 and that are based on an
n-dimensional linear compression of y1, . . . , yt. It turns out
that the compression in X SCF

t coincides with that in x̂KF
t and,

moreover, Vol(X SCF
t ) does not depend on the measurements

y1, . . . , yt. As compared to KF, securing Property 1 requires
that X SCF

t has an increased volume with respect to XKF
t .

We shall see that the volume increase depends on how
informative the measurement mechanism is and the volume
of X SCF

t approaches the volume of XKF
t for systems with

highly informative measurement mechanisms.

The structure of the paper is as follows. In the next Section
II a numerical example in mobile robotics is presented which
further motivates and clarifies the approach of this paper
(Section II can be skipped without any loss of theoretical
continuity). Section III presents the fundamental mathematical
tools in a static context, where a geometric interpretation
is also described. This section paves the way for an easy
understanding of the material relating to the dynamical set-
up in Section IV. The SCF is introduced in Section IV-A;
the asymptotic properties of SCF are studied in Section IV-B
where the relation between XKF

t and X SCF
t is also discussed.

Various extensions and variations of the basic set-up, including
filtering for time-varying systems and prediction algorithms,
are presented in Section V. The paper ends with some con-
cluding remarks in Section VI.

II. A NUMERICAL EXAMPLE

In this section, the SCF algorithm introduced in this paper
is applied to a simulated set-up in mobile robotics.
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A. Problem setting and model description

Two mobile robots A and B execute a “return to base”
program, [12], [13]. During the operation, a collision between
the robots has low probability by design and yet a collision is
not impossible. The estimation problem consists in predicting
with high probability a collision whenever one is about to
occur.

The state variables of each robot are its position (px, py)
and its velocity (ux, uy). Each robot is acceleration-controlled
through an on-board state-feedback controller that is designed
to drive it to its base-station. In the simulation, robot A is
initially standing still at the position (pxA,1, pyA,1) = (−1, 20)
and has to go to its base-station located at (p̄xA, p̄yA) =
(−1, 0), while robot B is still at (pxB,1, pyB,1) = (1, 20) and
has to go to its base-station at (p̄xB , p̄yB) = (1, 0). The on-
board controller applies to the robot an acceleration at that
depends on the distance et = p̄ − pt (this is a 2-dimensional
vector) of the robot from its base-station according to the
formula at = Kp · et + Ku · ėt (ėt is the time derivative of
et). By discretization, we obtain the following equation for the
movement of robot A executing its “return to base” program


pxA,t+1

pyA,t+1

uxA,t+1

uyA,t+1

=


1 0 ∆ 0

0 1 0 ∆

−Kp ·∆ 0 1−Ku ·∆ 0

0 −Kp ·∆ 0 (1−Ku) ·∆



pxA,t

pyA,t

uxA,t

uyA,t



+


0

0

Kpp̄xA

Kpp̄yA

∆ + vA,t ·∆, (3)

where ∆ is the discretization step and vA,t is the stochastic
vector that accounts for the effects of modeling errors and
sensor and actuator noises. In this example, ∆ = 1/20, Kp =
5,Ku = 5, and vA,t is white, zero mean and Gaussian with
covariance matrix

VA =


0.012 0 0 0

0 0.012 0 0

0 0 0.042 0

0 0 0 0.042

 .

The movement of robot B is similarly described by replac-
ing “A” with “B” in equation (3), while the covariance matrix
for robot B is only slightly different from VA,

VB =


0.012 0 0 0

0 0.012 0 0

0 0 0.12 0

0 0 0 0.042

 .
The noises affecting robot A and robot B are independent of

each other. For estimating its own position, each robot uses
the measurements

yA,t =

[
pxA,t

pyA,t

]
+ wA,t, yB,t =

[
pxB,t

pyB,t

]
+ wB,t,

where wA,t and wB,t are measurement noises with covariance
matrix WA = WB = 0.052I , independent of each other. The
predictions are sent to a central unit which, in case a collision

is foreseen, adopts suitable counter-measures to avoid it. While
the above equations represent the two robots as material points,
the robots are actually bodies with a non-zero dimension and
collide whenever ‖(pxA,t, pyA,t)− (pxB,t, pyB,t)‖ < dmin. In
our example, the collision distance is set to dmin = 0.2, and
this is one tenth of the relative distance that the robots would
maintain if there were no noise. This makes the event of a
collision rare, even though not impossible.

B. Prediction using SCF and KF

Figure 2 shows the measurements y1, . . . , y60 in a simulated
run of the “return to base” program. The dots are a noisy
version of the robots’ positions as they move from the initial
positions to the base-stations. Figure 3 shows a run where a

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-5

0

5

10

15

20

Figure 2: Measured positions of the robots for a simulated
execution of the “return to base” program.

collision occurs after 40 time steps: Figure 3a displays the
measurements, while Figure 3b shows some of the robots’
true positions along with the positions that are estimated by
x̂KF
t and x̂t (the latter is the point around which the SCF

region is constructed). One can see that KF provides an
“optimistic” estimate when the low probability event of a
collision happens. To better appreciate the difference between
KF and SCF, a Monte Carlo test was run on 10 000 low
probability realizations leading to a collision at time 40,2

and a 95% probability region was constructed both with KF
and SCF. Referring e.g. to robot A, it turned out that the
state of this robot was never included in XKF

40 in the 10 000
runs, while it was included in X SCF

40 9 498 times, a result
in line with the theoretical guarantee of 95%. The reason
of this enormous discrepancy in the behavior of the two
algorithms is due to the fact that a Kalman filter succeeds in
correctly predicting the true system state with a user chosen
probability; if this probability is, say, 99%, then on average
the prediction fails in one case out of 100 only, however, the
user has no control on when this happens and it may happen
almost systematically in dangerous situations that occur with
a probability that is no more than 1%. In contrast, with the
new algorithm SCF one keeps full control on the probability

2The reader may be interested to know that these low probability realiza-
tions were generated backwards, i.e., from the colliding state at time 40 to the
initial state x1 by using the backward representation of the robot equations
obtained according to (45).
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(a) Measurements.
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(b) True positions (+); SCF estimates (?); KF
estimates (◦).

Figure 3: A rare realization with a collision.

of misprediction for all possible values of the state (including
dangerous ones) at a desired level of probability.

Up to here, we have considered the estimate of all 4
state variables of robot A. Suppose instead that one wants
to estimate only the position of the robot (2 variables out
of 4). Estimating the position is possible according to the
approach of Section V-A. Let ζt = (pxA,t, pyA,t) ∈ R2

and consider the measurements in Figure 3. Figure 4 shows
the 95% probability regions ZSCF

20 and ZSCF
36 for ζt; the

KF regions ZKF
20 ,ZKF

36 are also displayed. Although ζt is
included in the KF region with probability 95%, in our
simulation corresponding to a rare realization leading up to a
collision, ζt is not contained in the KF region. This fact does
not happen with SCF due to the enforcement of the state
conditional Property 1.

The simulations showed so far were referring to estimating
the state at time t based on measurements up to and including
time t. On the other hand, in a real application on collision
avoidance, predicting the position ahead of time is more
relevant, and Figure 5 shows the 4-step ahead prediction
region ZSCF

40|36 (based on the measurements up to time 36),
compared with the region ZKF

40|36 obtained with the Kalman
predictor. Such prediction regions are constructed according
to the approach of Section V-C.

To appreciate the ability of SCF to forecast a collision, we
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Figure 4: The true position of robot A at time t (+), ZSCF
t

(solid ellipsoid), and ZKF
t (dashed ellipsoid).
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Figure 5: The true position of robot A at time 40 (+), ZSCF
40|36

(solid ellipsoids), and ZKF
40|36 (dashed ellipsoids).

counted how many times a warning of a possible collision
at time 40 was issued at time 36 in the 10 000 Monte
Carlo simulations. That is, we checked if the regions for the
predicted positions of robot A and B included points at a
distance smaller than dmin. This happened in all cases with
SCF, while only in 2 out of 10 000 cases with KF. Finally,
we note that satisfying the state-conditional property comes at
the price of a moderate enlargement of the region ZSCF

40|36 as
compared to ZKF

40|36.

III. THE STATIC SET-UP

In this section, we consider a vector x which is related
to a vector y of measurements by a linear static relation,
and study the problem of constructing a minimum volume
region X for x which satisfies the state-conditional property
that Pr{x ∈ X |x = x̄} = α, x̄-a.e. It turns out that
the problem of finding the minimum volume region X in a
Gaussian framework is tightly related to a minimum variance
linear estimation problem. In the following Section III-A, the
unconstrained and the constrained minimum variance linear
estimation problems are considered. Some of the results in
this section can be found in the literature in scattered form,
see e.g. [14-17] and Remark 6 below, and are here presented in
a unified geometric framework. This framework will be used
in Section III-B to obtain a region X with minimum volume
(in a sense precisely stated in Section III-B) that satisfies the
state conditional property.

A. Unconstrained and constrained minimum variance linear
estimation

Consider two random vectors x and ν, x ∈ Rn, ν ∈ Rp.
No Gaussianity assumption on x and ν is introduced at this
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point, so that x and ν have generic distributions. Let A be a
p× n matrix, and let

y = Ax+ ν. (4)

One has to estimate x from y, which is interpreted as a
measurement vector affected by the noise ν. The following
condition is in order.

Condition 1. x and ν are mutually uncorrelated random
vectors with finite second order moments and E[x] = 0,
E[ν] = 0, E[xx>] � 0, E[νν>] � 0.3 ∗

Remark 1. The assumption on the covariance matrices of
x and ν is without loss of generality. In fact, if E[xx>]
were singular, then there would exist a linear combination of
components of x that is zero with probability 1. Therefore,
by a suitable change of variables, the estimation problem (4)
could be rewritten as an estimation problem where one or
more state components are zero, and eliminating these zero
components would lead to an equivalent estimation problem
with nonsingular state covariance matrix. Similarly, if E[νν>]
were singular, one or more linear combinations of components
of x would be perfectly known from y, and therefore these
linear combinations could be eliminated from the estimation
problem yielding a reduced order problem with a nonsingular
noise covariance matrix. ∗

A linear estimator x̂ of x is an n-dimensional random
vector whose components are linear combinations of the
components of y. The unconstrained minimum variance linear
estimation problem (or Bayesian linear estimation problem)
is formulated as follows:

PU : Find the linear estimator x̂U that
minimizes E[(x− x̂)(x− x̂)>].

In PU , “minimizes” is in the sense of the Loewner partial
ordering, i.e., a matrix M is “smaller” than a matrix N
(M � N ) if and only if N − M is positive semidefinite.
The solution to this problem can be found by considering x
and y as vectors whose components are in the Hilbert space
of random variables with finite second order moments, and
by projecting the components of x onto the linear span Y
of the components of y, see e.g. [14], [18]. We write this
component-wise projection as x̂U = PY(x).4 The existence
and uniqueness of the projection is guaranteed by the Hilbert
projection theorem (see e.g. [14], Chapter 3, Section 3), and
it holds that

E[(x− x̂U )y>] = 0. (5)

The fact that x̂U is a solution of PU , and indeed the
only solution, is easily shown as follows. Consider any
other candidate linear estimator x̂, x̂ 6= x̂U , and note that
E[(x−x̂)(x−x̂)>] = E[(x−x̂U+x̂U−x̂)(x−x̂U+x̂U−x̂)>] =
E[(x − x̂U )(x − x̂U )>] + E[(x̂U − x̂)(x̂U − x̂)>] +

3The symbol “� 0” means positive definite, while “� 0” is used for positive
semidefinite.

4x̂U is uniquely defined up to zero probability sets. Here and throughout,
we do not distinguish between random variables that differ on zero probability
sets.

E[(x − x̂U )(x̂U − x̂)>] + E[(x̂U − x̂)(x − x̂U )>] =
E[(x − x̂U )(x − x̂U )>] + E[(x̂U − x̂)(x̂U − x̂)>], where two
terms have been canceled in the last equality because x̂U and
x̂ are linearly obtained from y and the orthogonality condition
(5) holds. Since E[(x̂U − x̂)(x̂U − x̂)>] � 0 and x̂U − x̂ 6= 0,
this proves that x̂U is the unique solution of PU .

Denote by X the linear span of the components of x. The
projection of x̂U onto X, denoted by PX(x̂U ), can be written
as ZUx, where ZU is a n × n matrix. Under the assumption
E[xx>] � 0, the representation ZUx is unique. The following
fact is also true.

Fact 1. ZU is nonsingular if and only if rank(A) = n. ∗

Proof. We start by noting that for any h ∈ Rn, h 6= 0, the
following equivalence holds:

PX(PY(h>x)) = 0 ⇐⇒ PY(h>x) = 0. (6)

The implication PY(h>x) = 0 ⇒ PX(PY(h>x)) = 0 is triv-
ial. The opposite implication can be proved by decomposing
h>x as h>x = β>y + w, where β>y = PY(h>x) and w is
orthogonal to y, and by noting that5

0 = PX(PY(h>x)) = PX(PY(β>y + w)) = PX(β>y)

⇒ β>y ⊥ X⇒ β>y ⊥ h>x, (7)

from which

E[(β>y)2] + E[w2] = E[(h>x)(h>x)] = E[(β>y + w)(h>x)]

use (7)
= E[w(h>x)] = E[w(β>y + w)]

= E[w2],

which implies that E[(β>y)2] = 0, so that PY(h>x) = β>y =
0.

Using (6), Fact 1 is obtained as follows

ZU singular ⇐⇒ ∃h ∈ Rn, h 6= 0 : h>ZU = 0

E[xx>]�0⇐⇒ h>ZUE[xx>]ZUh = 0

⇐⇒ 0 = h>ZUx = h>PX(PY(x))

⇐⇒ PX(PY(h>x)) = 0
(6)⇐⇒ PY(h>x) = 0

⇐⇒ y ⊥ h>x ⇐⇒ 0 = E[y · x>h] = AE[xx>]h

E[xx>]�0⇐⇒ rank(A) < n.

When A has not rank n, y conveys no information on
some linear combinations of the components of x, which
therefore cannot be estimated from y. In this case, these linear
combinations can be discarded and the estimation problem can
be reformulated as a lower dimensional problem where the

5Throughout the paper, the symbol ⊥ refers to orthogonality in the Hilbert
space of random variables with finite second order moments, that is, ξ ⊥ η
means E[ξη] = 0. When applied to vectors, symbol ⊥ means that each
component of one vector is orthogonal to all components of the other vector.
ξ ⊥ S, where ξ is a random variable and S is a set of random variables,
means that ξ is orthogonal to all random variables in S.
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rank condition is satisfied. Thus, in what follows we assume
that the following rank condition on A holds true.

Condition 2 (rank condition). rank(A) = n. ∗

Given a nonsingular n × n matrix Z, the constrained
minimum variance linear estimation problem is formulated as
follows:

PC(Z): Find the linear estimator x̂CZ that
minimizes E[(x− x̂)(x− x̂)>]
subject to the constraint PX(x̂) = Zx.

Under Condition 2, in view of Fact 1, ZU is nonsingular.
Since x̂U is the unique solution to the unconstrained problem
PU , and it also satisfies the constraint in PC(ZU ), x̂U is also
the unique solution to PC(ZU ). Note that any vector6 x̂ ∈ Y
can be written as x̂ = Ty, where T is an n× p matrix; since
E[yy>] � 0, matrix T is unique. The next fact reformulates
the constraint in PC(Z).

Fact 2. The constraint PX(x̂) = Zx is equivalent to TA = Z.
∗

Proof. It holds that PX(x̂) = PX(Ty) = PX(TAx) +

PX(Tν) = TAx, and TAx = Zx
E[xx>]�0⇐⇒ TA = Z.

We can further reformulate the objective function in PC(Z)
as

E[(x− x̂)(x− x̂)>] = E[(x− Ty)(x− Ty)>]

= E[(x− TAx− Tν)(x− TAx− Tν)>]

= [using Fact 2] = E[(x− Zx− Tν)(x− Zx− Tν)>]

= E[(x− Zx)(x− Zx)>] + TE[νν>]T>, (8)

where the first term in the last expression does not depend
on T , so that minimization only refers to the second term.
Thus, the constrained problem PC(Z) is equivalent to the
following problem P ′

C(Z):

P ′
C(Z): Find the n× p matrix TZ that

minimizes TE[νν>]T>

subject to the constraint TA = Z.

This formulation is key to the following fact.

Fact 3. If x̂CZ = TZy is a solution to PC(Z), then x̂C
Z̃

=

Z̃Z−1TZy is a solution to PC(Z̃). ∗

Proof. First note that (Z̃Z−1TZ)A = (Z̃Z−1)(TZA) =
Z̃Z−1Z = Z̃, so that Z̃Z−1TZ satisfies the constraint
in P ′

C(Z̃). Next, consider any T̃ such that T̃A = Z̃.
Then, (ZZ̃−1T̃ )A = Z, so that ZZ̃−1T̃ is a
competitor of the solution TZ to problem P ′

C(Z) and,
hence, it holds that (ZZ̃−1T̃ )E[νν>](ZZ̃−1T̃ )> �
TZE[νν>]T>Z . Hence, T̃E[νν>]T̃> =
(Z̃Z−1)(ZZ̃−1T̃ )E[νν>](ZZ̃−1T̃ )>(Z̃Z−1)> �
(Z̃Z−1TZ)E[νν>](Z̃Z−1TZ)>, showing that x̂C

Z̃
is a

solution to PC(Z̃).

6When applied to a vector of random variables, symbol ∈ means that each
component of the vector is an element of the set that follows the ∈ symbol.

In view of Fact 3, if a unique solution to a given problem
PC(Z) exists, then any other problem PC(Z̃) admits a unique
solution. Since x̂U is the unique solution to PC(ZU ), we
conclude that every problem PC(Z) has a unique solution
x̂CZ = TZy. Writing x̂U = Uy as a shorthand for x̂U = TZU y,
TZ can be computed according to relation

TZ = Z(ZU )−1U. (9)

Remark 2. The n × p matrix U compresses the vector y of
measurements from dimension p to dimension n. Relation (9)
shows that this compression preserves the information that is
necessary to compute the optimal estimator x̂CZ . ∗

Remark 3. The matrix U depends on the state covariance
matrix E[xx>] and on the noise covariance matrix E[νν>].
However, matrix E[xx>] does not appear in the statement of
P ′
C(Z) so that the solution TZ to problem P ′

C(Z) does not
depend on E[xx>]. From this we see that the dependence on
E[xx>] in U is canceled out in (9) when U is multiplied by
(ZU )−1. ∗

Remark 4 (Geometric interpretation). Figure 6 visualizes the
estimators x̂U and x̂CZ when x is a scalar random variable. x̂U

is the projection of x onto Y. The affine subspace K, which
is introduced here for the first time, is the intersection of Y
with the affine subspace passing through Zx and orthogonal
to X. This affine subspace is the set of random variables
whose projection onto X equals Zx, so that these random
variables satisfy the constraint PX(x̂) = Zx of problem
PC(Z). Estimator x̂CZ is an element of K. The figure describes
that the random variable in K that minimizes the distance from
x, i.e., x̂CZ , is obtained as a rescaling of x̂U . ∗

Figure 6: Geometric representation of the relation between x̂U

and x̂CZ .

We next consider the special case where Z = I , the
identity matrix.

If Z = I , the optimal constrained estimator is x̂CI = TIy
where, in view of (9),

TI = (ZU )−1U.

From relation UA = ZU (which is obtained by an application
of Fact 2), TI can be rewritten explicitly as a function of U
as follows

TI = (UA)−1U, (10)
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so that the solution to PC(I) is

x̂CI = (UA)−1x̂U . (11)

It is an interesting fact that the same matrix (UA)−1 also
relates the variance of the estimation error of x̂CI to that of x̂U ,
as formalized in next Fact 4.

Fact 4.

E[(x−x̂CI )(x−x̂CI )>] = (UA)−1E[(x−x̂U )(x−x̂U )>]. (12)

∗

Proof. First recall that E[(x − Uy)y>] = 0 (refer to (5))
and that E[xν>] = 0 (Condition 1), so that E[xx>]A> =
E[xy>] = E[Uyy>] = (UA)E[xx>]A> + UE[νν>]. Thus,
E[xx>](A>U>) = (UA)E[xx>](A>U>) + UE[νν>]U>,
which gives

E[xx>]− (UA)E[xx>] = UE[νν>]U>(A>U>)−1. (13)

On the other hand,

E[(x− x̂U )(x− x̂U )>] = E[(x− Uy)x>]

= E[xx>]− (UA)E[xx>], (14)

and, substituting (13) one has E[(x − x̂U )(x −
x̂U )>] = UE[νν>]U>(A>U>)−1 = [using (10)] =
(UA)TIE[νν>]T>I = [using (8) with Z = I] =
(UA)E[(x̂CI − x)(x̂CI − x)>].

Remark 5 (Unbiasedness). When x and ν are independent,
the constraint TIA = I in P ′

C(I) can be interpreted as
a conditional unbiasedness constraint; in fact, E[x̂CI |x] =
E[TIAx + TIν|x] = TIAx = x (instead x̂U = (UA)x̂CI –
see equation (11) – is conditionally biased). ∗

Remark 6 (Related bibliography). When x is a deterministic
vector, the function TIy that has been derived in this section
formally coincides with the Fisher estimator [15], [17], or the
Gauss-Markov Minimum-Variance Unbiased estimator [14], or
the Generalized Least Squares estimator and the Best Linear
Unbiased Estimator (BLUE) [19] of x. When ν is Gaussian,
x̂CI coincides with the Maximum Likelihood estimator of x,
see e.g. [15].7

The constrained estimation problem PC(Z) can also be
interpreted as an oblique projection problem: the solution x̂CZ
is the projection of Zx onto Y along the space orthogonal to
X, see e.g. [24-27]. ∗

B. Construction of the minimum volume region
In this section, the following additional condition is in use.

Condition 3. x and ν are jointly Gaussian random vectors. ∗

Using the mathematical relations derived in the previous
section, we construct a minimum volume region X for x that
satisfies a static version of the state conditional property, i.e.,

Pr{x ∈ X |x = x̄} = α, x̄-a.e., (15)

7In the dynamical case, estimators akin to x̂CI have been considered in [20-
22] in the context of solving smoothing problems. On the other hand, the
“recursive BLUE estimator” of [23] and the Fisher-type estimators of [15],
Section 6.4, refer to different methods.

and such that X is constructed from an n-dimensional linear
compression of y. This requirement allows for a finite-
memory implementation when the construction is applied to
the dynamical case.

Throughout, we shall denote with EαΣ(µ) the minimum
volume ellipsoid in Rn that contains an α-probability mass of
a Gaussian distribution G(µ,Σ), with mean µ and covariance
matrix Σ. The ellipsoid EαΣ(µ) can be expressed as

EαΣ(µ) =
{
x ∈ Rn : (x− µ)>Σ−1(x− µ) ≤ χ2(α, n)

}
,

(16)
where χ2(α, n) is the quantile at probability α of the Chi-
square distribution with n degrees of freedom.

Let Π := TIE[νν>]T>I , and define

X := EαΠ(x̂CI ). (17)

X is an ellipsoid whose center depends on the measure-
ments, while its shape, and hence its volume, is measurement-
independent. The center is obtained by a linear p-dimensional
compression of y (see Remark 2) so that X can formally be
written as X = S(Cy), where C ∈ Rn×p is a matrix that
defines a compression scheme from y ∈ Rp to Cy ∈ Rn (in
the case of X one has C = U ), and S is a map from z ∈ Rn
to a subset of Rn. Theorem 1 below shows that X in (17)
is minimum volume with respect to any other construction of
the same form. The proof is carried out under the following
technical measurability condition that any candidate map S is
required to satisfy.

Condition 4. The set SXZ = {(x, z) ∈ Rn×Rn : x ∈ S(z)}
is Lebesgue-measurable. ∗

Theorem 1. The region X := EαΠ(x̂CI ) satisfies the conditional
property (15) and, for any couple (C,S) such that the region
S(Cy) satisfies the conditional property

Pr{x ∈ S(Cy)|x = x̄} = α, x̄-a.e., (18)

it holds that
J(S(Cy)) ≥ J(X ), (19)

where J(·) := supy Vol(·). ∗

Proof. First, we prove that X = EαΠ(x̂CI ) satisfies the con-
ditional property. Recall that x̂CI = TIy. We have, x − x̂CI =
x−TIy = x−TIAx−TIν = −TIν. Hence, x−x̂CI distributes
like −TIν, a Gaussian variable with zero mean and variance
Π (recall the definition of Π given just before equation (17)).
From definition (16) it follows that Pr{x̄ ∈ EαΠ(x̂CI )|x = x̄} =
α, x̄-a.e., which is the conditional property.

The rest of the proof is by contradiction, and the contradic-
tion will be obtained by assuming that (19) is false for a certain
couple (S,C). Under this (false) assumption, the volume of the
set SXZ = {(x, z) ∈ Rn × Rn : x ∈ S(z)} will be computed
in two different ways that lead to different results. Assume
first that CA is invertible (the case where CA is singular
will be considered later). If CA is invertible, then we can
assume without loss of generality that CA = I because the
couple (C′,S ′) with C′A invertible but non-identity gives the
same region as the couple (C,S) where C := (C′A)−1C′ and
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S(z) := S ′((C′A)z). To obtain a contradiction, we assume
that supz Vol(S(z)) = Vol(X ) − ε, ε > 0, and compute the
integral of 1(SXZ) over subsets of Rn × Rn of increasing
size. Precisely, for r > 0, define Br = {z ∈ Rn : ‖z‖ ≤ r}
and find a value % > 0 such that∫

Rn

1(B%)dG(0,CE[νν>]C>) = 1− δ,

where δ is such that Vol(Eα−δ
CE[νν>]C>(0)) >

Vol(EαCE[νν>]C>(0)) − ε
2 . In words, the probability mass

δ that is outside B% is small enough to preserve the value
Vol(Eα−δ

CE[νν>]C>) “close enough” to Vol(EαCE[νν>]C>). Now,
we compute the integral∫

Br×Br+%

1(SXZ)dx× dz.

We have∫
Br×Br+%

1(SXZ)dx× dz = [Tonelli’s theorem]

=

∫
Br+%

Vol(S(z) ∩ Br)dz

≤
∫
Br+%

Vol(S(z))dz

≤ (Vol(X )− ε)Vol(Br+%), (20)

where the false assumption has been used in the last
step. By reversing the order of integration, we also have∫
Br×Br+%

1(SXZ)dx × dz =
∫
Br

Vol(Sx ∩ Br+%)dx, where
Sx = {z ∈ Rn : x ∈ S(z)}. Equation (18) can be written as
Pr{Cy ∈ Sx|x = x̄} = α, x̄-a.e.; this means that for almost
every value of x, Sx is an α-probability set with respect to
G(x,CE[νν>]C>), which is the conditional distribution of Cy
given x. From the definition of %, we also have that for every
x ∈ Br it holds that

∫
Rn 1(Br+%)dG(x,CE[νν>]C>) ≥ 1−δ;

this means that Br+% is at least a (1− δ)-probability set with
respect to the measure G(x,CE[νν>]C>) for every x ∈ Br.
Hence, the set Sx ∩Br+% is at least an (α− δ)-probability set
with respect to G(x,CE[νν>]C>), for almost every x ∈ Br.

Since Eα−δ
CE[νν>]C>(x) is the minimum volume set con-

taining a probability α − δ with respect to the mea-
sure G(x,CE[νν>]C>), for almost any x ∈ Br it
holds that Vol(Sx ∩ Br+%) ≥ Vol(Eα−δ

CE[νν>]C>(x)) =

Vol(Eα−δ
CE[νν>]C>(0)) > Vol(EαCE[νν>]C>(0)) − ε

2 , where the
last inequality holds true by definition of δ. Finally, TI is by
definition the solution to problem P ′

C(I) in Section III-A,
i.e., TI is the minimizer of TE[νν>]T> w.r.t. any T such
that TA = I . Therefore, it holds that Vol(EαCE[νν>]C>(0)) ≥
Vol(Eα

TIE[νν>]T>
I

(0)) = Vol(X ). Putting all together, we
obtain∫
Br×Br+%

1(SXZ)dx× dz >
(

Vol(X )− ε

2

)
Vol(Br). (21)

Using (21) and (20) we now obtain(
Vol(X )− ε

2

)
Vol(Br) < (Vol(X )− ε)Vol(Br+%),

which leads to a contradiction when we take the ratio between

the right-hand side and the left-hand side and let r →∞:

1 ≤ lim
r→∞

Vol(X )− ε
Vol(X )− ε/2

Vol(Br+%)
Vol(Br)

=
Vol(X )− ε

Vol(X )− ε/2
< 1.

Suppose now that CA is singular. We show that necessarily
supy Vol(S(Cy)) =∞.

Consider first the easiest case where CA is the zero matrix,
so that z = Cy does not depend on x. In this case, Cy = Cν,
and, since the random vectors x and ν are independent,
the conditional probability distribution of Cy given x is
G(0,CE[νν>]C>) independently of x. Thus, the constraint
(18) implies that

∫
z
1(SXZ)dG(0,CE[νν>]C>) = α, x-

a.e. Next, let λx be the Lebesgue measure on Rn, and
introduce the product measure µ = λx × G(0,CE[νν>]C>)
on Rn × Rn. We have

∫
(x,z)∈Rn×Rn 1(SXZ)dµ =∫

x

(∫
z
1(SXZ)dG(0,CE[νν>]C>)

)
dx = α ·

∫
x

dx = ∞.
On the other hand, assuming supy Vol(S(Cy)) =
K < ∞, we have

∫
(x,z)∈Rn×Rn 1(SXZ)dµ =∫

z

(∫
x
1(SXZ)dx

)
dG(0,CE[νν>]C>) ≤ K ·∫

z
dG(0,CE[νν>]C>) = K <∞, which is a contradiction.
When CA is singular but nonzero, we decompose ev-

ery value of x ∈ Rn into two orthogonal8 components
xk ∈ ker(CA) (ker(CA) is short for the kernel of CA) and
xp ∈ ker⊥(CA), such that x = xk + xp, and CAx = CAxp.
Introduce the product measure λxk

× G(0, I) × G(0,E[νν>])
over the space of the triplets (xk, xp, ν) ∈ ker(CA) ×
ker⊥(CA)×Rp and let µ be the corresponding image measure
over (x, z) ∈ Rn × Rn that is induced by the linear relations
x = xk + xp and z = CAxp + Cν. We have∫

(x,z)∈Rn×Rn

1({(x, z) ∈ SXZ})dµ

=

∫
(xk,xp,ν)∈ker(CA)×ker⊥(CA)×Rp

1({(xk + xp,CAxp + Cν) ∈ SXZ})dxk ×

dG(0, I)× dG(0,E[νν>]). (22)

To compute (22), we first integrate with respect to ν and then
with respect to (xk, xp). We get

∫
(x,z)∈Rn×Rn 1(SXZ)dµ =∫

(xk,xp)
Pr{Cy ∈ S(x)|x = xk + xp}dxk × dG(0, I) =

α
∫
xk

dxk =∞. Second, we integrate (22) first with respect to
x and then with respect to z. Note that xk and z are indepen-
dent with respect to the integration measure, while xp and z are
not. So, in order to first integrate with respect to x(= xk+xp)
given z(= CAxp + Cν), we have to consider the conditional
measure of xp given z. This measure is Gaussian and does not
concentrate on any subset of ker⊥(CA), due to the presence of
the term Cν and the assumption E[νν>] � 0, and therefore has
bounded density over ker⊥(CA). Moreover, its density can be
uniformly bounded with respect to z. By denoting with B > 0
an essential upper bound to the conditional density function
of xp given any z, we obtain

∫
(x,z)∈Rn×Rn 1(SXZ)dµ <∫

z

(∫
xk

∫
xp
1(SXZ)Bdxpdxk

)
dG(0,CE[vv>]C>) ≤ B ·

supz Vol(S(z)), so that assuming supz Vol(S(z)) <∞ leads
to a contradiction. This concludes the proof.

Theorem 1 is a fundamental stepping stone for the develop-

8Orthogonal in the Euclidean space Rn.
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ments in the next sections. In short, it affirms that the region
constructed according to formula X := EαΠ(x̂CI ) enjoys the
state conditional Property 1 and that it is minimum volume
among constructions enjoying this property. The State Con-
ditional Filter derived in Section IV is a recursive algorithm
that aims at implementing the computation of the set X given
by Theorem 1 in the context of dynamical systems, by also
pursuing the objective of making the computation recursive.

C. Minimum volume region for a subset of components

This section contains useful material for extending SCF
to situations where one is only interested in estimating a
subset of the n components of x; it can be skipped at a first
reading without missing any material that is fundamental for
the comprehension of SCF in its standard form.

Without loss of generality, we assume that the components
of interest are the first s components, and write x = [ζ>ξ>]>,
ζ ∈ Rs, ξ ∈ Rn−s. Our aim here is to construct a
minimum volume region Z ⊆ Rs that satisfies a state-
conditional property only for the s components of interest,
i.e., Pr{ζ ∈ Z|ζ = ζ̄} = α, ζ̄-a.e.

Decompose A in its first columns and the remaining
columns as follows A = [A(1:s), A(s+1:n)], and re-write (4)
as

y = A(1:s)ζ +A(s+1:n)ξ + ν. (23)

By the Hilbert projection theorem, and using the notation of
Section III-A, ξ can be expressed as the projection of ξ onto
the span of ζ, which we denote Z, plus an “error”, as follows

ξ = PZ(ξ) + (ξ − PZ(ξ)) , (24)

where the error term in parentheses is orthogonal to ζ. By
substituting (24) in (23), and writing PZ(ξ) as an explicit
function of ζ, i.e., PZ(ξ) = E[ξζ>](E[ζζ>])−1ζ, [14], we
get

y = Ãζ + ν̃, (25)

where Ã = A(1:s) +A(s+1:n)E[ξζ>](E[ζζ>])−1 and ν̃ = ν +
A(s+1:n)

(
ξ − E[ξζ>](E[ζζ>])−1ζ

)
. Notice that ζ and ν̃ are

orthogonal by the very construction of ν̃ and, therefore, they
are also independent owing to the Gaussianity Condition 3.
Therefore, Equation (25) has the same structure as the original
equation (4) and the estimation of ξ can be conducted akin to
the estimation of x in (4). In particular, similarly to (11) and
(12) we have

ζ̂CI = (U(1:s)Ã)−1ζ̂U (26)

E[(ζ − ζ̂CI )(ζ − ζ̂I)>] = (U(1:s)Ã)−1E[(ζ − ζ̂U )(ζ − ζ̂U )>],
(27)

where U(1:s) is such that U(1:s)y = ζ̂U . It is worth noticing
that U(1:s) is just nothing but the first s rows of U .

IV. THE STATE CONDITIONAL FILTER

Consider the process {xt, yt} generated by system (1),
which is repeated here for easy reference:{

xt+1 = Fxt + vt

yt = Hxt + wt.
(28)

The State Conditional Filter (SCF) is a recursive algorithm
that, given the measurements up to time t, i.e., given
y1, . . . , yt, builds a region X SCF

t that satisfies the state-
conditional Property 1 for a user-chosen level of probability
α. The SCF algorithm is derived in Section IV-A using the
results of the previous Section III.

The following assumption is in effect throughout this
section. Section V presents extensions and generalizations,
including: filtering with exogenous input, time-varying and
unstable systems, prediction.

Assumption 1. Matrix F is asymptotically stable, i.e.,
|λi(F )| < 1, i = 1, . . . , n, where λi(F ) is the i-th eigenvalue
of F . {vt} and {wt} are zero-mean, white Gaussian processes
with constant covariance and independent of each other. ∗

In what follows, we refer to the stationary process {xt, yt}
generated by (28), that is, we consider the steady-state op-
eration of the system.9 For notational convenience, define
Γ := E[xtx

>
t ], V := E[vtv

>
t ], W := E[wtw

>
t ].10

Assumption 2. Γ � 0 and W � 0. ∗

Similarly to what we saw for the static set-up, the assump-
tion on Γ is without loss of generality. In fact, if Γ were
singular, it would be possible to find one or more linear
combinations of the state components that are equal to zero
and these linear combinations could be eliminated from the
system model for the purpose of estimation. Moreover, should
W be singular, one could measure the value of one or more
state variables without noise directly from the system outputs
(by a suitable change of variables). Therefore, these state
variables could be eliminated from the system model and their
effect on the state evolution could be modeled through an
additional measured exogenous input to the system model (28),
as discussed in Section V-E.

A. Derivation of the recursive formulae

First, the static theory of Section III-B is applied to the
dynamical context at each time t to obtain a minimum volume
region for the system state. This region is denoted by X SCF

t .
Then, we show that this region can be obtained recursively.

Start by reformulating the state equation in (28) according
to its backward representation (see [17], Chapter 5, Section
4)11:

xt′−1 = F bxt′ + vbt′ t′ = 2, . . . , t (29)

9The non-stationary case is considered in Section V-D.
10Γ can be computed using the Lyapunov equation Γ = FΓF> + V .
11The process generated by (29) is equal realization by realization to the

process generated by (28).
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where
F b = ΓF>Γ−1 (30)

(recall that Γ = E[xtx
>
t ]) is the backward system matrix and

vb2, . . . , v
b
t is the backward state noise. The backward state

noise is a zero mean Gaussian white process with covariance
matrix V b = Γ−ΓF>Γ−1FΓ, and such that E[xt(v

b
t′)
>] = 0,

for every t′ ≤ t.
Using (29) together with the output equation yt = Hxt+wt,

the system equations can be written in batch form at time t
as follows

yt

yt−1

yt−2

...
y1


=



H

HF b

H(F b)
2

...

H(F b)
t−1


xt +



0 0 · · · 0
H 0 · · · 0
HF b H · · · 0

...
...

. . .
...

H(F b)
t−2

H(F b)
t−3 · · ·H




vbt

vbt−1

...

vb2

+



wt

wt−1

wt−2

...
w1


(31)

or, in a more compact form, as

[y]t1 = Atxt + νt, (32)

where νt accounts for [vb]t2 and [w]t1. The fundamental fact is
that equation (32) is in the form of (4), where y = [y]t1 (thus,
p, the length of y, is now identified with q ·t), x = xt, A = At,
ν = νt. Moreover, the vectors xt and νt are independent, so
that Conditions 1 and 3 are satisfied. As for Condition 2, this
condition is satisfied if the system is “backward observable”
(i.e., (F b, H) is observable) and t ≥ n. If the system is not
backward observable, the user might want to focus only on
the observable variables and build a region for these variables
only, as the other components cannot be estimated (refer to
Section V-A for more details).

In this section, we enforce a backward observability as-
sumption.

Assumption 3. The couple (F b, H) is observable. ∗

Remark 7. Note that (F b, H) can be observable while (F,H)

is not and vice versa. For example, let Γ =

[
1 0

0 1

]
. Here,

if F b =

[
1
4 0
1
2

1
4

]
and H =

[
0 1

]
, then (F b, H) is an

observable couple, but (F,H) = ((F b)
>
, H) is not. ∗

In Section III-A we used the notation x̂CI to indicate the
solution of problem PC(Z) with Z = I . Here, we simplify
the notation and use x̂t to indicate the estimate of xt based
on the measurements [y]t1 with constraint Z = I . Moreover,
when applied to xt, the unconstrained minimum variance
linear estimate x̂U (Bayesian estimate) of Section III-A is the
estimate delivered by the Kalman filter, which is denoted by
x̂KF
t , [17], [28], [29]. In the present context, we will make

explicit the time dependence of the matrix U that transforms

[y]t1 into x̂KF
t by writing it as Ut, so that x̂KF

t = Ut[y]t1.
For easy reference, these correspondences are summed-up in
Table I.

Static case (Section III) Dynamical case
x̂CI x̂t
x̂U x̂KF

t

y, x, ν, U , A, X [y]t1, xt, νt, Ut, At, X SCF
t

Table I

As shown by equations (11) and (12) in Section III-A,
matrix UtAt relates x̂t to x̂KF

t and the covariance matrix
Πt = E[(xt−x̂t)(xt−x̂t)>] to Pt = E[(xt−x̂KF

t )(xt−x̂KF
t )>]

according to the fundamental relations:

x̂t = (UtAt)
−1x̂KF

t , (33)
Πt = (UtAt)

−1Pt. (34)

Matrix (UtAt) will be called the “ratio” matrix because it sets
in (33) and (34) the ratio between KF and SCF quantities. It
is well known from the KF theory, [17], [29], that x̂KF

t and Pt
can be recursively computed by the following updating rules

x̂KF
t = F x̂KF

t−1 +Kt(yt −HFx̂KF
t−1) (35a)

Kt = (FPt−1F
> + V )H>(W +H(FPt−1F

> + V )H>)−1 (35b)

Pt = FPt−1F
> + V −Kt(W +H(FPt−1F

> + V )H>)K>t (35c)

with the initializations {
x̂KF

0 = 0

P0 = Γ.
(36)

We next derive a recursion for the matrix UtAt. For t ≥ 2,
rewrite the equation in (35a) as12

Ut[y]t1 = FUt−1[y]t−1
1 +Kt(yt −HFUt−1[y]t−1

1 ).

This equality holds no matter what the values of vectors [y]t−1
1

and yt are. Hence, we can replace [y]t−1
1 with a generic vector

η ∈ Rq·(t−1) and yt with a generic vector h ∈ Rq and write

Ut

[
h

η

]
= FUt−1η +Kt(h−HFUt−1η), (37)

which is a relation that links Ut to Ut−1. Further, note that At
can be decomposed as

At =

[
H

At−1F
b

]
.

Hence, by a multiple application of (37) where

[
h

η

]
is

identified each time with a different column of At we obtain

UtAt = F (Ut−1At−1)F b +Kt(H −HF (Ut−1At−1)F b),
(38)

12We start from t = 2 since for t = 1 the expression Ut−1[y]t−1
1 has no

meaning.
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which is a recursive equation for UtAt, t ≥ 2. Note now that
if (38) is formally initialized with

U0A0 = 0 (39)

it gives U1A1 = K1H , which is correct since U1 = K1

(see (35a)) and A1 = H . Hence, from now on, we consider
(38) valid for t ≥ 1 with the initialization (39). Note that
UtAt is measurement-independent and can be computed off-
line together with Pt and Kt. Finally, the region X SCF

t is
obtained as (refer to (17))

X SCF
t :=

{
x ∈ Rn : (x− x̂t)>Π−1

t (x− x̂t) ≤ χ2(α, n)
}
,

(40)
where χ2(α, n) is the quantile at probability α of the
Chi-square distribution with n degrees of freedom.

The SCF algorithm is summarized in the following two
tables for easy reference.

Pseudocode: SCF initialization
• Set the probability level α ∈ (0, 1)
• Let
? U0A0 ← 0
? x̂KF

0 ← 0, P0 ← Γ (KF initialization)
? F b ← ΓF>Γ−1 (backward matrix)

Pseudocode: computation of XSCF
t

For t = 1, 2, . . .

• Read new measurement yt
• Update KF:
? Kt ← (FPt−1F>+V )H>(W+H(FPt−1F>+V )H>)−1

? x̂KF
t ← F x̂KF

t−1 +Kt(yt −HFx̂KF
t−1)

? Pt ← FPt−1F>+V −Kt(W+H(FPt−1F>+V )H>)K>t
• Update the ratio matrix:
? UtAt ← F (Ut−1At−1)F b +Kt(H −HF (Ut−1At−1)F b)

• If t ≥ n
− Compute13

? x̂t ← (UtAt)−1x̂KF
t

? Πt ← (UtAt)−1Pt

? XSCF
t ←

{
x ∈ Rn : (x− x̂t)>Π−1

t (x− x̂t) ≤ χ2(α, n)
}

,
where χ2(α, n) is the quantile at probability α of the
Chi-square distribution with n degrees of freedom

− Output: XSCF
t

Notice also that in the above pseudocode the recursive
part of SCF follows that of KF, therefore stability is achieved
under the same conditions that give stability in KF.

B. Asymptotic state conditional filter

Asymptotically, the SCF algorithm becomes time-invariant.
This fact offers the opportunity to implement a suboptimal,
but simpler, filter.

To obtain the asymptotic filter, start by noting that, since
F is stable, KF is asymptotically time-invariant (see e.g. [29],
Chapter 4). Hence, we only need to show that UtAt tends

13For t ≥ n, (UtAt) is invertible, a consequence of Assumption 3 in the
light of Facts 1 and 2.

to a constant matrix. Note that formula (14) is written in the
present dynamical context as

Pt = Γ− (UtAt)Γ,

from which14

UtAt = I − PtΓ−1. (41)

Since Pt converges to a limit matrix (due again to the
asymptotic invariance of KF), the result that UtAt converges
to a constant matrix is obtained.

Remark 8. According to formula (34), the inverse of the ratio
matrix (UtAt)

−1 sets the enlargement to obtain Πt from Pt
(note that Πt is necessarily no smaller than Pt since Pt is
the error covariance matrix of the unconstrained minimum
variance linear estimator). This enlargement makes the volume
of X SCF

t larger than the volume of XKF
t . Asymptotically,

UtAt tends to I − P̄Γ−1 where P̄ = limt→∞ Pt. Hence,
the enlargement becomes small in the long run provided
that P̄ is small as compared to Γ. An interpretation is that,
when P̄ � Γ, KF is able to significantly reduce the process
covariance to a much smaller estimation covariance and this
is because the information conveyed by the measurements is
rich. On the other hand, when measurements are rich, the prior
used in KF becomes less important so that the need to enlarge
XKF
t to generate X SCF

t is lessened. ∗

V. EXTENSIONS

Section V-A addresses the problem of estimating a subset
of the components of xt. SCF for full state prediction and
prediction of a subset of state components are covered in
Sections V-B and V-C, respectively. Section V-D deals with
time-varying systems. Finally, measured inputs are considered
in Section V-E.

A. Estimating a subset of components

In many applications, only a subset of the state components
is of interest and has to be estimated. This situation is
considered in this section.

Write xt = [ζ>t ξ>t ]> and assume (without loss of general-
ity) that ζt ∈ Rs is the subset of the state variables that we
want to estimate. The aim is to construct a minimum volume
region ZSCF

t such that Pr{ζt ∈ ZSCF
t |ζt = ζ̄} = α, ζ̄-a.e.

This problem was addressed for the static estimation problem
in Section III-C, and the result therein can be easily translated
into the dynamical case. Rewrite equation (32) as

[y]t1 = Ãtζt + ν̃t, (42)

where

Ãt = A(1:s)t +A(s+1:n)tE[ξtζ
>
t ]
(
E[ζtζ

>
t ]
)−1

and

ν̃t = νt +A(s+1:n)t

(
ξt − E[ξtζ

>
t ](E[ζtζ

>
t ])−1ζt

)
.

14This equation can also be used in place of (38) in the algorithm that
computes XSCF

t .
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Using (26) and (27) one then has

ζ̂t = (U(1:s)tÃt)
−1ζ̂KF

t ,

Πζ
t = (U(1:s)tÃt)

−1P
(s)
t ,

where ζ̂KF
t is obtained by selecting the first s components

of x̂KF
t = Ut[y]t1, and P

(s)
t is the upper-left s × s submatrix

of Pt.15 Using now a relation akin to (41) for (42) gives the
following expression for computing U(1:s)tÃt:

U(1:s)tÃt = I − P (s)
t (Γ(s))−1,

where Γ(s) is the upper-left s× s submatrix of Γ (covariance
of ζt). The couple ζ̂t and Πζ

t can be used similarly to (40) to
compute

ZSCF
t = {ζ ∈ Rs : (ζ − ζ̂t)>(Πζ

t )
−1(ζ − ζ̂t) ≤ χ2(α, s)}.

B. Prediction
In τ -step ahead prediction, one aims at building a region
X SCF
t+τ |t based on the measurements [y]t1 such that Pr{xt+τ ∈
X SCF
t+τ |t |xt+τ = x̄} = α, x̄-a.e. This can be done by

considering the equations
yt

...
y2

y1

=


H(F b)

τ

...

H(F b)t−2+τ

H(F b)
t−1+τ

xt+τ

+



H(F b)τ−1 · · · H 0 · · · 0
...

. . . · · ·
. . .

. . .
...

H(F b)
τ+t−3· · ·

. . . · · · H 0

H(F b)
τ+t−2· · ·H(F b)

τ
H(F b)

τ−1· · ·H





vbt+τ

...

vbt+1

vbt

...

vb2


+



wt

wt−1

wt−2

...
w1



that can be written as

[y]t1 = Āt+τxt+τ + ν̄t+τ . (43)

Equation (43) has the same structure as equation (32). Hence,
applying mutatis mutandis the same rationale as in Section
IV-A, one arrives at the conclusion that

x̂t+τ |t = (I − Pt+τ |tΓ−1)−1x̂KF
t+τ |t

Πt+τ |t = (I − Pt+τ |tΓ−1)−1Pt+τ |t,

where x̂KF
t+τ |t = F τ x̂KF

t is the τ -step ahead Kalman prediction
and Pt+τ |t is the corresponding prediction error covariance16.
Finally, the SCF prediction region is computed as X SCF

t+τ |t =

{x ∈ Rn : (x− x̂t+τ |t)>Π−1
t+τ |t(x− x̂t+τ |t) ≤ χ

2(α, n)}.

C. Prediction of a subset of components

Similarly to Section V-A, write xt+τ = [ζ>t+τ , ξ>t+τ ]>

where ζt+τ is the subset of the state variables we want to

15Note that ζ̂t is not given by the first s components of x̂t (while ζ̂KF
t is

indeed given by the first s components of x̂KF
t ).

16Pt+τ |t can be recursively computed as Pt+τ |t = FPt+τ−1|tF
> + V

initialized with Pt|t = Pt.

predict. Following the same reasoning as in Sections V-B and
V-A, one easily obtains the equations

ζ̂t+τ |t = (I − P (s)
t+τ |t(Γ

(s))−1)−1ζ̂KF
t+τ |t

Πζ
t+τ |t = (I − P (s)

t+τ |t(Γ
(s))−1)−1P

(s)
t+τ |t,

where ζ̂KF
t+τ |t is obtained by selecting the first s components of

x̂KF
t+τ |t (τ -step ahead Kalman prediction), P (s)

t+τ |t is the upper-
left s×s submatrix of Pt+τ |t (covariance matrix of the τ -step
ahead Kalman prediction error), and Γ(s) is the upper-left s×s
submatrix of Γ. The SCF prediction region for ζt+τ is then
given by ZSCF

t+τ |t = {ζ ∈ Rs : (ζ − ζ̂t+τ |t)>(Πζ
t+τ |t)

−1(ζ −
ζ̂t+τ |t) ≤ χ2(α, s)}.

D. SCF for linear time-variant systems
Consider now the process generated by the linear time-

variant system {
xt+1 = Ftxt + vt

yt = Htxt + wt,
(44)

where x1 is Gaussian with E[x1] = 0 and {vt, wt} is a jointly
Gaussian white process independent of x1 with E[vt] = 0,
E[wt] = 0, Wt := E[wtw

>
t ] � 0 for any t. We also assume

that Γt := E[xtx
>
t ] � 0 for any t > 1. Letting

F bt+1 := ΓtF
>
t Γ−1

t+1, V bt+1 := Γt − ΓtF
>
t Γ−1

t+1FtΓt,

the process generated by (44) admits the following backward
representation for any t ( [17], Lemma 5.4.4):

xt′−1 = F bt′xt′ + vbt′ t′ = 2, . . . , t, (45)

where vb2, . . . , v
b
t is a Gaussian white process such that

E[xt(v
b
t′)
>] = 0 for every t′ ≤ t and E[vbt′(v

b
t′)
>] = V bt′ .

Using the backward representation (45) in (44) yields (here,
F bi:i+n =

∏i+n
k=i F

b
k ):

yt

yt−1

yt−2

...
y1


=



Ht

Ht−1F bt

Ht−2F bt−1:t

...

H1F b2:t


xt

+



0 0 · · · 0

Ht−1 0 · · · 0

Ht−2F bt−1 Ht−2 · · · 0

...
...

. . .
...

H1F b2:t−2H1F b2:t−3· · ·H1




vbt

vbt−1

...

vb2

+



wt

wt−1

wt−2

...
w1


,

which can be written in compact form as

[y]t1 = Atxt + νt.

This equation has the same structure as equation (32) and all
previous technical derivations can therefore be carried over to
this context. For example, X SCF

t is obtained by equations

x̂t = (I − PtΓ−1
t )−1x̂KF

t

Πt = (I − PtΓ−1
t )−1Pt

X SCF
t = {x ∈ Rn : (x− x̂t)>Π−1

t (x− x̂t) ≤ χ2(α, n)},
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where x̂KF
t is the Bayesian estimate obtained by the Kalman

filter for the present time-variant context and Pt is the corre-
sponding error covariance.

E. SCF with measured inputs

Consider the state space system{
xt+1 = Ftxt + vt + ut

yt = Htxt + wt,

where ut is a deterministic measured input. In the presence
of ut, one can incorporate the input effect in x̂t by using the
formula

x̂t = (UtAt)
−1x̂KF

t + (I − (UtAt)
−1)dt,

where dt is generated by the process dt+1 = Ftdt + ut
initialized with d0 = 0, and x̂KF

t is the KF estimate for the case
when a measured input is present. Using x̂t as given above, all
derivations then follow the same path as in previous sections.

VI. CONCLUDING REMARKS

In dynamical state estimation problems, not all state values
have the same importance and missing to deliver an appro-
priate estimate has more severe consequences for certain state
values than for others. In this paper, a new state estimation
paradigm (SCF) has been introduced which exhibits the fun-
damental property that the system state is contained in the
estimated region with a user-chosen probability regardless of
the value of the state. This represents a conceptual departure
from Kalman filtering. Among regions having this inclusion
property, SCF computes the region of smallest volume.

The SCF algorithm is general-purpose and can be applied
across a vast range of problems. Several variants within the
same foundational paradigm centered around the inclusion
property can be conceived. For instance, while the criterion
of smallest volume is reasonable, it is not the only possible
one and it can be replaced by volumes weighted by an “im-
portance” function. Another direction of further investigation
concerns the possibility of restricting the inclusion property to
a subset of the state values. This is relevant to situations where
some knowledge on what the important state values are is
available in advance, which is not an uncommon situation. One
aspect that has not been addressed in the present contribution
and that deserves attention is that of the robustness of the SCF
algorithm against possible misspecifications of the system ma-
trices and process covariances, similarly to what has been done
in [30-35] for KF. Many extensions in more structured set-ups
are also possible, including distributed estimation (similarly to
[36-39] in KF), with the possible presence of faults and attacks
(as in [40-42]), and estimation with intermittent observations
(see e.g. [43], [44]).
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Algo Carè received the Ph.D. degree in informat-
ics and automation engineering in 2013 from the
University of Brescia, Italy, where he is currently a
Research Fellow with the Department of Information
Engineering. He spent two years at the University of
Melbourne, VIC, Australia, as a Research Fellow in
system identification with the Department of Electri-
cal and Electronic Engineering. Dr. Carè received a
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