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Abstract— The scenario approach is a technique for data-
driven decision making that has found application in a variety
of fields including systems and control design. Although initially
conceived in the context of worst-case optimization, the scenario
approach has progressively evolved into a general methodology
that allows one to keep control on the risk of solutions designed
from data according to complex decision processes. In a recent
contribution, the theory of compression schemes (a paradigm
that plays a fundamental role in statistical learning theory) has
been deeply revisited in the wake of the scenario approach,
which has led to unprecedentedly sharp generalization and
risk quantification results. In this paper, we build on these
achievements to gain insight on a classification paradigm called
Guaranteed Error Machine (GEM). First, by leveraging the
theory of reproducing kernels Hilbert spaces, we introduce a
new, more flexible, GEM algorithm, which allows for complex
classification geometries. The proposed scheme is then shown
to fit into the new compression theory, from which new sharp
results for the probability of GEM misclassification are derived
in a distribution-free context.

I. INTRODUCTION

We consider supervised classification in which a set of
examples (training set) is mapped into a classifier c by a
map A. For instance, in supervised binary classification,
the classifier is a function from a measured input to a
label in {−1, 1}. Examples are indicated with z := (x, y),
where x is the input and y is the label. Given a training set
z1, . . . , zN , we write A(z1, . . . , zN ) to denote the classifier
generated by algorithm A.

Examples are modeled as realizations of random elements
over a probability space (Ω,F ,P); moreover, a list of
n examples1 is always the realization of the first n
elements of an independent and identically distributed
(i.i.d.) sequence z1, z2, . . ..2 A training set is a list of
observed examples. Probability P models the mechanism
by which examples are generated; however, we assume
that the user does not know it. The learning algorithms
here considered are always permutation invariant, that
is, A(z1, . . . , zn) = A(zi1 , . . . , zin) for any permutation
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1Note that we use nm which is any integer including 0, while the actual
number of data points is N . The reason for having also n is because it
plays a role in the analysis.

2Throughout, bold symbols, like z1, stand for random elements, while
non-bold symbols, like z1, indicate realizations.

i1, . . . , in of 1, . . . , n.

We use a {0, 1}-valued function `(c, z) to indicate
whether or not a classifier c correctly classifies example z:
`(c, z) = 0 signifies correct classification, while `(c, z) = 1
means incorrect classification. The statistical risk of c is
R(c) = P{`(c, z) = 1}, where z is a random element
distributed as each zi. We aim at evaluating the statistical
risk for the classifier A(z1, . . . , zN ) distribution-free, i.e.,
without any knowledge on P. In this endeavor, we rely
on achievements obtained in the so-called scenario approach.

The scenario approach, [1], [2], [3], is nowadays a
well-established paradigm for data-driven decision making.
It has found wide application in control theory, [4], [5], [6],
[7], [8], [9], system identification, [10], [11], [12], [13],
[14], and machine learning, [15], [16], [17], [18]. Moreover,
many design schemes accommodating diverse design
requirements have been introduced within the scenario
framework, [19], [20], [21], [22], [23], [24], [25], [26], [27]
– see also [28], [29] for general paradigms encompassing
most of the existing schemes as special cases.

In this paper, we first review recent results established
within the scenario frame for compression schemes, which
is a key framework to obtain the sought risk evaluations
(Section II). By leveraging this theory, we study the Guar-
anteed Error Machine (GEM) in Section III. While focused
on GEM, this study bears the promise of delivering a new
general approach applicable across diverse learning schemes.
Section IV closes the paper with a simulation example.

II. A NEW THEORY OF COMPRESSION SCHEMES IN
MACHINE LEARNING

Compression schemes is a framework that has been
used to assess the risk of classifiers returned by learning
algorithms. The roots of compression schemes can be traced
back to the seminal works [30], [31], and the ensuing theory
has been deeply investigated in the recent paper [32]. In this
section, the results of [32] are briefly summarized since they
provide the ground for the analysis of the GEM algorithm
introduced in the next section.

Since our learning algorithms return the same classifier
independently of the order in which examples are listed,
from now on all lists are meant without ordering. So, for
example, (a, b, c) is the same as (b, a, c). On the other
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hand, we keep multiplicity, so that (a, a, b) is different from
(a, b). In mathematics, a set with repetitions is known under
the name of “multiset” or “bag”; hence, we work with
multisets, or bags.

A compression function k is a map from any multiset
of examples S to a sub-multiset, that is, k(S) ⊆ S. The
following preference property is central to our study.

Property 1 (preference): For any couple of multisets of
examples S and S′ such that k(S) ⊆ S′ ⊆ S, it holds that
k(S) = k(S′). ?

As is clear, any preferent compression function is such that
k
(
k(S)

)
= k(S).

Given a learning algorithm A, suppose that there exists a
compression function k that ties in with the loss function `
according to the following property, which requires that if a
new example is misclassified, then adding the new example
to the original compressed multiset makes the compressed
multiset change.

Property 2 (coherence – part I): For any n ≥ 0 and any
choice of z1, . . . , zn, zn+1 ∈ Z , if `

(
A(z1, . . . , zn), zn+1

)
=

1, then k
(
k(z1, . . . , zn), zn+1

)
6= k(z1, . . . , zn). ?

Then, the next Theorem 1 shows that the risk of
A(z1, . . . ,zN ) can be upper bounded by means of the
cardinality of the compressed training multiset.

Theorem 1: Given a learning algorithm A, suppose that
there exists a compression function k that satisfies the coher-
ence – part I Property 2. Assume the preference Property 1.
For a given β ∈ (0, 1), for k = 0, 1, . . . , N − 1 consider the
polynomial equation in the t variable(

N

k

)
tN−k − β

N

N−1∑
i=k

(
i

k

)
ti−k = 0. (1)

For any k = 0, 1, . . . , N − 1, equation (1) has exactly one
solution in (0, 1), which we denote with tk. Also define tN =
0.
Let εk := 1− tk. Then, it holds that

P
{
R
(
A(z1, . . . ,zN )

)
> εk

}
≤ β,

where k = |k(z1, . . . ,zN )|. ?

Proof: See [32].

Lower bounds to the risk can be obtained under additional
conditions, the non-associativity Property 3 and the Property
4 of non-concentrated mass, as described in the following.

Property 3 (non-associativity): For any n ≥ 0 and p ≥ 1,
condition

k(z1, . . . ,zn, zn+i) = k(z1, . . . ,zn), i = 1, . . . , p

implies

k(z1, . . . ,zn, zn+1, . . . ,zn+p) = k(z1, . . . ,zn),

up to a zero probability event. ?

The non-associativity property requires that, if the compres-
sion does not change adding elements one at a time, then it
does not change even when they are added altogether (with
the possible exception of an event whose probability is zero).

Property 4 (non-concentrated mass):

P{z = z} = 0, ∀z ∈ Z.

?

We also strengthen the coherence property by adding the
following second part.

Property 5 (coherence – part II): For any n ≥ 0 and p ≥
1, condition

k
(
k(z1, . . . ,zn), zn+1

)
6= k(z1, . . . ,zn)

implies
`
(
A(z1, . . . ,zn), zn+1

)
= 1

up to a zero probability event. ?

The coherence – part II property requires that the change
of compression k

(
k(z1, . . . ,zn), zn+1

)
6= k(z1, . . . ,zn)

occurs only when the new example is misclassified up to an
event of probability zero.

We now have the following result.

Theorem 2: Given a learning algorithm A, suppose that
there exists a compression function k that satisfies the coher-
ence – part I Property 2 and the coherence – part II Property
5. Assume the preference Property 1, the non-associativity
Property 3 and the non-concentrated mass Property 4. For
a given β ∈ (0, 1), consider for k = 0, 1, . . . , N − 1 the
polynomial equation in the t variable(
N

k

)
tN−k− β

2N

N−1∑
i=k

(
i

k

)
ti−k− β

6N

4N∑
i=N+1

(
i

k

)
ti−k = 0,

(2)
and for k = N the polynomial equation

1− β

6N

4N∑
i=N+1

(
i

N

)
ti−N = 0. (3)

For any k = 0, 1, . . . , N − 1 equation (2) has exactly two
solutions in [0,+∞), which we denote with tk and tk (tk ≤
tk). Instead, equation (3) has only one solution in [0,+∞),
which we denote with tN , while we define tN = 0.
Let εk := max{0, 1− tk} and εk := 1− tk, k = 0, 1, . . . , N .
Then, it holds that

P
{
εk ≤ R

(
A(z1, . . . ,zN )

)
≤ εk

}
≥ 1− β,

where k = |k(z1, . . . ,zN )|. ?

Proof: See [32].
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III. APPLICATION TO
GUARANTEED ERROR MACHINES (GEM)

The Guaranteed Error Machine (GEM) is a learning algo-
rithm for classification that was first introduced in [15] and
then further developed in [18]. GEM returns a ternary-valued
classifier, which is also allowed to abstain from classifying in
case of doubt. To be specific, letting z = (x, y), with x ∈ X ,
a generic set, and y ∈ {−1, 1}, a classifier c is a function
from X to {−1, 1, 0}, where the value 0 is interpreted as
admission of being unable to classify. Issuing an incorrect
label (−1 in place of 1 or vice versa) leads to a mistake,
and the theory aims at bounding the probability for this
to happen. Correspondingly, the loss function is defined as
follows:

`(c, (x, y)) =

{
1, if |y − c(x)| = 2

0, if |y − c(x)| = 0 or 1.

In this paper, we introduce a variant of the GEM algorithm,
which takes advantage of the theory of Reproducing Kernel
Hilbert Spaces (RKHS, [33], [34], [35]). To describe the
operation of GEM, start by introducing a feature map
ϕ : X → H, where H is a Hilbert space with inner product
〈·, ·〉. As is well known, ϕ, H, and 〈·, ·〉 need not be
explicitly given, they can be implicitly defined by means
of a kernel K(x, x̃) (this is the so-called kernel trick, see
e.g. [33]). Theoretical results in RKHS assure that this
always corresponds to allocate a suitable couple 〈·, ·〉 and
ϕ(·) so that K(x, x̃) = 〈ϕ(x), ϕ(x̃)〉, provided that the
kernel is positive definite. We also assume the existence
of an ordering on X (used later to introduce a tie-break rule).

GEM requires that the user chooses an integer
d ≥ 1, which specifies the maximal cardinality for
the compression.3 In loose terms, GEM operates as follows.
It is assumed that one has an additional observation (x̄, ȳ)
(besides the training set S = (x1, y1), . . . , (xn, yn)) that
acts as initial “center”. GEM constructs the hyper-sphere
in H around ϕ(x̄) which is the largest possible under
the condition that the hyper-sphere does not include any
ϕ(xi) with label yi different from ȳ. All points inside this
hyper-sphere are classified as the label ȳ, and all examples
(xi, yi) for which ϕ(xi) is inside the hyper-sphere are
removed from the training set. The example that lies on
the boundary of the hyper-sphere (and that has therefore
prevented the hyper-sphere from further enlarging) is then
appointed as the new center (in case of ties, the tie is
broken by using the ordering on X ) and the procedure
is repeated by constructing another hyper-sphere around
the new center. This time, only the region given by the
difference between the newly constructed hyper-sphere and
the first hyper-sphere (which has been already classified) is
classified as the label of the second center. This procedure
continues the same way and comes to a stop when either

3Selecting a larger value for d reduces the chance of abstention from
classifying; when d is larger than the cardinality of the training set, the set
of abstention becomes empty.

the whole space has been classified or the total number of
centers is equal to d, in which case the portion of X that
has not been covered is classified as 0. This leads to the
algorithm formally described below.

GEM ALGORITHM G
I. SET q := 0, P := S, C = ∅ and xC = x̄, yC = ȳ;

II. SET q := q + 1 and SOLVE problem4

max
r≥0

r (4)

subject to: ‖ϕ(xi)− ϕ(xC)‖ ≥ r,
for all (xi, yi) ∈ P such that yi 6= yC .

Let r∗ be the optimal solution (note that r∗ can possibly
be +∞);

III. FORM the region Rq := {x ∈ X : ‖ϕ(x)−ϕ(xC)‖ <
r∗} and LET `q := yC ; UPDATE P as follows: if r∗ >
0, then remove from P all the examples with xi ∈ Rq;
if instead r∗ = 0,5 then remove from P the example
(xC , yC);

IV. IF r∗ < +∞, THEN
IV.a SET C := (C, (xi∗ , yi∗)), where (xi∗ , yi∗) is an

example in P such that: a. ‖ϕ(xi∗)−ϕ(xC)‖ = r∗;
b. yi∗ 6= yC ; c. xi∗ is smallest in the ordering of
X among all the examples satisfying a. and b.;

IV.b SET (xC , yC) := (xi∗ , yi∗);
V. IF either |C| = d or P = ∅ THEN STOP and RETURN

`j , Rj , j = 1, . . . , q and C;
ELSE, GO TO II.

The GEM classifier is defined as

G(S)(x) =

{
0, if x /∈ Rj ∀j = 1, . . . , q;

`j∗ otherwise,

where

j∗ = min
{
j ∈ {1, . . . , q} : x ∈ Rj

}
.

The compression function for GEM is kG(S) = C.

We next establish the preference and coherence – part I
properties, required to apply Theorem 1.

� Preference. For two multisets of examples S and S′

such that kG(S) ⊆ S′ ⊆ S, it is easy to verify that
running STEPS I-V with S′ as input returns the same
output as when these steps are run with input S. Therefore,
kG(S′) = C = kG(S) and the preference property is
satisfied. ?

� Coherence – part I. Suppose that `(G(z1, . . . , zn), zn+1) =
1. By construction of the GEM algorithm, applying
STEPS I-V to kG(z1, . . . , zn) returns the same output

4According to the kernel trick, ‖ϕ(xi)− ϕ(xC)‖2 can be computed as
K(xi, xi) +K(xC , xC)− 2K(xi, xC).

5This only happens if there are examples with different labels whose
input is xC .
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as when they are applied to z1, . . . , zn. If it was that
kG(kG(z1, . . . , zn), zn+1) = kG(z1, . . . , zn), then, for the
same reason, we would have G(kG(z1, . . . , zn), zn+1) =
G(kG(z1, . . . , zn)) = G(z1, . . . , zn). Conse-
quently, `(G(kG(z1, . . . , zn), zn+1), zn+1) =
`(G(z1, . . . , zn), zn+1) = 1, which is impossible because,
by construction, the GEM classifier never misclassifies
the examples in the training set. Thus, it must be
kG(kG(z1, . . . , zn), zn+1) 6= kG(z1, . . . , zn), that is, the
coherence – part I Property holds true. ?

Applying Theorem 1 we now have the following result.

Theorem 3: (Risk of GEM) For any β ∈ (0, 1), it holds
that

P
{
R
(
G(S)

)
> εk

}
≤ β,

where k = |kG(S)| and εk is as in Theorem 1. ?

Notice also that |kG(S)| ≤ d holds by construction and,
since εk is an increasing function of k, this implies that the
bound R

(
G(S)

)
≤ εd is always correct with high confidence

1− β.6

We now turn to lower bounds, which are established by an
application of Theorem 2. We start by showing the validity
of the non-associativity property.

� Non-associativity. Consider any training set
S = ((x1, y1), . . . , (xn, yn)) and an additional multi-
set of examples S′ = ((xn+1, yn+1), . . . , (xn+p, yn+p)).
Suppose that kG(S ∪ S′) 6= kG(S). For this to be, it is
required that at least one of these conditions applies: (i)
`(G(S), (xn+i, yn+i)) = 1 for some i ∈ {1, . . . , p}; or,
(ii) one of the (xn+i, yn+i), i ∈ {1, . . . , p}, for which
`(G(S), (xn+i, yn+i)) = 0 lies on the boundary of a Rj

and is lower in order than the example that is chosen as
center by the algorithm applied to S. However, take an
example (xn+i, yn+i) that satisfies either (i) or (ii); then,
that example alone makes the compression change. This
proves the non-associativity property. ?

To move on and prove the non-concentrated mass and
coherence – part II properties, we need a mild assumption
on the distribution of examples.

Assumption 1: For any h ∈ H and γ ∈ R, it holds that

P{‖ϕ(x)− h‖2 = γ} = 0.

?

� Non-concentrated mass. This immediately follows from
Assumption 1: if P{z = z̄} 6= 0 for some z̄ = (x̄, ȳ), then
Assumption 1 is violated by the choices c = ϕ(x̄) and
γ = 0. ?

� Coherence – part II. In view of Assumption 1, xn+1

lies on the boundary of a region Rj with probability zero.

6A similar result would not be possible without resorting to ternary
classifiers.

On the other hand, when xn+1 is not on the boundary,
a change of compression only occurs if (xn+1, yn+1) is
misclassified, that is, `(G(S), (xn+1, yn+1)) = 1. This
proves the coherence – part II property. ?

The following theorem now follows from Theorem 2.

Theorem 4: (Risk of GEM - bounds from below and
from above) Under Assumption 1, for any β ∈ (0, 1), it
holds that

P
{
εk ≤ R

(
G(S)

)
≤ εk

}
≥ 1− β,

where k = |kG(S)| and εk, εk are as as in Theorem 2. ?

IV. NUMERICAL EXAMPLE

In this section, a toy example is considered with the
purpose of illustrating both the flexibility of the new GEM
algorithm here introduced as well as the sharpness of the
evaluation of the statistical risk provided by Theorems 3
and 4.

We take xi uniformly distributed in the square [−5, 5] ×
[−5, 5] and yi equal to 1 if xi lies in the circle centered in
the origin with radius 3; yi = −1, otherwise. The training
set is formed by N = 500 examples and the GEM algorithm
is run with d = 50 and

a. K(x, x̃) = xT x̃, which corresponds to ϕ(x) = x, i.e.
the balls constructed by the GEM algorithm are in fact
balls in the original 2D space of x variables;

b. K(x, x̃) = xT x̃+ ‖x‖2‖x̃‖2, which lifts the x variable
into a 3D feature space, enhancing more separability
by means of balls (the chosen kernel corresponds to
ϕ(x) = [xT ‖x‖2]T ).

This is the same example as in Wikipedia – see
https://en.wikipedia.org/wiki/Kernel method.

Figure 1 depicts an instance of the training set (crosses
mean label equal to 1, while dots correspond to −1). The

-5 0 5
-5

0

5

Fig. 1. The dataset in one experiment (crosses = 1, dots = −1).
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GEM algorithm with these observations as input terminates
in a number of iterations smaller than d = 50 (and thus it
classifies the whole input domain, with no abstention) both
for case a and b above. However, in case a, GEM halts
after 35 iterations (corresponding to a cardinality of the
compressed multiset kG(S) equal to 35), while, in case b,
GEM only requires 11 iterations (i.e., the cardinality of the
compressed set is 11). Intuitively, the more the iterations,
the more the fine tuning to the training set (overfitting).

This can be appreciated in Figures 2 and 3, where the

-5 0 5

0

5

-5

Fig. 2. GEM classifiers for case a. Dark-gray = label 1, light-gray = label
-1.

-5 0 5

0

5

-5

Fig. 3. GEM classifiers for case b. Dark-gray = label 1, light-gray = label
-1.

classifiers for case a and b are graphically depicted. Even
at an intuitive level, the beneficial effect of lifting the
observations into a higher dimension feature space is
apparent.

We next apply Theorem 4 to derive rigorous evaluations
of the risk (note that assumption 1 is satisfied both in

case a and b). Setting β = 10−4, one gets ε(35) = 2.87%
and ε(35) = 13.77% for case a. The true risk7 associated
to the classifier is 8.48%, which lies in the interval
[2.87%, 13.77%], as predicted by the theory. Similarly, in
case b we have that ε(11) = 0.25% and ε(11) = 6.85%,
while the true risk is 1.72% – once again, the risk is in the
interval [0.25%, 6.85%].

To better test the validity of Theorem 4, the GEM
algorithm is run 400 times in a Monte Carlo simulation,
each time drawing a new training set of 500 examples.
In the first 200 trials, the kernel K(x, x̃) = xT x̃ (case
a) is used, while the remaining 200 trials are executed
with K(x, x̃) = xT x̃ + ‖x‖2‖x̃‖2 (case b). In each trial,
the true risk associated to the classifier is recorded along
with the cardinality of the compressed multiset. The pairs

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

cardinality of compression

risk

Fig. 4. Stastical risk of GEM classifiers vs. cardinality of the compressed
set for K(x1, x2) = xT1 x2 (red crosses) and K(x1, x2) = xT1 x2 +
‖x1‖2‖x2‖2 (blue lozenges). Black dots are εk and εk for β = 10−4.

(cardinality of compression,risk) obtained in the 400 trials
are depicted in Figure 4 (red crosses for the first 200 trials
with K(x, x̃) = xT x̃, blue lozenges for the remaining
200 trials with K(x, x̃) = xT x̃ + ‖x‖2‖x̃‖2). Moreover,
the upper and lower limits given by ε(k) and ε(k) when
β = 10−4 are also displayed (black dots).

Figure 4 once again shows the advantage brought in by
using the kernel of case b, which consistently leads to
classifiers having lower risks. Moreover, the figure confirms
experimentally the validity and the sharpness of Theorem
4: the values for the risk are always within the prescribed
intervals (roughly speaking, given that β = 10−4, Theorem
4 predicts that the risk is not within the interval in at most 1
case out of 10000, which is way bigger than 400 trials here
considered). At the same time the spread of the risk values
covers well the gap between the lower and upper bounds,
showing that these bounds are informative despite they hold
distribution free.

7The risk can be actually computed because in this simulation example
data are artificially generated.

2139

Authorized licensed use limited to: Marco Campi. Downloaded on January 31,2023 at 17:56:12 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] M. Campi and S. Garatti, Introduction to Scenario Oprimization, ser.
MOS-SIAM series on Optimization. SIAM, 2018.

[2] G. Calafiore and M. Campi, “Uncertain convex programs: randomized
solutions and confidence levels,” Mathematical Programming, vol.
102, no. 1, pp. 25–46, 2005.

[3] M. Campi and S. Garatti, “The exact feasibility of randomized solu-
tions of uncertain convex programs,” SIAM Journal on Optimization,
vol. 19, no. 3, pp. 1211–1230, 2008.

[4] G. Calafiore and M. Campi, “The scenario approach to robust control
design,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp.
742–753, 2006.

[5] M. Campi, S. Garatti, and M. Prandini, “The scenario approach for
systems and control design,” Annual Reviews in Control, vol. 33, no. 2,
pp. 149 – 157, 2009.

[6] G. Schildbach, L. Fagiano, C. Frei, and M. Morari, “The scenario
approach for stochastic model predictive control with bounds on
closed-loop constraint violations,” Automatica, vol. 50, no. 12, pp.
3009–3018, 2014.

[7] S. Grammatico, X. Zhang, K. Margellos, P. Goulart, and J. Lygeros, “A
scenario approach for non-convex control design,” IEEE Transactions
on Automatic Control, vol. 61, no. 2, pp. 334–345, 2016.

[8] T. Alamo, R. Tempo, A. Luque, and D. R. Ramirez, “Randomized
methods for design of uncertain systems: sample complexity and
sequential algorithms,” Automatica, vol. 51, pp. 160–172, 2015.

[9] M. Campi, S. Garatti, and M. Prandini, “Scenario optimization for
mpc,” in Handbook of Model Predictive Control, S. Raković and
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