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ON CONDITIONAL RISK ASSESSMENTS IN SCENARIO
OPTIMIZATION*
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Abstract. Scenario optimization is a data-driven technique in which one optimizes an objective
function subject to a set of constraints, each given by a data point. In this article, we show that
probabilistic claims on the violation of out-of-sample constraints (risk) conditional on the complexity
of the solution (number of elements in the data set by which the solution can be reconstructed)
are impossible if one does not use of extra information in addition to the data. While this article
establishes this fundamental limitation, it also proves that a ``mild"" prior suffices to draw strong
conditional conclusions. Precisely, a prior on the distribution of the complexity (which has support
in a finite dimensional space) allows one to effectively bound the conditional distribution of the risk.
Besides its intrinsic epistemological value, this result is useful for the conditional quantification of
the risk of constraints violation in various application endeavors.
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1. Introduction. We consider optimization problems with uncertain convex
constraints where x \in \scrX \subseteq \BbbR d is the optimization variable, cTx is a cost to be min-
imized, and \delta is a random outcome from a probability space (\Delta ,\scrD ,\BbbP ) that parame-
terizes the family of constraints x \in \scrX \delta (depending on the application domain, these
constraints formalize a condition of correct classification in machine learning prob-
lems, saturation effects in control problems, etc.; see below for references pointing to
various fields). All involved sets \scrX and \scrX \delta , \delta \in \Delta , are assumed to be convex . Given
N (N \geq d) independent draws \delta 1, . . . , \delta N from (\Delta ,\scrD ,\BbbP ), the scenario-based solution
[7, 14] is obtained by solving the following optimization problem:

min
x\in \scrX 

cTx

subject to x\in 
\bigcap 

i=1,...,N

\scrX \delta i .(1.1)

Problem (1.1) only involves finitely many constraints from \Delta (in applications, \Delta often
has infinite cardinality) and the values \delta 1, . . . , \delta N are observations called ``scenarios.""
Hence, the scenario optimization problem (1.1) makes a selection of x that is optimal
for a set of available observations.

Scenario problems of the form (1.1) have attracted much attention over the past
decade; see, e.g., [1, 13, 15, 18, 19, 20, 28, 36, 43, 47, 52]. A central idea underlying
these contributions is that enforcing the satisfaction of N constraints as is done in
(1.1) provides robustness against most of the other constraints, those that correspond
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to unseen realizations of \delta \in \Delta . Importantly, the robustness guarantees established in
the aforementioned contributions do not depend on \BbbP so that the scenario approach is
purely inductive and the user only needs to know the scenarios, while the underlying
generative scheme for \delta need not be explicitly described. Some of these theoreti-
cal results are reviewed below because they set the stage for study in the present
contribution.

Notice that linearity of the cost function cTx in (1.1) introduces no loss of gener-
ality within a convex setup because problems with more general convex cost functions
f(x) can be rewritten in the form of (1.1) by an epigraphic reformulation; moreover,
problems with an uncertain convex cost function can also be rewritten in the form
of (1.1) and the interested reader is referred to [17] for a detailed exposition of these
reformulations.

Throughout, we assume existence and uniqueness of the solution to program (1.1).

Assumption 1.1 (existence and uniqueness). For any \delta 1, . . . , \delta N , program (1.1)
admits a solution. If more than one solution exists, it is assumed that a solution is
singled out by a convex rule, that is, the tie is broken by minimizing an additional
convex function t1(x), and, possibly, other convex functions t2(x), t3(x), . . ., if the tie
still occurs. After breaking the tie, the solution is denoted by x\ast 

N . \star 

An example of a tie-break function is the norm of x, t1(x) = \| x\| . Another
example is the lexicographic rule, which consists in minimizing the components of x
in succession, i.e., t1(x) = x1, t2(x) = x2, . . . .,

Scenario programs have proven useful in multiple application domains, including
control and systems design [2, 8, 17, 22, 29, 32, 38, 44, 45, 46, 48], prediction [10, 23,
24, 25, 26, 27, 31, 34], quantitative finance [33, 39, 40, 41], and classification [9, 11,
21, 37]. See also [14] for a book-length presentation of the scenario approach. The
reader interested in the interpretation of (1.1) in specific domains is referred to these
references, while in this paper we concentrate on a theoretically oriented study on
conditional risk assessments.

1.1. Revision of previous results. Introduce the following definition of prob-
ability of violation.

Definition 1.2 (probability of violation). Given an x \in \scrX , the probability of
violation (also called violation for short) of x is defined as

V (x) = \BbbP \{ \delta \in \Delta : x /\in \scrX \delta \} .  \star 

V (x) quantifies the probability with which a new, randomly drawn, constraint
is not satisfied by x, and it quantifies the level of robustness of x against constraint
violation. Depending on the application, V (x) is the probability of not meeting the
control specifications, of providing an incorrect prediction, or of not obtaining the ex-
pected reward in an investment, and the reader is referred to the literature referenced
above for a contextualization in specific setups. Correspondingly, in some literature
on the scenario approach V (x) is also called the ``risk."" For future use, we also note
that V (x) can be given an interpretation in terms of repeated experiments as follows.
Consider the infinite product probability space (\Delta \infty ,\scrD \infty ,\BbbP \infty ). By the law of large
numbers, one has1

(1.2) lim
M\rightarrow \infty 

1

M

M\sum 
j=1

1x/\in \scrX \delta N+j
= V (x), \BbbP \infty -almost surely.

1Writing \scrX \delta N+j
, instead of \scrX \delta j , is relevant to the subsequent use of this formula with x\ast 

N (which

depends on the first N scenarios) in place of x.
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Hence, V (x) is the long-term average of times in which x does not satisfy a sequence
of independent constraints. This is relevant to situations in which a decision is applied
many times, for example, a digital filter is applied to many signals or an investment
is kept for many subsequent days, etc.

When the variable x that appears in V (x) is replaced by the random vector x\ast 
N

(this is the solution to problem (1.1) and is random because it depends on \delta 1, . . . , \delta N ),
one obtains a random variable V (x\ast 

N ). The distribution of V (x\ast 
N ) is important be-

cause it characterizes the robustness level achieved by the solution to (1.1). One
fundamental result proven in [12] shows that the distribution of V (x\ast 

N ) is always
(i.e., independently of the type of constraints x \in \scrX \delta and of \BbbP ) dominated by a
Beta(d,N  - d+ 1) distribution according to the formula2

(1.3) \BbbP N\{ V (x\ast 
N )\leq \epsilon \} \geq 1 - 

d - 1\sum 
i=0

\biggl( 
N

i

\biggr) 
\epsilon i(1 - \epsilon )N - i.

Moreover, this result is tight because (1.3) holds with equality for a whole class of
problems, named fully supported in [12]. The fact that (1.3) is valid irrespective of \BbbP 
makes this result widely usable in applications, where assuming that one knows \BbbP is
often not realistic.

An inspection of how the result (1.3) has been proven in [12] shows the central
role played by the following concept of support constraint.

Definition 1.3 (support constraint). A constraint x \in \scrX \delta \=i of the scenario pro-
gram (1.1) is called a support constraint if the scenario program obtained by removing
this constraint, namely,

min
x\in \scrX 

cTx

subject to x\in 
\bigcap 

i=1,...,\=i - 1,\=i+1,...,N

\scrX \delta i .

has a solution (possibly singled out by the same tie-break rule as for the initial program
(1.1)) different from x\ast 

N .  \star 

In words, a support constraint is a constraint that is strictly needed to obtain
the solution. In the following, we make a mild assumption of nondegeneracy (bor-
rowed from [15, Assumption 2]), which requires that the support constraints are also
sufficient to determine the solution.

Assumption 1.4 (nondegeneracy). With probability 1, the scenario program that
contains only the support constraints

min
x\in \scrX 

cTx

subject to x\in 
\bigcap 

support
constraints

\scrX \delta \=i

has the same solution x\ast 
N (possibly singled out by the same tie-break rule as for the

initial program (1.1)) as program (1.1).  \star 

This condition rules out situations where the boundaries of various constraints
group together anomalously so that if one of them is removed in isolation, then the

2In this formula, \BbbP N is the probability according to which \delta 1, . . . , \delta N is drawn and it is a product
probability owing to independence of the scenarios.
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solution does not change (and therefore this constraint is not of support) but a simul-
taneous removal of all the constraints that are not of support gives a new solution.3

Since the solution can be reconstructed from the support constraints, we can think
that they ``represent"" the solution, and the cardinality of the support constraint set
can be interpreted as the complexity of the solution [30]. In [7], it is shown that the
number of support constraints never exceeds the number of optimization variables
d. This result is key in the analysis of [12] to bound the distribution of V (x\ast 

N ) as
shown in (1.3). On the other hand, it is not rare that when one a posteriori evaluates
the number of support constraints after that x\ast 

N has been computed, fewer support
constraints are found than there are optimization variables, that is, the complexity is
smaller than d. This is especially true for optimization problems in high dimensions
where the gap between the number of support constraints and d is often large; see,
e.g., [15, 19, 47, 50, 51]. When this happens it comes spontaneous to ask whether
a better result than (1.3) applies, and particularly whether in (1.3) d one can sub-
stitute d with the actual number of support constraints h to obtain a valid bound
conditionally on seeing h support constraints. In formal terms, this is written as

(1.4) \BbbP N\{ V (x\ast 
N )\leq \epsilon | s\ast N = h\} \geq 1 - 

h - 1\sum 
i=0

\biggl( 
N

i

\biggr) 
\epsilon i(1 - \epsilon )N - i,

where s\ast N is a random variable that returns the number of support constraints. One
important observation that motivates this study is that (1.4) is incorrect and in fact an
extreme, negative, result holds: no meaningful conditional results can be established
at the level of generality at which this discussion is made here. The interpretation
is that talking after the actual complexity of the solution has been seen is too late a
stage to make any meaningful claims. We feel it is advisable to make this assertion
compelling by way of an example.

Example 1.5. Let x \in \BbbR 2, cTx = x2, and assume that \scrX \delta is either V-shaped or
U-shaped as depicted in Figure 1.

Precisely, with probability 1  - q, set \scrX \delta is V-shaped with a vertex uniformly
drawn from a horizontal segment, while, with probability q, \scrX \delta is U-shaped with
a vertex uniformly distributed on a vertical segment; V-shaped constraints are all
above U-shaped constraints. With N constraints, s\ast N = 1 happens if and only if either
all constraints are U-shaped (in which case the support constraint is the highest
among the U-shaped constraints) or all but one are U-shaped (in which case the
support constraint is the only V-shaped constraint). In both cases, all V-shaped
constraints (with the exception of the support V-shaped constraint in the second
case) are violated, so that V (x\ast 

N ) \geq 1 - q (the probability of V-shaped constraints).
Thus, for any \epsilon < 1 - q, we have

(1.5) \BbbP N\{ V (x\ast 
N )\leq \epsilon | s\ast N = 1\} = 0.

This contradicts (1.4) because the Beta distribution on the right-hand side has a
support that covers all [0,1]; see Figure 2.

3Assumption 1.4 is often satisfied when \delta itself does not accumulate (for example, when it has a
density). Moreover, section 5.1 of [30] also introduces a nondegeneracy condition for the sole sample
of scenarios at hand (as opposed to Assumption 1.4 that is required to hold with probability 1), and
the theory therein might possibly be used to lessen our nondegeneracy condition here. In this paper,
we have preferred to stay in the mainstream of Assumption 1.4 to avoid additional mathematical
cluttering.
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optimization
direction

Fig. 1. V-shaped and U-shaped constraints for Example 1.5.
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Fig. 2. Cumulative distribution function of a Beta(h,N  - h+ 1) distribution with N = 20 and
h= 1.

Moreover, letting q\rightarrow 0, (1.5) shows that V (x\ast 
N ) has conditional probability 0 of

being less than a value \epsilon that can be made close to 1 at will, an arbitrarily bad result.
Before closing, an additional fact is worth mentioning to shed light on how this ex-

ample relates to the wait-and-judge theory of paper [15]. A simple computation shows
that s\ast N = 1 is attained with probability qN+NqN - 1(1 - q), so that when q\simeq 0 (corre-
sponding to high violation conditional on s\ast N = 1) the probability that s\ast N = 1 tends to
zero extremely fast with N . By inspecting [15], one sees that this fact is general: the
main result of [15] proves that simultaneously having small values of s\ast N and high viola-
tion occurs with very low probability, that is, \BbbP N\{ high V (x\ast 

N )\wedge small s\ast N\} = low value.
On the other hand, \BbbP N\{ high V (x\ast 

N ) \wedge small s\ast N\} = \BbbP N\{ high V (x\ast 
N ) | small s\ast N\} \cdot 

\BbbP N\{ small s\ast N\} , which shows that if the probability of high violation conditional on
seeing a small value of s\ast N is high, then it must be that observing that small value of
s\ast N has low probability.  \star 

Remark 1.6 (a comparison between unconditional and conditional bounds). We
feel we owe the reader an additional word to better clarify the difference between
unconditional results, as per (1.3), and conditional results, and position them in
relation to how they can be used in practice.
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A conditional claim refers to the situation at hand: ``Since I have seen this com-
plexity, I am in a position to specifically judge the risk in the following way. . .."" This
clearly matters because it points to the specific situation as it has unfolded after the
data points have been gathered. In this context, it is of the greatest importance that
Example 1.5 rules out any possibility of making sensible claims on the conditional
risk that hold without extra assumptions. This sets intrinsic limits separating what
can be done from what cannot be done: it's not a matter of how the theory has
been developed; it is an inherent limitation that exists per se, beyond the language
in which it is formulated. In the remainder of this article, we aim at showing that
suitable extra assumptions can be assigned in the form of a prior, thus embracing a
Bayesian framework. Along this path, we shall see that mild priors suffice to draw
strong conclusions and that these conclusions are little sensitive to the prior.

On the other hand, one should not underestimate the (practical) importance of
unconditional claims. Unconditional claims capture how well a scenario program
performs on average over potential data sets, and independently of how data sets are
generated. Hence, if we interpret the scenario program as an algorithm that maps
data sets into decisions, an unconditional judgment quantifies how good the algorithm
is, and this may drive us in ranking algorithms (this may also be relevant to selecting
hyperparameters). Therefore, conditional claims are in use to judge solutions, while
unconditional claims allow one to evaluate the way solutions are obtained. As a case
in point, consider the problem of classifying linearly separable points in \BbbR d - 1 and
suppose we aim at using a support vector machine (SVM) to build our classifiers.
Since the SVM algorithm is convex, with d optimization variables if points are in
\BbbR d - 1, the Beta result in (1.3) can be applied and, depending on how small d is
compared to the data set size N , we can draw conclusions on how well we expect this
algorithm to perform. The reader is referred to [16] for details on SVM, as well as
other methods used in machine learning problems.

While we are a bit afraid that the last point we want to make in this remark
might slightly, and hopefully temporarily, mystify the reader, in the hope that a
deeper order will come out of a possible initial hesitation we also feel it advisable to
precisely position the results from paper [15] within our present discussion. In [15],
it is shown that the risk can be evaluated from the complexity at a certain level of
confidence. The essential difference between [15] and the present article is that the
level of confidence in [15] is not conditional,it is in total probability. Therefore, the
interpretation of the confidence in [15] is exactly the same as that in (1.3), while the
difference that puts aside the result of [15] from (1.3) is that the risk evaluation in [15]
is based on a statistic of the data (the complexity). As paper [15] proves, evaluating
the unconditional confidence for risk evaluations that depend on the complexity is
possible distribution-free; nonetheless, Example 1.5 shows that it is not possible to
use [15] to derive conditional judgments valid for the complexity at hand without
resorting to extra assumptions.  \star 

1.2. The result of this paper. Example 1.5 shows that no useful conditional
results may exist in the general framework of [12]. In this paper, we move to a new
setting where the information carried by data is complemented with prior knowl-
edge. The ultimate goal we aim at is showing that strong conditional results can be
established under mild priors.

To set the mathematical stage, consider an additional probability space (\Theta ,\scrQ , \pi )
and let \BbbP \vargamma , \vargamma \in \Theta , be a transition probability function (see, e.g., Definition 1 in
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Appendix 6 of [3]; the same notion is also known under the name ``Markov kernel""---
see, e.g., [4]) on \Theta \times \scrD (recall that \scrD is the \sigma -algebra over \Delta ), that is,

i. \forall \vargamma \in \Theta , the map D\rightarrow \BbbP \vargamma (D) is a probability distribution;
ii. \forall D \in \scrD , the map \vargamma \rightarrow \BbbP \vargamma (D) is \scrQ -measurable.

The interpretation is that, for any given \vargamma \in \Theta , \BbbP \vargamma operates as \BbbP in the previous
section, that is, it defines a mechanism by which constraints are generated. Our un-
certainty about the mechanism for constraint generation is then modeled by assuming
that \vargamma distributes according to \pi , where \pi is our prior over the constraint generation
mechanism.

Consider now the probability space (\Delta N \times \Theta ,\scrD N \otimes \scrQ ,P), where, for any E \in 
\scrD N\otimes \scrQ , P(E) is defined by P(E) =

\int 
\Theta 
\BbbP N
\vargamma (E/\vargamma )\pi (d\vargamma ), where E/\vargamma is the set in \Delta N

given by E with the coordinate in \Theta kept fixed at value \vargamma . This is the space that
hosts a \vargamma along with a sample of N independent constraints obtained from a problem
where \delta distributes according to \BbbP \vargamma . In this context, x\ast 

N is the solution to (1.1) when
\delta 1, . . . , \delta N is an independent and identically distributed sample from (\Delta ,\scrD ,\BbbP \vargamma ) and
\vargamma is a realization from (\Theta ,\scrQ , \pi ), and s\ast N is the corresponding complexity. x\ast 

N and s\ast N
are random quantities defined over (\Delta N \times \Theta ,\scrD N \otimes \scrQ ,P). The definition of violation
for a given \vargamma is V\vargamma (x) = \BbbP \vargamma \{ \delta \in \Delta : x /\in \scrX \delta \} , and, for each \vargamma , it admits the same
long- term average interpretation as V (x) in (1.2). Our objective is to evaluate the
distribution of V\vargamma (x

\ast 
N ) conditionally on seeing h support constraints,4

FV (\epsilon | s\ast N = h) = P\{ V\vargamma (x
\ast 
N )\leq \epsilon | s\ast N = h\} .

While this conditional distribution can in principle be calculated once \pi is given, the
actual computation can be very difficult. Moreover, what is of paramount importance
in our perspective is that, in practice, knowledge of \pi can be very hard to obtain
(note that \pi sets a prior distribution on the constraint generation mechanism and,
upon reflection, the reader will see that coming to a suitable formulation of a \pi is a
formidable task in virtually any meaningful application; see also section 5). The good
news is that in section 2 we shall show that tight and useful bounds for FV (\epsilon | s\ast N = h)
can be drawn based on limited knowledge of \pi .5 Precisely, let \pi \prime be the prior induced
by \pi on the distributions of s\ast N . Note that \pi \prime is a much simpler object than \pi : in
fact, s\ast N takes value in \{ 0,1, . . . , d\} and, for a given \vargamma , the distribution of s\ast N is a
(d + 1)-dimensional vector whose components assign the probability with which it
happens that s\ast N = 0 or s\ast N = 1 or . . . or s\ast N = d. Since the sum of these probabilities
is 1, the vector belongs to the simplex in d + 1 dimensions and \pi \prime is just a finite-
dimensional distribution over this simplex. One first useful result we shall show is
that FV (\epsilon | s\ast N = h) can be effectively bounded based on \pi \prime only. Further, we show
that the conditional distribution FV (\epsilon | s\ast N = h) is little sensitive to \pi \prime so that various
individuals carrying different a priori beliefs draw similar conclusions after observing

4It is important to note that while distribution FV is with respect to P (which involves both \BbbP \vargamma 

and \pi ), V\vargamma (x) only involves \BbbP \vargamma . This is because we are interested in quantifying the roustness level
with respect to the optimization problem at hand as given by \vargamma . To understand the importance of this
point, suppose, for example, that s\ast N = h holds with probability 1 and that FV (0.1| s\ast N = h) = 1. Then,
it holds that P\{ V\vargamma (x

\ast 
N ) \leq 0.1\} = 1, which gives that, for almost all \vargamma 's, \BbbP \vargamma \{ \delta \in \Delta : x\ast 

N /\in \scrX \delta \} \leq 0.1

holds \BbbP N
\vargamma -almost surely. Hence, independently of the optimization problem at hand as given by \vargamma , one

concludes that the long-term average of times in which x\ast 
N does not satisfy a sequence of independent

constraints does not exceed 0.1. Such a strong conclusion might not have been drawn if the definition
of violation would have mixed various values of \vargamma , e.g., by the rule V (x) =

\int 
\Theta \BbbP \vargamma \{ \delta \in \Delta : x /\in \scrX \delta \} \pi (d\vargamma ).

5In this connection, this study can be seen as being in the vein of robust Bayesian methods; see,
e.g., [5, 6, 35, 49].
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the same s\ast N = h. These results are formalized and precisely stated in the next
section.

2. Conditional distribution of the violation. Assume that P\{ s\ast N = h\} >
0; if not, over \{ s\ast N = h\} the conditional distribution FV (\epsilon | s\ast N = h) can be defined
arbitrarily. Write

FV (\epsilon | s\ast N = h)

= P\{ V\vargamma (x
\ast 
N )\leq \epsilon | s\ast N = h\} 

= 1 - P\{ V\vargamma (x
\ast 
N )> \epsilon | s\ast N = h\} 

= 1 - P\{ V\vargamma (x
\ast 
N )> \epsilon \wedge s\ast N = h\} 
P\{ s\ast N = h\} 

= 1 - 
\int 
\Theta 
\BbbP N
\vargamma \{ V\vargamma (x

\ast 
N )> \epsilon \wedge s\ast N = h\} \pi (d\vargamma )\int 

\Theta 
\BbbP N
\vargamma \{ s\ast N = h\} \pi (d\vargamma )

,(2.1)

We shall obtain tight evaluations for (2.1) by bounding the integrand at the numerator
of (2.1) depending on whether \BbbP N

\vargamma \{ s\ast N = h\} is very small or not. Clearly, it holds that

(2.2) \BbbP N
\vargamma \{ V\vargamma (x

\ast 
N )> \epsilon \wedge s\ast N = h\} \leq \BbbP N

\vargamma \{ s\ast N = h\} ,

which is used when \BbbP N
\vargamma \{ s\ast N = h\} is very small. Moreover, letting for brevity

bh(\epsilon ) := sup
\vargamma \in \Theta 

\BbbP N
\vargamma \{ V\vargamma (x

\ast 
N )> \epsilon \wedge s\ast N = h\} ,

we can bound \BbbP N
\vargamma \{ V\vargamma (x

\ast 
N )> \epsilon \wedge s\ast N = h\} in (2.1) with bh(\epsilon ) when \BbbP N

\vargamma \{ s\ast N = h\} is not
very small. Substituting (2.2) and bh(\epsilon ) in (2.1) gives

FV (\epsilon | s\ast N = h)

\geq 1 - 

\int 
\{ \vargamma : \BbbP N

\vargamma \{ s\ast N=h\} \leq bh(\epsilon )\} \BbbP 
N
\vargamma \{ s\ast N = h\} \pi (d\vargamma ) +

\int 
\{ \vargamma : \BbbP N

\vargamma \{ s\ast N=h\} >bh(\epsilon )\} bh(\epsilon )\pi (d\vargamma )\int 
\Theta 
\BbbP N
\vargamma \{ s\ast N = h\} \pi (d\vargamma )

= 1 - 

\int 
\{ \vargamma : \BbbP N

\vargamma \{ s\ast N=h\} \leq bh(\epsilon )\} \BbbP 
N
\vargamma \{ s\ast N = h\} \pi (d\vargamma ) + bh(\epsilon )\pi (\vargamma : \BbbP N

\vargamma \{ s\ast N = h\} > bh(\epsilon ))\int 
\Theta 
\BbbP N
\vargamma \{ s\ast N = h\} \pi (d\vargamma )

.(2.3)

Next, define pk := \BbbP N
\vargamma \{ s\ast N = k\} , k = 0,1, . . . , d, and let \bfitp = (p0, p1, . . . , pd) \in S, where

S is the simplex in \BbbR d+1 (i.e.,
\sum d

k=0 pk = 1, pk \geq 0, k = 0,1, . . . , d). \bfitp is a random
variable since it depends on \vargamma (we do not indicate explicitly the dependence on \vargamma for
notational convenience). Letting \pi \prime be the probability distribution of \bfitp induced by \pi ,
(2.3) now gives the following theorem.

Theorem 2.1. Under Assumption 1.1, it holds that

(2.4) FV (\epsilon | s\ast N = h)\geq 1 - 

\int 
\{ ph\leq bh(\epsilon )\} ph\pi 

\prime 
h(dph) + bh(\epsilon )\pi 

\prime 
h\{ ph > bh(\epsilon )\} \int 

[0,1]
ph\pi \prime 

h(dph)
,

where \pi \prime 
h is the marginal of \pi \prime on the component ph.  \star 

Equation (2.4) is the fundamental relation we shall use to evaluate FV (\epsilon | s\ast N = h).
Notice that FV (\epsilon | s\ast N = h) is close to 1 when the second term in the right-hand side is
close to zero. Figure 3 provides a visual interpretation of this second term.

As we shall see, bh(\epsilon ) goes rapidly to zero for values of \epsilon above h/N , thus making
the right-hand side of (2.4) close to 1 for \epsilon marginally bigger than h/N whenever
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0

Fig. 3. Visual interpretation of the second term in the right-hand side of (2.4): the numerator
is obtained by integrating the pink solid line with respect to the probability distribution \pi \prime 

h, while the
denominator, obtained by integration of ph (green dashed line) with respect to \pi \prime 

h, is the expected
value of ph.

the prior \pi \prime 
h does not concentrate about the zero value. Note also that, when \pi \prime 

h

concentrates in 1, the right-hand side of (2.4) becomes exactly 1 - bh(\epsilon ).
To proceed, we need to find a suitable expression for bh(\epsilon ). While finding an exact

expression is hard, Theorem 2.1 retains its validity if bh(\epsilon ) is overestimated (i.e., bh(\epsilon )
is replaced by a quantity that is equal to or bigger than bh(\epsilon )---inspect the easy proof
of Theorem 2.1 to draw this conclusion). This is the approach that is pursued in the
following, in a somewhat articulated manner. First, in section 2.1 we provide a quick
approach to upper bound bh(\epsilon ) and present an example (Example 2.5) that helps gain
insight into (2.4). As an alternative, section 3 presents a refinement of the evaluation
of bh(\epsilon ) given in section 2.1.6

Remark 2.2 (about the prior \pi \prime ). As discussed at the end of section 1.2, the
prior that is in use in this paper is \pi \prime (refer to (2.4)), which assigns a probability
for the distribution of the complexity s\ast N . As previously noticed, \pi \prime is a relatively
simple mathematical object as compared to a prior (called \pi in this paper) over the
generation mechanism of the constraints. Nonetheless, by adopting a practical view-
point one may wonder where this prior comes from in a given applied problem. While
this question does contain subtle and, as we believe, unsettled philosophical issues,
we do not want to go in this article to this foundational level.7 Rather, we want to
remark that the prior \pi \prime embodies our belief, however obtained, on how complexity
distributes. At times, we have had exposure to the same (or a similar) problem in
the past. This provides us with grounds for constructing the empirical frequency

6We advise the reader that section 3 is technically complex and can be skipped at first reading
without loss of continuity.

7The justification of using a prior is a common aspect to all Bayesian statistics, and the reader
is referred to any advanced textbook for a discussion of this issue. On our end, we maintain that
the use and concept of prior demands closer scrutiny; however, we shall not be engaged in discussing
our philosophical positions in this publication, which is only geared toward establishing precise, and
compelling, mathematical results in the context of decision making.
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with which various values of the complexity have been encountered. However, guided
also by the idea that the empirical frequency is an imprecise descriptor because it
is subject to stochastic variability, we may set out to build a distribution \pi \prime that
spreads around the empirical frequency that has been found. The Dirichlet distri-
bution described in section 4 is a perfect instrument to capture this situation and
the reader is referred to that section for more discussion. In other cases, we cannot
boast any real previous experience, in which situation a ``principle of indifference"" has
been postulated by some as a proper way to set a prior: according to this principle,
each case is deemed equally probable, which corresponds to a flat prior in our con-
text. We notice that also a flat prior is a special case of the Dirichlet distribution of
section 4.  \star 

2.1. An easy formula for \bfitb \bfith (\bfitepsilon ). In this section, we establish the validity of a
first bound for bh(\epsilon ) that is easy to obtain.

Theorem 2.3. Under Assumption 1.1 and assuming that Assumption 1.4 holds
true for any probability \BbbP \vargamma , \vargamma \in \Theta , it holds that 8

(2.5) bh(\epsilon )\leq min

\biggl\{ \biggl( 
N

h

\biggr) 
(1 - \epsilon )N - h,1

\biggr\} 
.

Proof of Theorem 2.3. Suppose that there are h support constraints and these
are the first h constraints: x\in \scrX \delta 1 , . . . , x\in \scrX \delta h . Then, all other N - h constraints must
be satisfied by the solution x\ast 

N . If V\vargamma (x
\ast 
N ) > \epsilon , this means that \delta h+1, . . . , \delta N must

belong to an event whose probability is no more than 1 - \epsilon , and this happens with a
probability that is no more than (1 - \epsilon )N - h since the constraints are independent of
each other. Hence, \BbbP N

\vargamma \{ V\vargamma (x
\ast 
N )> \epsilon \wedge s\ast N = h\wedge the support constraints are the first h

constraints\} \leq (1 - \epsilon )N - h. A similar argument applies to all other choices of h support
constraints. Hence, summing over all possible choices of the h support constraints
from a total of N constraints (which gives

\bigl( 
N
h

\bigr) 
choices) one obtains

\BbbP N
\vargamma \{ V\vargamma (x

\ast 
N )> \epsilon \wedge s\ast N = h\} 

=

(Nh)\sum 
i=1

\BbbP N
\vargamma 

\Bigl\{ 
V\vargamma (x

\ast 
N )> \epsilon \wedge s\ast N = h \wedge the support

constraints are the ith group of h constraints
\Bigr\} 

\leq 
\biggl( 
N

h

\biggr) 
(1 - \epsilon )N - h,

which holds true independently of \vargamma . This establishes result (2.5). \square 
It is instructive to pause a second and reflect upon the meaning of (2.5). The

function on the right-hand side of (2.5) is represented in Figure 4 for various values
of h.

Letting \=\epsilon h be the value of \epsilon for which the function equals 0.5, it can be noted
that, beyond \=\epsilon h, bh(\epsilon ) rapidly saturates down to 0. Hence, by using the relation
\BbbP N
\vargamma \{ V\vargamma (x

\ast 
N ) > \epsilon \wedge s\ast N = h\} = \BbbP N

\vargamma \{ V\vargamma (x
\ast 
N ) > \epsilon | s\ast N = h\} \cdot \BbbP N

\vargamma \{ s\ast N = h\} , one draws the
conclusion that, for a value of \epsilon even moderately bigger than \=\epsilon h, either V\vargamma (x

\ast 
N ) > \epsilon 

8As already said, a tighter bound is established in section 3, which, however, requires a much
more complicated theory than the one developed in this section. Bound (2.5) is introduced and used
here because it allows for an easy understanding of the fundamental elements of the theory and,
moreover, it provides satisfactory evaluations in many cases.
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Fig. 4. The upper bound to bh(\epsilon ) in (2.5) for N = 500 and h= 5,10,20,40,80. As h grows, the
function moves to the right.

occurs very rarely conditionally on seeing s\ast N = h, or seeing s\ast N = h must itself be a
rare event. Referring back to Example 1.5, suppose that q = 0.1 and N = 20. For
h= 1, the value of \=\epsilon 1 can be calculated to be 0.18. In Example 1.5, the event s\ast N = 1
had probability equal to 0.120 + 20 \cdot 0.119 \cdot 0.9 = 1.81 \cdot 10 - 18, which is extremely low,
and this was the circumstance that made it possible to have always a large violation,
of at least 0.9, when s\ast N = 1.

Remark 2.4 (sensitivity to the prior). Referring again to Figure 4, pick a value
of h and suppose for a moment that the transition from 1 to 0 of function bh(\epsilon )
happens instantaneously for a single value \=\epsilon (in other words, bh(\epsilon ) is a step function).
Then, the right-hand side of (2.4) gives value 0 when \epsilon < \=\epsilon and value 1 when \epsilon > \=\epsilon ,
independently of the prior \pi \prime 

h. Since the transition of bh(\epsilon ) occurs abruptly but not
instantaneously, this result holds only approximately. On the other hand, after the
transition, bh(\epsilon ) does go down to very low values quite rapidly. Hence, a significant
departure from the above description can occur only when the prior \pi \prime 

h all nests at
very low values, below that of bh(\epsilon ), as shown again by an inspection of (2.4): for the
sake of the argument, say that all \pi \prime 

h concentrates below the value of bh(\epsilon ) for some
value of \epsilon beyond the transition point; then one easily sees that the right-hand side
of (2.4) still keeps the value 0 for that \epsilon .  \star 

The next example provides a case in point of Remark 2.4 and, still in the context of
Example 1.5, shows that the conditional assessments bear very little sensitivity on the
prior, until the prior expresses a very strong belief that seeing s\ast N = 1 is a rare event.

Example 2.5. Consider again Example 1.5 with N = 20. Suppose that q is
uncertain with only two possible values: q = 0.1 or q = 1. In the former, p1 =
\BbbP N\{ s\ast N = 1\} = 0.120 + 20 \cdot 0.119 \cdot 0.9 = 1.81 \cdot 10 - 18, while in the latter p1 = 1. The
marginal distribution \pi \prime 

1 for p1 is shown in Figure 5, where parameter \alpha defines our
prior trust in the case p1 = 1. Suppose that \alpha = 10 - 7.

The interpretation of this very low value of \alpha is that we bear a strong a priori belief
in favor of the case q= 0.1 (in which case seeing 1 support constraint is extremely rare)
while we do not completely exclude the case q = 1 (in which case one systematically
sees 1 support constraint). Using formula (2.5) with h= 1 and N = 20 gives b1(\epsilon )\leq 
min\{ N(1 - \epsilon )N - 1,1\} =min\{ 20(1 - \epsilon )19,1\} , which substituted in (2.4) yields
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Fig. 5. The prior \pi \prime 
1: p1 = 1.81 \cdot 10 - 18 with probability 1 - \alpha while p1 = 1 with probability \alpha .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6. Bounds for FV (\epsilon | s\ast 20 = 1) for \alpha = 10 - 7 (blue solid line) and \alpha = 1 (dashed red line).
The two curves are almost indistinguishable.

FV (\epsilon | s\ast 20 = 1)\geq 1 - 

\int 
\{ p1\leq min\{ 20(1 - \epsilon )19,1\} \} p1\pi 

\prime 
1(dp1)

1.81 \cdot 10 - 18 \cdot (1 - 10 - 7) + 1 \cdot 10 - 7

 - min\{ 20(1 - \epsilon )19,1\} \cdot \pi 1
\prime \{ p1 >min\{ 20(1 - \epsilon )19,1\} \} 

1.81 \cdot 10 - 18 \cdot (1 - 10 - 7) + 1 \cdot 10 - 7

=

\Biggl\{ 
1 - 1.81\cdot 10 - 18\cdot (1 - 10 - 7)+min\{ 20(1 - \epsilon )19,1\} \cdot 10 - 7

1.81\cdot 10 - 18\cdot (1 - 10 - 7)+1\cdot 10 - 7 if \epsilon \leq 0.9005

1 - min\{ 20(1 - \epsilon )19,1\} 
1.81\cdot 10 - 18\cdot (1 - 10 - 7)+1\cdot 10 - 7 if \epsilon > 0.9005.

(2.6)

The right-hand side of (2.6) is profiled in Figure 6 against the result which is obtained
for the case in which \alpha = 1.

There is very little difference between the two curves although the prior is sub-
stantially different in the two cases (\alpha = 10 - 7 against \alpha = 1). The reason is that
for \alpha = 10 - 7 one has an a priori strong belief in favor of q = 0.1 but, after seeing
s\ast 20 = 1 (which is extremely rare when q= 0.1, with probability 1.81 \cdot 10 - 18) the prior
is reversed into a posterior belief that favors q= 1, so leveling the two cases \alpha = 10 - 7

and \alpha = 1.
Interestingly enough, the above described mechanism maintains its validity till

very low values of \alpha . On the other hand, it is also instructive to go to the extreme
case where \alpha = 0. If so, seeing s\ast 20 = 1 is interpreted as that a rare event has occurred.
Correspondingly, (2.4) now gives

(2.7) FV (\epsilon | s\ast 20 = 1)\geq 

\Biggl\{ 
0 if \epsilon \leq 0.9005

1 - min\{ 20(1 - \epsilon )19,1\} 
1.81\cdot 10 - 18 if \epsilon > 0.9005.

The right-hand side of (2.7) is profiled in Figure 7.
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Fig. 7. Bound for FV (\epsilon | s\ast 20 = 1) for \alpha = 0.

Fig. 8. Representation of events \{ V\vargamma (x
\ast 
N )> \epsilon \} and \{ s\ast N = h\} on \Delta N \times \Theta . The shaded region

is \{ V\vargamma (x
\ast 
N )> \epsilon \wedge s\ast N = h\} .

Note that the curve stays at zero value till 0.9005, which means that the theory
does not provide any meaningful lower bound on the probability of the event V\vargamma (x

\ast 
N )\leq 

0.9005 conditionally on seeing s\ast 20 = 1. This is in agreement with previous remarks
in Example 1.5, where indeed seeing s\ast 20 = 1 implied that V\vargamma (x

\ast 
N )\geq 0.9 when q= 0.1.

It is also interesting to note that beyond \epsilon = 0.9005 the conditional distribution
FV (\epsilon | s\ast 20 = 1) saturates quickly to 1.  \star 

2.2. A Bayesian interpretation. While discussing the subject matter of this
article with some eminent Bayesian statisticians, the present authors were prompted
to more explicitly highlight the essentially Bayesian character of its content. This
short section provides an explanation by showing how the various quantities involved
can be rewritten in terms of the posterior distribution of \vargamma given the data points.

Referring back to (2.1), the sets \{ V\vargamma (x
\ast 
N )> \epsilon \} and \{ s\ast N = h\} are events on \Delta N\times \Theta 

(see Figure 8 for a representation).
The integrals in (2.1) can also be written as\int 

\Theta 

\BbbP N
\vargamma \{ V\vargamma (x

\ast 
N )> \epsilon \wedge s\ast N = h\} \pi (d\vargamma )
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=

\int 
\Delta N

\pi /\delta 1,...,\delta N \{ V\vargamma (x
\ast 
N )> \epsilon \wedge s\ast N = h\} P\Delta N (d\delta 1, . . . ,d\delta N ),

\int 
\Theta 

\BbbP N
\vargamma \{ s\ast N = h\} \pi (d\vargamma )

=

\int 
\Delta N

\pi /\delta 1,...,\delta N \{ s\ast N = h\} P\Delta N (d\delta 1, . . . ,d\delta N ),

where \pi /\delta 1,...,\delta N is the a posteriori distribution on \Theta and P\Delta N is the marginal of P on
\Delta N . It is important to note that computing the posterior \pi /\delta 1,...,\delta N is a frightening
goal in real applications due to attendant overwhelming computations. Even more
importantly, such computations apply to a complete model of all the probabilistic
elements involved in the problem. One fundamental achievement of (2.4) and (2.5)
is that informative bounds on FV (\epsilon | s\ast N = h) can be obtained from a limited prior
information expressed by \pi \prime 

h.

3. A tight evaluation of \bfitb \bfith (\bfitepsilon ). The fundamental formula (2.4) can be used
with any valid upper bound of bh(\epsilon ) and in this section we obtain a bound for bh(\epsilon ) that
is provably close to the best possible. Quantitatively, the final result outperforms, even
significantly, the evaluations made with (2.5). This rather technical section leverages
recent results on ``wait-and-judge"" scenario optimization established in [15].

Theorem 3.1. Under Assumption 1.1 and assuming that Assumption 1.4 holds
true for any probability \BbbP \vargamma , \vargamma \in \Theta , it holds that 9

(3.1)

bh(\epsilon )\leq 

\left\{                     

\sum d - 1
i=0

\bigl( 
N
i

\bigr) 
\epsilon i(1 - \epsilon )N - i if h= d\sum d - 1

i=0

\bigl( 
N
i

\bigr) 
(d - 1

h \epsilon )i(1 - d - 1
h \epsilon )N - i

+
\sum N - h

i=d - h

\bigl( 
N - h

i

\bigr) 
(d - 1 - h

h
\epsilon 

1 - \epsilon )
i(1 - d - 1 - h

h
\epsilon 

1 - \epsilon )
N - h - i

\times (Nh)
(d - 1

h )
\epsilon h(1 - \epsilon )N - h (d - 1)(d - 1)

(d - 1 - h)(d - h - 1)hh

if h\leq d - 1

and \epsilon \leq h
d - 1

(Nh)
(d - 1

h )
(1 - \epsilon )N - d+1 if h\leq d - 1

and \epsilon > h
d - 1 .

9Despite its apparent complexity, this bound can be computed relatively easily. Indeed, it can
be rewritten as

bh(\epsilon )\leq 

\left\{                       

1 - I\epsilon (d,N  - d+ 1) if h= d,

1 - I d - 1
h

\epsilon 
(d,N  - d+ 1)

+ I d - 1 - h
h

\epsilon 
1 - \epsilon 

(d - h,N  - d+ 1)\times e
\sum h - 1

k=0
[\mathrm{l}\mathrm{o}\mathrm{g}(N - k) - \mathrm{l}\mathrm{o}\mathrm{g}(d - 1 - k)]

\times eh \mathrm{l}\mathrm{o}\mathrm{g}(\epsilon )+(N - h) \mathrm{l}\mathrm{o}\mathrm{g}(1 - \epsilon )+(d - 1) \mathrm{l}\mathrm{o}\mathrm{g}(d - 1) - (d - 1 - h) \mathrm{l}\mathrm{o}\mathrm{g}(d - 1 - h) - h \mathrm{l}\mathrm{o}\mathrm{g}(h)

if h< d

and \epsilon \leq h
d - 1

,

e
\sum h - 1

k=0
[\mathrm{l}\mathrm{o}\mathrm{g}(N - k) - \mathrm{l}\mathrm{o}\mathrm{g}(d - 1 - k)]+(N - d - 1) \mathrm{l}\mathrm{o}\mathrm{g}(1 - \epsilon ) if h< d

and \epsilon > h
d - 1

,

where Ix(a, b) :=
\int x
0

\Gamma (a+b)
\Gamma (a)\Gamma (b)

ta - 1(1 - t)b - 1dt is the well-known regularized incomplete Beta function,

which, for integers values of a and b, equals
\sum b+a - 1

i=a

\bigl( b+a - 1
i

\bigr) 
xi(1 - x)b+a - 1 - i (we leave to the reader

the simple verification that the two bounds coincide when the latter formula is used). The value
of Ix(a, b) can be efficiently computed in various scientific computing environments (for example,
in MATLAB, Ix(a, b) is implemented by the function betainc(x,a,b)), while the exponentials and
logarithms serve the purpose of making the computation of the other terms numerically stable.
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Fig. 9. Bound (3.1) (solid blue line) versus bound (2.5) (dashed purple line) and the unsur-

mountable lower bound
\sum h - 1

i=0

\bigl( N
i

\bigr) 
\epsilon i(1 - \epsilon )N - i (dashed-dotted red line). N = 500, d= 150, and (a)

h= 10; (b) h= 20; (c) h= 40.

Before proving the theorem, we make some remarks about the result. Figure 9
profiles bound (3.1) for N = 500, d = 150, and h = 10,20,40 against the bound in
(2.5), which shows that the new bound marks a significant improvement.

Moreover, it is a notable fact that there is little margin of further improvement
over bound (3.1) provided that \Theta is rich enough. This claim can be justified by making
reference to the theory developed in paper [12]: suppose that \Theta contains problems
with h support constraints with probability 1;10 then the theory in [12] proves that
for these problems it holds that

(3.2) \BbbP N\{ V (x\ast 
N )> \epsilon \wedge s\ast N = h\} =

h - 1\sum 
i=0

\biggl( 
N

i

\biggr) 
\epsilon i(1 - \epsilon )N - i,

so that the right-hand side of (3.2) represents an insurmountable bound for bh(\epsilon ). The
tightness of (3.1) can be appreciated in Figure 9, where the right-hand side of (3.2) is
also represented. Note that the value of \epsilon for which the right-hand side of (3.2) equals
0.5 is approximately h/N (see, e.g., [42]) so that bound (3.1) rapidly saturates to 0
for values of \epsilon larger than h/N .

Proof of Theorem 3.1. Let \=\epsilon (k), k \in \{ 0,1, . . . , d\} , be equal to \epsilon when k = h
and equal to 1 for k \not = h. Since \BbbP N

\vargamma \{ V\vargamma (x
\ast 
N )> 1\} = 0, we have that

10In [12] a problem in dimension h (i.e., x\in \BbbR h) that has h support constraints with probability
1 is called fully supported . It is not difficult to embed a fully supported problem with h support
constraints in a problem in dimension d > h by adding d - h dummy variables.
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\BbbP N
\vargamma \{ V\vargamma (x

\ast 
N )> \epsilon \wedge s\ast N = h\} =

d\sum 
k=0

\BbbP N
\vargamma \{ V\vargamma (x

\ast 
N )> \=\epsilon (k)\wedge s\ast N = k\} 

= \BbbP N
\vargamma \{ V\vargamma (x

\ast 
N )> \=\epsilon (s\ast N )\} .

A direct application of Theorem 1 of [15] now gives that, for any \vargamma ,

\BbbP N
\vargamma \{ V\vargamma (x

\ast 
N )> \=\epsilon (s\ast N )\} \leq \gamma \ast 

h,

where

\gamma \ast 
h := inf

\xi (\cdot )\in Cd[0,1]
\xi (1)(3.3a)

subject to
1

h!

dh

dth
\xi (t)\geq 

\biggl( 
N

h

\biggr) 
tN - h \cdot 1[0,1 - \epsilon ), t\in [0,1],(3.3b)

1

k!

dk

dtk
\xi (t)\geq 0, t\in [0,1], k= 0,1, . . . , d, k \not = h,(3.3c)

and Cd[0,1] is the set of continuous functions on [0,1] with continuous derivative up
to order d. To prove (3.1) we shall next show that \gamma \ast 

h is indeed smaller than or equal
to the right-hand side of (3.1). To this aim, we exhibit a function \=\xi (t) that is feasible
for (3.3) for which \=\xi (1) equals the right-hand side of (3.1).

Function \=\xi (t) is given by

\=\xi (t) = tN \cdot 1[0,\tau ) +

d - 1\sum 
i=0

\biggl( 
N

i

\biggr) 
(t - \tau )i\tau N - i \cdot 1[\tau ,1] + dA(t - \tau )d - 1 \cdot 1[\tau ,1],

where 1[0,\tau ) is the indicator function of the interval [0, \tau ) and 1[\tau ,1] the indicator
function of the interval [\tau ,1],

(3.4) \tau =

\Biggl\{ 
1 - \epsilon if h= d

max\{ 0,1 - d - 1
h \epsilon \} if h\leq d - 1,

and
(3.5)

A=

\left\{   0 if h= d

(Nh)(1 - \epsilon )N - h

d(d - 1
h )(1 - \epsilon  - \tau )d - h - 1

\cdot 
\sum N - h

i=d - h

\bigl( 
N - h

i

\bigr) \Bigl( 
1 - \tau 

1 - \epsilon 

\Bigr) i \Bigl( 
\tau 

1 - \epsilon 

\Bigr) N - h - i

if h\leq d - 1.

We first show the validity of (3.3b) and (3.3c).
For k\leq d - 1, differentiating \=\xi (t) gives

1

k!

dk

dtk
\=\xi (t) =

\biggl( 
N

k

\biggr) 
tN - k \cdot 1[0,\tau ) +

d - 1\sum 
i=k

\biggl( 
N

i

\biggr) \biggl( 
i

k

\biggr) 
(t - \tau )i - k\tau N - i \cdot 1[\tau ,1]

+ d

\biggl( 
d - 1

k

\biggr) 
A(t - \tau )d - k - 1 \cdot 1[\tau ,1],

which are all continuous for k \leq d - 2, as revealed by a direct inspection. However,
for k = d  - 1, 1

k!
dk

dtk
\=\xi (t) has a jump in t = \tau of height dA and 1

d!
dd

dtd
\=\xi (t) becomes

meaningful as a generalized function only:

1

d!

dd

dtd
\=\xi (t) =

\biggl( 
N

d

\biggr) 
tN - d \cdot 1[0,\tau ) +A\delta (t - \tau ),
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where \delta is the Dirac delta function. It is thus a fact that \=\xi (t) is not in Cd[0,1];
however, as we shall show later in the proof, this difficulty can be circumvented by a
small modification of \=\xi (t). For now we concentrate on showing that \=\xi (t) satisfies the

constraints (3.3b) and (3.3c). Constraint (3.3c) is clearly satisfied because 1
k!

dk

dtk
\=\xi (t)

is a sum of positive terms. Then, consider constraint (3.3b).
For h= d, we have that \tau = 1 - \epsilon and A= 0 (see (3.4) and (3.5)). Thus,

1

d!

dd

dtd
\=\xi (t) =

\biggl( 
N

d

\biggr) 
tN - d \cdot 1[0,1 - \epsilon ),

which satisfies (3.3b).
For h \leq d  - 1, (3.3b) is clearly satisfied for t \in [0, \tau ) because on this interval

1
h!

dh

dth
\=\xi (t) coincides with

\bigl( 
N
h

\bigr) 
tN - h. For t \in [1  - \epsilon ,1], (3.3b) is also satisfied because

1
h!

dh

dth
\=\xi (t) \geq 0. Over the interval [\tau ,1 - \epsilon ), substituting the expression for A given in

(3.5) in 1
h!

dh

dth
\=\xi (t) gives

1

h!

dh

dth
\=\xi (t) =

d - 1\sum 
i=h

\biggl( 
i

h

\biggr) \biggl( 
N

i

\biggr) 
(t - \tau )i - h\tau N - i

+

\bigl( 
N
h

\bigr) 
(1 - \epsilon )N - h

(1 - \epsilon  - \tau )d - h - 1

N - h\sum 
i=d - h

\biggl( 
N  - h

i

\biggr) \biggl( 
1 - \tau 

1 - \epsilon 

\biggr) i\biggl( 
\tau 

1 - \epsilon 

\biggr) N - h - i

(t - \tau )d - h - 1.(3.6)

Noting that
\bigl( 
i
h

\bigr) \bigl( 
N
i

\bigr) 
=
\bigl( 
N - h
i - h

\bigr) \bigl( 
N
h

\bigr) 
and that (1  - \epsilon )N - h = (1  - \epsilon )i(1  - \epsilon )N - h - i, and

letting j = i - h in the first sum, (3.6) can also be written as

1

h!

dh

dth
\=\xi (t) =

\biggl( 
N

h

\biggr) \left[  d - 1 - h\sum 
j=0

\biggl( 
N  - h

j

\biggr) 
(t - \tau )

j
\tau N - h - j

+

N - h\sum 
i=d - h

\biggl( 
N  - h

i

\biggr) 
(1 - \epsilon  - \tau )

i
\tau N - h - i \cdot 

\biggl( 
t - \tau 

1 - \epsilon  - \tau 

\biggr) d - h - 1
\Biggr] 

=

\biggl( 
N

h

\biggr) \left[  d - h - 1\sum 
j=0

\biggl( 
N  - h

j

\biggr) 
(t - \tau )

j
\tau N - h - j

+

N - h\sum 
i=d - h

\biggl( 
N  - h

i

\biggr) 
(t - \tau )

i
\tau N - h - i \cdot 

\biggl( 
1 - \epsilon  - \tau 

t - \tau 

\biggr) i - (d - h - 1)
\Biggr] 
,

where the second equality follows by a simple rearrangement of the terms in the
second sum. Since the above expression is in use for t \in [\tau ,1  - \epsilon ), it holds that
( 1 - \epsilon  - \tau 

t - \tau )i - (d - h - 1) \geq 1. This yields the inequality

1

h!

dh

dth
\=\xi (t)

\geq 
\biggl( 
N

h

\biggr) \left[  d - h - 1\sum 
j=0

\biggl( 
N  - h

j

\biggr) 
(t - \tau )

j
\tau N - h - j +

N - h\sum 
i=d - h

\biggl( 
N  - h

i

\biggr) 
(t - \tau )

i
\tau N - h - i

\right]  
=

\biggl( 
N

h

\biggr) 
tN - h (where we have used the binomial theorem).

This shows that (3.3b) is satisfied.
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0 1

Fig. 10. 1
d!

\mathrm{d}d

\mathrm{d}td
\=\xi (t) (solid blue line) versus fn(t) (red dashed line).

We now come back to the difficulty that \=\xi (t) is not in Cd[0,1] and show that a
slight modification of \=\xi (t) gives a function in Cd[0,1] while preserving satisfaction of
the constraints (3.3b) and (3.3c). For n= 1,2, . . ., consider the functions

fn(t) =

\biggl( 
N

d

\biggr) 
tN - d \cdot 1[0,\tau ) +A

\Bigl[ 
n2(t - \tau + 2/n)1[\tau  - 2

n ,\tau  - 1
n )  - n2(t - \tau )1[\tau  - 1

n ,\tau ]

\Bigr] 
+

\biggl( 
N

d

\biggr) 
\tau N - d

\Bigl( 
1 - n(t - \tau )

\Bigr) 
\cdot 1[\tau ,\tau + 1

n ],

which provide continuous approximations of 1
d!

dd

dtd
\=\xi (t) (see Figure 10).

For each n, let \=\xi n(t) be function fn(t) integrated d times, i.e.,

\=\xi n(t) =

\int t

0

\int s1

0

\cdot \cdot \cdot 
\int sd - 1

0

fn(sd) dsd \cdot \cdot \cdot ds1.

This way we clearly obtain a function \=\xi n(t) that belongs to Cd[0,1]; moreover, \=\xi n(t)
satisfies (3.3b) and (3.3c).11 Hence, \=\xi n(t) is feasible for (3.3), so that \gamma \ast 

h \leq \=\xi n(1), from
which \gamma \ast 

h \leq \=\xi (1) follows by taking the limit for n\rightarrow +\infty .
To conclude the proof one has to show that \=\xi (1) equals the right-hand side of

(3.1), which is a cumbersome, but straightforward, computation that is left to the
reader.

4. Dirichlet priors. Equation (2.4) bounds FV (\epsilon | s\ast N = h) using \pi \prime only, which
is the prior for \bfitp = (p0, p1, . . . , pd) over the simplex S. In this section we derive
explicit expressions for FV (\epsilon | s\ast N = h) when \pi \prime is a Dirichlet distribution. This choice
is motivated by the fact that the Dirichlet distribution is naturally supported over the
simplex, while it also allows for enough flexibility to accommodate many situations
of practical interest. Moreover, as we shall see, the Dirichlet distribution allows for
explicit, closed-form, calculations.

Suppose therefore that

\pi \prime =Dir(\alpha 0, \alpha 1, . . . , \alpha d),

11Indeed, 1
d!

\mathrm{d}d

\mathrm{d}td
\=\xi n(t) = fn(t) always satisfies its associated constraint both when h \not = d, because

1
d!

\mathrm{d}d

\mathrm{d}td
\=\xi n(t)\geq 0, and when h= d, since \tau = 1 - \epsilon and A= 0 in this case; instead, for k < d, the result

follows by observing that 1
k!

\mathrm{d}k

\mathrm{d}tk
\=\xi n(t) \geq 1

k!
\mathrm{d}k

\mathrm{d}tk
\=\xi (t) because in fn(t) the mass that was concentrated

in t= \tau in 1
d!

\mathrm{d}d

\mathrm{d}td
\=\xi (t) has been moved to the left.
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(a) (b) (c)

Fig. 11. For d = 2, density of p1, p2 for a Dirichlet distribution with (a) \alpha 0 = \alpha 1 = \alpha 2 = 1,
(b) \alpha 0 = \alpha 1 = 1, \alpha 2 = 4, (c) \alpha 0 = \alpha 1 = \alpha 2 = 10.

where Dir(\alpha 0, \alpha 1, . . . , \alpha d) is a Dirichlet distribution, whose density over the support\sum d
i=1 pk \leq 1, pk \geq 0, k= 1, . . . , d, is known to be

\Gamma 
\Bigl( \sum d

k=0\alpha k

\Bigr) 
\prod d

k=0 \Gamma (\alpha k)

\Biggl( 
1 - 

d\sum 
k=1

pk

\Biggr) \alpha 0 - 1 d\prod 
k=1

p\alpha k - 1
k

(\Gamma (\cdot ) denotes the Gamma function) and further p0 remains determined by relation
p0 = 1 - 

\sum d
k=1 pk. Coefficients \alpha 0 > 0, \alpha 1 > 0, . . ., \alpha d > 0 are free parameters that

can be selected by the user.
Figure 11 shows the density of some Dirichlet distributions obtained by specific

choices of the free parameters for d= 2.
As is the case for panel (a) of Figure 11, the choice \alpha 0 = \alpha 1 = \cdot \cdot \cdot = \alpha d = 1 gives

for any d a flat (uniform) distribution, which corresponds to adopting a ``principle
of indifference"" (see Remark 2.2). Instead, for \alpha k > 1, \forall k, the Dirichlet distribution
becomes unimodal with mean (\alpha 0/

\sum 
k \alpha k, \alpha 1/

\sum 
k \alpha k, . . . , \alpha d/

\sum 
k \alpha k). Moreover, the

bigger the
\sum 

k \alpha k, the more concentrated the distribution around its mean. This may
be used to accommodate the case in which one wants to build a prior around an
empirical frequency for the complexity (see again Remark 2.2). The reader interested
in shaping a Dirichlet distribution beyond these simple rules can consult any statistical
textbook for further information.

We next show how a Dirichlet prior can be used in (2.4). To this end, it is useful
to recall a well-known result on Dirichlet distributions, namely, that the marginal
distribution \pi \prime 

h is a Beta distribution,

\pi \prime 
h =Beta

\left(  \alpha h,
\sum 
k \not =h

\alpha k

\right)  ,

which has density

\Gamma 
\Bigl( \sum d

k=0\alpha k

\Bigr) 
\Gamma (\alpha h)\Gamma (

\sum 
k \not =h\alpha k)

p\alpha h - 1
h (1 - ph)

\sum 
k \not =h \alpha k - 1

over the support ph \in [0,1]. The main properties of the Beta distribution Beta(a, b)
(which will be used in subsequent derivations) are that its mean is a/(a+ b) while its
cumulative distribution function

FB(x) =

\int x

0

\Gamma (a+ b)

\Gamma (a)\Gamma (b)
ta - 1(1 - t)b - 1dt
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is the regularized incomplete Beta function Ix(a, b), which can be easily evaluated,
e.g., via the betainc command in MATLAB (we have already encountered Ix(a, b) in
section 3).

Now, consider the right-hand side of (2.4). The denominator is easily recognized
to be equal to the mean of a Beta(\alpha h,

\sum 
k \not =h\alpha k):

(4.1)

\int 
[0,1]

ph\pi 
\prime 
h(dph) =

\alpha h\sum d
k=0\alpha k

.

The terms in the numerator can instead be computed as follows:

\pi \prime 
h\{ ph > bh(\epsilon )\} =

\int 
\{ ph>bh(\epsilon )\} 

\Gamma 
\Bigl( \sum d

k=0\alpha k

\Bigr) 
\Gamma (\alpha h)\Gamma (

\sum 
k \not =h\alpha k)

p\alpha h - 1
h (1 - ph)

\sum 
k \not =h \alpha k - 1dph

= 1 - Ibh(\epsilon )

\left(  \alpha h,
\sum 
k \not =h

\alpha k

\right)  (4.2)

and \int 
\{ ph\leq bh(\epsilon )\} 

ph\pi 
\prime 
h(dph)

=

\int 
\{ ph\leq bh(\epsilon )\} 

ph \cdot 
\Gamma 
\Bigl( \sum d

k=0\alpha k

\Bigr) 
\Gamma (\alpha h)\Gamma (

\sum 
k \not =h\alpha k)

p\alpha h - 1
h (1 - ph)

\sum 
k \not =h \alpha k - 1dph

=
\alpha h\sum d
k=0\alpha k

\int 
\{ ph\leq bh(\epsilon )\} 

\Gamma 
\Bigl( \sum d

k=0\alpha k + 1
\Bigr) 

\Gamma (\alpha h + 1)\Gamma (
\sum 

k \not =h\alpha k)
p\alpha h

h (1 - ph)
\sum 

k \not =h \alpha k - 1dph

(where we have used relation [\Gamma (x+ 1) = x\Gamma (x)])

=
\alpha h\sum d
k=0\alpha k

\cdot Ibh(\epsilon )

\left(  \alpha h + 1,
\sum 
k \not =h

\alpha k

\right)  .(4.3)

Using the three equations (4.1), (4.2), and (4.3) in (2.4) we obtain the following
result.12

Theorem 4.1. Assume that \pi \prime =Dir(\alpha 0, \alpha 1, . . . , \alpha d); then (2.4) becomes

FV (\epsilon | s\ast N = h)

\geq 1 - 

\left[  Ibh(\epsilon )
\left(  \alpha h + 1,

\sum 
k \not =h

\alpha k

\right)  + bh(\epsilon ) \cdot 
\sum d

k=0\alpha k

\alpha h

\left(  1 - Ibh(\epsilon )

\left(  \alpha h,
\sum 
k \not =h

\alpha k

\right)  \right)  \right]  .
(4.4)

The right-hand side of (4.4) has to be combined with the expression of bh(\epsilon ) given
in (2.5) or that given in (3.1) to obtain an explicit evaluation of FV (\epsilon | s\ast N = h).

We next use (4.4) with (3.1) in two simulated examples, which we believe allows
for a better understanding of formula (4.4); instead, an example based on real data
is presented in section 5.

12As is clear, similar computations as in (4.1), (4.2), and (4.3) can be performed for priors other
than the Dirichlet distributions (for instance, the logistic normal distributions or even the truncated
normal distributions); however, the computations may turn out to be more complex and require
numerical evaluations. For example, even the mean as in the left-hand side of (4.1) does not admit
an analytical expression for the two distributions mentioned above.
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Fig. 12. Left: \pi \prime 
4. Right: FV (\epsilon | s\ast 50 = 4) (solid blue line: \alpha k = 1, k= 0, . . . ,10; dashed red line:

\alpha k = 1 for k \not = 4, \alpha 4 = 5).

Example 4.2. Let N = 50, d = 10, and \alpha k = 1 \forall k = 0, . . . ,10 in the Dirichlet
prior (the reason for taking small values of N in simulated examples is to prevent
distributions from concentrating excessively, so that they visually convey the intended
message). \pi \prime 

4 is graphically represented in Figure 12(a) (solid blue line). Equation
(4.4) with h= 4 becomes in this case

(4.5) FV (\epsilon | s\ast 50 = 4)\geq 1 - 
\bigl[ 
Ib4(\epsilon )(2,10) + b4(\epsilon ) \cdot 11

\bigl( 
1 - Ib4(\epsilon )(1,10)

\bigr) \bigr] 
,

which, using (3.1) for bh(\epsilon ), is the distribution represented in Figure 12(b) (solid blue
line). As we can see, having 4 support constraints in an optimization problem with
10 variables and 50 data points leads to a belief that the risk will be below 0.22--0.23
with high confidence.

Consider instead a Dirichlet prior with \alpha k = 1 for k \not = 4 and \alpha 4 = 5, which gives
the \pi \prime 

4 that can also be seen in Figure 12(a) (dashed red line). In this case,

(4.6) FV (\epsilon | s\ast 50 = 4)\geq 1 - 
\bigl[ 
Ib4(\epsilon )(6,10) + b4(\epsilon ) \cdot 3

\bigl( 
1 - Ib4(\epsilon )(5,10)

\bigr) \bigr] 
,

which is represented in Figure 12(b) (dashed red line). It can be observed that in
this second case FV (\epsilon | s\ast 50 = 4) shifts to the left, so that one expects less violation
than in the first case. This is not surprising since in this second case one has very
little trust in low values of p4. On the other hand, one can further observe that the
difference in FV (\epsilon | s\ast 50 = 4) between the two cases is minor as compared to the wide
disagreement present in the priors, which experimentally shows that the posterior
bears little sensitivity on the prior.  \star 

Example 4.3. In this second example, we discuss the role of the dimension d under
the assumption that our prior \pi \prime is uniform over the simplex, i.e., \alpha k = 1 \forall k.

For d= 10, N = 2500, h= 10, and \epsilon = 0.01, formula (3.1) gives bh(\epsilon ) = 2.1 \cdot 10 - 4,
so that

sup
\vargamma \in \Theta 

\BbbP 2500
\vargamma \{ V\vargamma (x

\ast 
2500)> 0.01\wedge s\ast 2500 = 10\} \leq 2.1 \cdot 10 - 4.

Since \alpha k = 1, k= 0, . . . ,10, we do not a priori reckon that any value of h is more likely
than any other one so that P\{ s\ast 2500 = 10\} = 1/11 (one over the total number of cases).
This is not a rare event and, hence, we tend to think that V\vargamma (x

\ast 
2500) > 0.01 will not
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happen. This is confirmed by the theory. When \alpha k is set equal to 1 \forall k and d is left
free, (4.4) becomes

(4.7) FV (\epsilon | s\ast 2500 = 10)\geq 1 - 
\bigl[ 
Ibh(\epsilon )(2, d) + bh(\epsilon ) \cdot (d+ 1)

\bigl( 
1 - Ibh(\epsilon )(1, d)

\bigr) \bigr] 
,

which, for d= 10 and bh(\epsilon ) = 2.1\cdot 10 - 4, returns the value 1 - 0.0023 = 0.9977, implying
high confidence that the probability of violation is below 0.01.

Suppose now that d = 103, N = 2500, h = 10, and \epsilon = 0.01, which gives bh(\epsilon ) =
2.8 \cdot 10 - 3 when these values are used in formula (3.1). With a uniform prior, how
confident are we that V\vargamma (x

\ast 
2500)> 0.01 will not happen? For one thing it holds that

(4.8) sup
\vargamma \in \Theta 

\BbbP 2500
\vargamma \{ V\vargamma (x

\ast 
2500)> 0.01\wedge s\ast 2500 = 10\} \leq 2.8 \cdot 10 - 3.

On the other hand, \{ s\ast 2500 = 10\} is a rare event in itself in this case since s\ast 2500
takes one value among a large set of possibilities, in fact 1+ 103 possibilities, so that
P\{ s\ast 2500 = 10\} = 1/(1 + 103). Using formula (4.7), we now find FV (0.01| s\ast 2500 = 10)\geq 
1 - 0.9383 = 0.0617, a small value.

As an additional remark, one can verify that raising \epsilon to value 0.015 in this
example with d = 103 leads to FV (0.015| s\ast 2500 = 10) \geq 1 - 0.0014 = 0.9986, which is
interpreted as that for d= 103 we have a strong belief that the probability of violation
is below the value 0.015.  \star 

5. An example with real data. We consider the data set called Corel Image
Features, which is publicly available at the UCI Machine Learning Repository.13 This
data set consists of 68040 records, each corresponding to a JPEG image taken from a
Corel image collection. Each record is characterized by 89 attributes, from which we
select the following 25 noncategorical ones:14

- 9 color moments, which are the mean, the standard deviation, and the skew-
ness of the hue, the saturation, and the value of the color (3\times 3 = 9 attributes
in total);

- 16 co-occurrence textures, which are the second angular moment, the con-
trast, the inverse difference moment, and the entropy of 4 co-occurrence ma-
trices calculated along the principal directions (horizontal, vertical, and the
two diagonals) of the image converted in gray-scale (4\times 4 = 16 attributes in
total).

Each record in the data set is regarded as an instance of an uncertain element \delta , which
is a 25-dimensional vector with real components.

After randomly sorting the 68040 records we picked the first 500 records \delta 1, \delta 2, . . . ,
\delta 500 (random sorting is used to cancel any possible ordering introduced in the data set
at the time it has been uploaded in the repository). \delta 1, \delta 2, . . . , \delta 500 is regarded as an
independent sample of images. Then, we considered the following scenario program
that aims at constructing the ``most compact"" box in \BbbR 25 containing all 500 scenarios:

min
v\in \BbbR 25,\ell \in \BbbR 25

25\sum 
k=1

\ell k

subject to v\leq \delta i \leq v+ \ell , i= 1, . . . ,500,(5.1)

13http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features.
14The reader is referred to the UCI Machine Learning Repository website for a more detailed

description of the attributes.
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Fig. 13. The bound to FV (\epsilon | s\ast 500 = 13) (continuous blue curve) versus \widehat FV (\epsilon | s\ast 500 = 13) (stair-
wise red curve).

where v= [v1, v2, . . . , v25]
T are the coordinates of the box vertex with leftmost compo-

nents, \ell = [\ell 1, \ell 2, . . . , \ell 25]
T are the lengths of the box edges, and inequalities are meant

componentwise. Note that d = 50 in this case. The number of support constraints
s\ast 500 is the amount of \delta i's that lie on the boundary of the box. The optimal box
obtained after solving (5.1) can be thought of as a descriptor of the variability in the
images and the probability of violation corresponds to the chance of observing a new
image that lies outside the box (and, hence, some of its attributes are not correctly
predicted).

We describe our prior \pi \prime as a uniform Dirichlet distribution Dir(1,1, . . . ,1).15

Upon solving the problem we found s\ast 500 = 13. The continuous blue curve in Figure
13 is a plot of the bound to FV (\epsilon | s\ast 500 = 13) that is obtained from Theorem 4.1 with
formula (3.1) used to compute bh(\epsilon ).

Since the bound rapidly saturates to 1 after the value \epsilon = 0.07, this result induces
a strong belief in the fact that the violation has to be below 7\%.

We next computed an empirical estimate of FV (\epsilon | s\ast 500 = 13) as follows. Problem
(5.1) is solved 10000 times. In each run, 500 scenarios were randomly extracted
from the available data set, the solution and the corresponding number of support
constraints s\ast 500 were computed, and the violation of the solution was empirically
estimated as the proportion \^v of the remaining 68040 - 500 = 67540 data points that
do not belong to the box.16 For estimating FV (\epsilon | s\ast 500 = 13), we kept only the runs that
gave s\ast 500 = 13 and computed \widehat FV (\epsilon | s\ast N = 13) = (no. of cases with \^v \leq \epsilon and s\ast 500 =

13)/(no. of cases with s\ast 500 = 13). The obtained \widehat FV (\epsilon | s\ast N = 13) is depicted in Figure
13 as a stairwise red curve. Empirical evidence is in agreement with the expectation
given by the theorem.

Similar results were obtained also for other values of s\ast 500 (in our simulations s\ast 500
ranged from 10 to 30 with higher frequencies for central values) and Figure 14 depicts
curves similar to Figure 13 for s\ast 500 = 24.

15Notice that a probability \BbbP \vargamma in this problem is a distribution on \BbbR 25 and assigning a complete
prior \pi would consists in providing a distribution over the domain of 25-dimensional distributions,
quite a formidable task.

16This procedure, which corresponds to multiple shuffles of the original data set, introduces a
slight correlation between one case and the others; however, given the numerosity of the baseline
data set, this correlation can be regarded as negligible.
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Fig. 14. The bound to FV (\epsilon | s\ast N = 24) (continuous blue curve) versus \widehat FV (\epsilon | s\ast N = 24) (stairwise
red curve).

6. Conclusions. The number of support constraints of a scenario program is
an observable that carries fundamental information to estimate the violation of the
solution and it is natural that one asks for evaluations of the distribution of the
violation conditional on the number of support constraints. In this article, we have
shown that results for the conditional distribution are impossible in a distribution-free
setup; however, modest prior information---which only refers to the distribution of the
cardinality of the support constraint set---suffices to secure strong, practically useful,
evaluations of the conditional distribution. These results open a door for the use of
the theory in an optimization context where assuming a full prior is not realistic.
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