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Abstract
Inductive reasoning aims at constructing rules and models of general applicability
from a restricted set of observations. Induction is a keystone in natural sciences, and
it influences diverse application fields such as engineering, medicine and economics.
More generally, induction plays a major role in the way humans learn and operate
in their everyday life. The level of reliability that a model achieves depends on how
informative the observations are relative to the flexibility of the process by which the
model is constructed.When the process is articulated so that themodel can incorporate
descriptive details and subtleties, a large set of informative observations are required
to reliably tune the model, whereas models obtained from simple procedures can be
tuned with fewer observations. This article introduces the concept of “dominance”,
which refers to the situation in which a reduced subset of observations suffices to
reconstruct the model. A mathematical framework is presented to quantify the reli-
ability of learning procedures as a function of the size of the subset of dominant
observations. Although limited in scope, we believe that our study can contribute to
the understanding of some fundamental mechanisms bywhich knowledge is generated
from observations in inductive reasoning.

Keywords Inductive methods · Dominance · Generalization · Quantitative reliability

1 Introduction

Inductive reasoning refers to the process of synthesizinggeneral principles anddescrip-
tive schemes from observations. This is key not only to all physical sciences, it also
proves fundamental to large areas of applied fields in engineering, medicine and eco-
nomics. Even more broadly, induction forms the footing of all processes by which we
learn from experience, with paramount implications in the endeavor of describing the
world we live in and of making decisions on how to operate on it. But, in virtue of
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what can observations be used to derive principles and to construct schemes meant
to be applied to new, out-of-sample, cases? Why can observations drive our way of
thinking and acting in situations that we have not previously encountered?While these
questions have been debated for at least four centuries, in this article we aim to suggest
a new, mathematically-structured, framework that we believe can shed new light on
this topic. To this purpose, after informally introducing in this section some general
concepts and ideas, we will move to a more formal presentation in the next Sect. 2 that
culminates in results stated in the form of propositions.

To describe knowledge, we use a model. A model is a descriptor of a population,
where the word “population” must be thought of in broad sense, it can be a collection
of individuals, but it can also refer to a group of objects or even to a set of conditions in
which a device operates. See Sect. 2 for examples. After the model has been built and
validated, it provides an instrument of investigation,Morgan andMorrison (1999), and
it allows for surrogative reasoning, Swoyer (1991) and Contessa (2007). In science,
models are used in prediction and to support decisions, a fact that has been widely
discussed in the literature, see e.g. Bailer-Jones (2009), Frigg and Hartmann (2012),
Hughes (1997), Magnani et al. (1999), and Magnani and Nersessian (2002).

In this study, we are interested in models that describe specific attributes of a pop-
ulation, Suppes (1960) and Da Costa and French (2000). The attributes recognize and
isolate a small number of salient characteristics, Maki (1994), so that the model incor-
porates a high level of idealization, Cartwright (1989, Ch. 5). In more specific terms,
the models we consider are subsets of the domain in which the attributes are defined
(such models are also called “set models”). A set model is meant to identify a portion
of the domain that captures the variability of the attributes in the population of interest,
that is, the model covers the range of the values that characterize the population. For
example, in a demographic study a set model can describe the variability of wealth in
a population and, in a medical application, the set model can delimit the values of the
outcomes of a clinical test given to a population that suffers from a certain disease.1

In normal cases, the population is too large for us to access one by one all of its
members.Hence,models are constructed froma reduced number of observed instances
of the population called observations: the attributes of a sample of observations drawn
from the population are recorded and used to derive a model meant to describe the
whole population. In other words, one constructs what is called an observation-driven
model, van Fraassen (1980), Suppes (1962), Laymon (1982),Woodwart (1989), Mayo
(1996), McAllister (1997), and Harris (2003). In science, this is how demography and
social sciences operate, it represents a fundamental framework for fields likemedicine,
engineering andfinance, and even laws of physics are constructed using this approach.2

1 It is important to observe that not all existing models operate in the way described here. For example,
in some applications one wants to construct a line of best fit. We shall describe alternatives, so as to better
position our contribution, in Sect. 2 after we introduce a formal definition of set model. We also advise the
reader that, throughout this article, when we use the word “model” this will stand for “set model” unless
otherwise specified.
2 For example, social demography studies the relationships between economic, social and cultural features
of a society from the analysis of a sample elicited from the population; the penetration of machine learning
techniques aiming at constructing classifiers from an observed set of cases (the so-called training sequence)
is getting ever more pervasive in medical diagnoses as well as in control, telecommunications and computer
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Two principles drive, in one way or another, the process of learning a set model: (i)
the model must accommodate, and correctly describe, the available sample obtained
from the population; and (ii) the model should provide a tight coverage of the popu-
lation (that is, cases that are not compatible with the population should be left out of
the model) so as to make the model informative and useful. How these principles can
be formalized and put in practice in specific procedures is discussed in subsequent
sections.

Since the model is constructed from a restricted sample of observations, it cannot
be expected to be an exact descriptor of the whole population, and it will bear a
certain degree of imprecision. As a consequence, when applied to a new member of
the population we have to consider that the model can err and return an incorrect
evaluation. A desirable feature is that the model errs rarely, a fact that is at times
expressed by saying that it has a good generalization capability and in this article
we study the elements that concur in determining the generalization capability of
observation-driven models. Fundamental questions that we shall address are:

• can a moderate number of observations be used to describe a large population?
• what does the generalization capability depend on?
• are there universal methods to exert control over the generalization capability?
• and, even more fundamentally, why can knowledge that originates from a limited
set of observations be applied to new, yet unseen, cases?

While this last question touches what may appear to be an unjustified stretch, it is
plain that it describes the way science operates all the time: science does not provide
look-up tables of previous examples, it aims at generalization and prediction,3

In previous work in the context of curve and causal model fitting, Akaike (1974)
has proposed a criterion to evaluate the predictive accuracy of models tuned on a set of
observations. Akaike’s approach, however, introduces the restrictive assumption that a
candidate model exactly describes the population. This assumption has been somehow
relieved by the TIC criterion, Takeuchi (1976). See Forster and Sober (1994), Sober
(2008), Forster and Sober (2011), and Sober (2015) for more-in-depth discussions on
these methods. The background of knowledge this article builds upon lies in statistical
learning.4 In specific terms, in this articlewe consider learning schemes inwhich some
observations are more important than others to determine the model, a property that
we call dominance, see Definition 1 in Sect. 2 for a precise definition of dominant
observation. We show that dominance applies broadly to inductive processes. The
number of dominant observations is called complexity (see again Definition 1, along

engineering; and, certainly, predictors built from previous measurements (e.g., rates-of-return) are broadly
used in quantitative finance.Also in physics laws are built by generalizing from a limited number of observed
cases; for example, electrons are deemed to have negative charge because all electrons that have been thus
far tested in a laboratory had this property (this is an example of enumerative induction, Example 3 provides
another example of this type).
3 Bruno De Finetti, referring to Henri Poicarè wrote in de Finetti (1989) “he has clearly understood that
only an accomplished fact is certain, that science cannot limit itself to theorizing about accomplished facts
but must forsee, that science is not certain.”
4 More precisely, in a sub-branch of statistical learning that aims to establish the coverage of set models.
More generally, statistical learning studies how well models of various nature describe a population, for
example according to a criterion of average fit.
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with Definition 2). We then prove that the reliability of a learning procedure (precisely
defined in Definition 4) can be evaluated from its complexity. This result has profound
philosophical implications. Indeed, a direct evaluation of the reliability of a learning
procedure would require to test how models constructed using the procedure perform
on new, yet unseen, cases. In turn, this would require to have a full description of
the population, under which circumstance the problem inductive reasoning deals with
would disappear altogether. In contrast, the complexity only depends on the procedure
and can therefore be determined without any knowledge on the population. Hence,
from the results stated later as Propositions 1 and 2 (these propositions link reliability
to complexity) one secures a theoretical ground to ascertain the reliability of learning
procedures without requiring any prior knowledge on the underlying population from
which observations are obtained. These results offer a rational explanation of the
mechanisms by which trust in inductive learning is generated and carries profound
implications on the possibility of acquiring knowledge from examples.

The structure of this article is as follows. In the next section, the notions of domi-
nance, complexity and reliability are introduced and it is shown that a precise relation
links the degree of reliability of a learning procedure to its complexity. One can go
beyond complexity of a learning procedure and speak of complexity of the model
generated by the learning procedure. This has implications on the way the procedure
operates and a procedure that accepts a model only when its complexity is moderate
provides a higher degree of reliability. This approach is analyzed in Sect. 3. In Sect. 4
we draw conclusions and discuss additional implications of the achievements of this
article in relation to Popper’s refutation theory. All formal derivations of the results
are provided in Sect. 5, which can be skipped at first reading.

2 Complexity and reliability

In this section, we formalize the concept of model used in this article and that of a
learning procedure that constructs models from observations, and then introduce a
definition of complexity of a procedure and show how the reliability of the procedure
can be evaluated from its complexity. All results are valid irrespective of any special
characteristic of the population,whichmeans that they canbe appliedwithout requiring
any prior knowledge of the population.

2.1 Models of attributes

Suppose that we are interested in given attributes of a population, and the goal is to
build a description of these attributes using a (possibly moderate) sample of members
taken from the population. A couple of very simple examples are useful to concretely
illustrate the idea.

Example 1 (height) Supposewe are interested in the height of Italians, so that Italians is
our reference population and the height of Italians is the attribute we want to describe.
To judge how tall Italians are, we draw a sample of N Italians andmeasure their height.
Then, we consider the tallest in the sample and construct a model that predicts that a
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Fig. 1 A rectangle describing the height and the weight of Italians. Giovanni is the tallest in the sample and
Bruno is the heaviest. A new Italian is predicted to be not taller than Giovanni and not heavier than Bruno

new Italian will not be taller than the tallest in the sample; this amounts to building an
interval model expressed as [0,max{heighti }], where heighti , i = 1, . . . , N , is the
height of the i-th Italian in the sample. While this is a reasonable model, we certainly
cannot expect it to be infallible. ∗

Example 2 (height and weight) Suppose that, besides the height, we are also interested
in the weight of Italians. The height and the weight of N Italians are measured, so
that this time each Italian is described by two numbers and an Italian corresponds to
a point on a plane whose coordinates are height and weight, respectively. In this case
we can use a rectangular model [0,max{heighti }] × [0,max{weighti }] and predict
that one new Italian will correspond to a point in this rectangle, that is, will not be
taller than the tallest in the sample and not heavier than the heaviest in the sample, see
Fig. 1.

An alternative to the rectangle is the model shown in Fig. 2. Here, the model is
the smallest strip that contains the points corresponding to the Italians in the sample.
This is called a minimal regression model, or a “Tchebyshev layer”, Harter (1982)
and Birkes and Dodge (1993).

Regression models are widely used in applied fields. Indeed, it is not rare that an
attribute for which we have a special interest is difficult to measure and, hence, it is
estimated from other, more accessible, attributes. Practical examples include medical
applications where the health of a patient is estimated from the outcome of a clinical
test. To understand in more detail how this scheme operates, suppose that the model
in Fig. 2 is in use and that we have measured the height (here playing the role of the
accessible attribute) of a new Italian to be 1.80ms. Using the model in conjunction
with the knowledge that the new Italian is 1.80ms tall restricts our prediction to the
intersection of the vertical line corresponding to 1.80ms of height with the layer,
yielding the line segment marked in bold in the figure, corresponding to the interval of
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Fig. 2 A Tchebyshev layer is an instrument to regress one attribute of a population against other attributes.
In the figure, the weight of Italians is regressed against their height

weights [76Kg, 97Kg] (this is the prediction of the attribute that is difficult to directly
measure; in a medical application this is, e.g., the degree of severeness of a disease).
In other words, the prediction is made by “cutting” the model corresponding to the
observed attribute, or, more formally, if the value x̄ ′ of attribute x ′ has been observed,
the prediction is {x ′′ : (x̄ ′, x ′′) ∈ model}, which are the values of the attribute x ′′ for
which the couple (x̄ ′, x ′′) is in the model. ∗

Generalizing from the previous examples, a population is described by various, say
d, attributes. An attribute can be given by a number, as is in the case of the height and
the weight, but, more generally, it can take values in any set, not necessarily a set of
numbers. For instance, we can consider the color of the eyes as an attribute, and it
takes value in the set {brown, blue, green, grey}. The d attributes of a member of
the population are grouped in a list x = (x ′, . . . , xd), and, when it does not generate
confusion, we refer to x itself as a “member of the population”, which means that we
identify amember of the populationwith the list of its attributes. ByX wedenote the set
of all potential values of x . If, e.g., the Italian population is described by the height and
the color of eyes, thenX = {(x ′, x ′′); x ′ ∈ R

+, the set of positive real numbers, x ′′ ∈
{brown, blue, green, grey}}. The members in the sample are written as xi , i =
1, . . . , N , and the goal is to use the sample to construct a set M of instances of x ∈ X ,
called a set model, which is meant to describe the population the sample is taken from.

2.2 A prototypical procedure for constructing set models

In this section, we describe a procedure by which set models are constructed from
observations. Later, we shall discuss its applicability and use in real contexts.

In many modeling endeavors, a model M is selected from a pre-specified class of
candidate models M. Two requisites play an important role in the selection process,
as described in what follows:
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(a) M correctly describes the available sample;
(b) M does not introduce redundancy.

Requisite (b) expresses a principle of parsimony so that the prediction provided
by the model is informative and useful; as we shall see, in formal terms this requisite
sets a criterion of optimality. Instead, requisite (a) enforces that the model contains
the members of the population that have been seen, and it sets constraints on the
optimization process.5 Beforemoving to a formal definition of procedure, let us review
our height and weight example to facilitate an intuitive understanding.

Example 2—Cont’ed When a rectangle is used to describe the height and the weight of
the Italian population as is done in the first part of Example 2, requisite (b) corresponds
to requiring that the area of M is minimized; requisite (a) instead prescribes that the
points in the sample are inside the rectangle. When considering a Tchebyshev layer
(second part of Example 2), (b) prescribes that the layer’s width be minimized under
again the same constraint (a) that the points in the sample are inside the model. ∗

Setting a suitable criterion (b) of optimality is problem-dependent and, in a given
application, the selection is based on reasons of convenience, also in the light of the
intended use of the model. Irrespective of its choice, a criterion of optimality (b),
along with a class of candidate modelsM and the constraints enforced by (a), define
procedure P according to which M is selected.

Procedure P
• input: sample S;
• minimize with respect to M ∈M the criterion (b)
subject to condition: xi ∈ M , for any xi ∈ S;

• output: M that solves the optimization program in the previous point. ∗
Hence, M is the output of procedure P applied to the sample S, which justifies our

using at times the notation P(S) for M when we want to explicitly indicate the sample
S that has been used.

Notice also that, for a given criterion (b), changing the class of candidate models
and considering an enlarged classM′ ⊇ M (M′ includesM) improves, or, at worst,
leaves unaltered the value of the optimality criterion (b) since the model that is optimal
in M also belongs to the enlarged class M′ and can therefore be selected when M′
substitutesM. This is illustrated by making again reference to our height and weight
example.

Example 2—Cont’ed Suppose we select M from the class of all rectangles with sides
parallel to the coordinate axes, instead of the class of rectangles with sides parallel
to the coordinate axes and a vertex in (0, 0) as it was done in Example 2. Then, the
model M of smallest area containing the sample is [min{heighti },max{heighti }] ×
[min{weighti },max{weighti }], see Fig. 3. This rectangle is smaller, and hence more
informative, than [0,max{heighti }] × [0,max{weighti }]. ∗
5 In some cases, the model is allowed to fail on specific members of the sample that have a “odd” behavior
as compared to other members (outliers) so that a smaller model, with improved descriptive capabilities, is
achieved.
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Fig. 3 The rectangle with sides parallel to the coordinate axes of smallest area containing a sample of
Italians

Remark 1 It is important to notice that not all procedures aim at building set models, as
is the case for the procedure P of this section. For example, least squares can be used
to determine the “center of mass” of a given set of observations, which is a point-wise
descriptor of the population. When observations are formed by two components (as
it was in our regression Example 2), which we call here “input” u and “output” y
respectively, a parameterized line—or, more generally, any parameterized curve, e.g.,
a polynomial—can be tuned to the observations by an average criterion of best fit.
When this criterion corresponds to minimizing the sum of the squared errors between
the measured outputs yi and the values given by the parameterized line corresponding
to the measured inputs ui , one again speaks of least squares. Other criteria of best
fit includes total least squares and the minimization of various functions of the error,
like the exponential function in risk-sensitive approaches. We further notice that aver-
aging procedures usually have infinite complexity with no dominant proper subsets;
therefore, the analysis of this article does not apply to averaging procedures. ∗

In the remainder of this article we make reference to the prototypical procedure of
this section. While this procedure is built on principles that govern many inductive
constructions, still, as noticed in the previous remark, its coverage of inductivemethods
is partial and, hence, this article has a limited scope.We provide our results in the hope
that the concepts presented here will contribute to the discussion on a mathematical
understanding of inductive methods and will stimulate others to continue on this line
of research.

2.3 Complexity of a procedure

The central issue of attention of this article is discussing the reliability of learning
procedures. When the rectangle of Fig. 3 is used, the next individual is incorrectly
predicted when s/he happens to be taller than the tallest in the sample or shorter than
the shortest or heavier than the heaviest or lighter than the lightest. Clearly, the chance
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of an incorrect prediction with this model is higher than with considering the rectangle
in Fig. 1. What lesson can we learn from this? Intuitively, selecting from a larger class
M′ leaves us with more freedom to adapt to the sample of observations; as the model
is steered towards a detailed description of the sample, it loses a grasp on the rest of
the population. Said differently, with an enlarged class, the model has more capability
to adhere to the sample at the expense of its generalization capability. In the height and
weight example, at the extreme when a model can be any finite collection of points
in R

2, M can be selected to coincide with the sample itself and this model has no
predictive capabilities on unseen members of the population.

To formalize this intuitive thinking, let us start by considering in more detail the
idea that a model “adheres to the sample”. In the height-and-weight example with
M of the form [0,max{heighti }] × [0,max{weighti }] as in Fig. 1, if Giovanni is the
tallest and Bruno is the heaviest, then the constructed model “touches” the points
in R

2 representing Giovanni and Bruno, whose presence impedes the model from
being smaller. One observation is now key: if someone were given only the two points
representing Giovanni and Bruno, then this person would be able to reconstruct the
model without seeing the other individuals in the sample by applying to Giovanni and
Bruno the very same procedure according to which the model was constructed from
the whole sample of N individuals. In this example, we say that Giovanni and Bruno
are the dominant observations. The number of dominant observations is intuitively
related to reliability issues: if a model can be seen as generated by few members in
the sample and all other members in the sample agree with the model generated by
these few, then these other members confirm the model and attest its reliability.

Interestingly, the number of members that generate the model using a given pro-
cedure is not always the same, it depends on the sample. For instance, in the height
and weight Example 2 if Carlo had happened to be the tallest and the heaviest at the
same time, then Carlo alone would have sufficed to reconstruct the model using the
procedure.

The above concepts are formalized in the following definitions.

Definition 1 (Complexity of a procedure for a given sample) Given a sample S, the
complexity of a procedure P in relation to S, written c(P, S), is the smallest integer
n such that there exists a sub-sample of n members in the sample so that the pro-
cedure applied to this sub-sample returns the same model as when the procedure is
applied to the whole sample. The nmembers in the sub-sample are called the dominant
observations. ∗
Definition 2 (Complexity of a procedure) The complexity of a procedure P , written
c(P), is the largest possible complexity of the procedure for a sample S, i.e., c(P) =
supS c(P, S) where S is any finite subset of X .6 ∗

In the height and weight example with models of the type [0,max{heighti }] ×
[0,max{weighti }], as we have seen above, the complexity of the procedure for a

6 While complexity is one of the most debated and controversial concepts in science, and indeed it has
attracted the attention of eminent mathematicians including Kolmogorov and Chaitin, Kolmogorov (1965),
Chaitin (1966), Kolmogorov (1968), Definitions 1 and 2 do not want to contribute this discussion, they
merely introduce measures of complexity within the specific setup here described of constructing models
from observations.

123



184 Page 10 of 29 Synthese (2023) 201 :184

Fig. 4 Interpretation of the three parameters, θi , i = 1, 2, 3, that define a Tchebyshev layer

given sample can be 1 or 2, but it never exceeds 2. Hence, the complexity of this
procedure is 2. Likewise, the complexity of the procedure that constructs a model of
the type [min{heighti },max{heighti }]×[min{weighti },max{weighti }] is 4. For the
determination of the complexity of procedures based on convex optimization one can
resort to a noteworthy result proven in Calafiore and Campi (2005), Theorem 2, which
states that a procedure with m optimization variables has complexity no larger than
m. This result can, e.g., be applied to the Tchebyshev layer in the height and weight
Example 2 as shown below.

Example 2—Cont’ed (height and weight - complexity when using Tchebyshev layers)
The smallest strip that contains the points corresponding to a sample of Italians can
be constructed by the following optimization program:

min
θ1,θ2,θ3

θ3

subject to: |weighti − [θ1 + θ2 · heighti ]| ≤ θ3, i = 1, . . . , N . (1)

Indeed, for given values of θ1 and θ2, relation weight = θ1 + θ2 · height defines a
straight line in the (height, weight) domain, called the “central line” of the model.
A visualization is provided in Fig. 4 where θ1 = 6Kg and θ2 = 52Kg/m. Quantity
weighti − [θ1 + θ2 · heighti ] is the vertical displacement of the weight of the i-th
individual in the sample from the value taken by the central line corresponding to the
height of this individual. The optimization program selects values for θ1 and θ2 so that
an upper bound θ3 on the maximum displacement in the sample, taken always positive
thanks to the absolute value |·|, is minimized. Hence, by program 1 all the individuals
are “squeezed” into a layer that has the smallest possible width.

Program1 is convex. Indeed, its objective function, θ3, is linear,while the constraints
|weighti − [θ1 + θ2 · heighti ]| ≤ θ3 can be rewritten by breaking the absolute value
in its positive and negative part as follows: −θ3 ≤ weighti − [θ1 + θ2 · heighti ] ≤
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θ3, resulting in two linear inequalities in θi , i = 1, 2, 3. Each inequality defines
a half-space in the (θ1, θ2, θ3) domain and the simultaneous verification of the two
inequalities holds in the intersectionof twohalf-spaces,which is a convex set.Applying
Theorem 2 in Calafiore and Campi (2005), we therefore conclude that the complexity
of the procedure that constructs the Tchebyshev layer is no more than 3, the number
of optimization variables in the problem.7 ∗

In more general situations, computing the complexity of a procedure may not be an
easy task. However, in view of the use of the notion of complexity in Proposition 1,
overestimating the complexity still leads to a valid upper bound on the reliability (at the
price that the upper bound can become somehow conservative). This observation can
be used to alleviate the difficulty inherent in finding the exact value of the complexity.8

Moreover, Proposition 2 in Sect. 3 applies to a context in which the reliability is only
evaluated when the complexity for the sample at hand (i.e., the one actually used
to construct the model) turns out to be not too high, in which case computing the
complexity of the procedure is not required altogether.

Apart from practical aspects relating to its computation, what is central for this
article is that the complexity is a property of the procedure. As such, it can be computed
without relying on a priori knowledge on the population under consideration (agnostic
setup). Hence, the certificates of reliability provided by the results in Propositions 1
and 2 by the only use of the complexity justify at a deep conceptual level inductive
reasoning as a tool to construct models to predict the attributes of members of a
population that have not been previously encountered. For example, considering that
the procedure to construct Tchebyshev layers as in Example 2 has complexity 3,
Proposition 1 allows one to draw quite strong reliability conclusions that do not depend
on any prior knowledge, or conjecture, on how the population distributes on the 2-
dimensional plane (refer also to the continuation of Example 2 after Propositions 1,
where the height and weight example is resumed with numerical evaluations).

Remark 2 It may be surprising that the procedure for constructing a Tchebyshev layer
has lower complexity than that for building the smallest rectangle with sides parallel
to the coordinate axes, especially because the former is expected to produce tighter
models than the latter. The reason for this expectation is that a Tchebyshev layer aptly
incorporates the idea that weights and heights are correlated quantities, which is not
possible with a rectangle. From this, we also see that domain knowledge does play
a role to obtain better results in modeling procedures.9 On the other hand, it is key
that the rigorous validity of the results in the next Sect. 2.4 do not depend on whether
or not the domain knowledge used in the problem formulation is accurate, or even
if it is correct at all, they remain intact under all circumstances. This is the ground

7 In fact, it is not difficult to show that the complexity of this procedure is exactly 3.
8 For example, in Campi et al. (2018) viable approaches are provided to upper bound the “complexity of
a procedure for a given sample” (Definition 1) based on the progressive removal of observations until no
observation can be further removed without altering the model.
9 Beyond this simple example, inmodern decision-making problems dealingwith complex systems, besides
observations one does want to exploit domain knowledge that comes from various sources, often including
some knowledge that, while not completely trustworthy, can still be of help to obtain a satisfactory model.
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on which inductive knowledge finds its foundations in the face of the criticism that
domain knowledge is as much in need of justification as induction itself. ∗

A last remark provides an additional interpretation of the concept of complexity.
Informally, the complexity of a procedure can be thought of as a means to rank the
complexity of the question that the procedure answers. For example, the procedure
that constructs the model [0,max{heighti }] × [0,max{weighti }] answers the ques-
tion: what is the tightest model in agreement with the sample to predict how tall and
how heavy a next individual can at most be? Similarly, the procedure that constructs
the Tchebyshev layer answers the question: what is the tightest model in agreement
with the sample to regress the weight of individuals against their height? Since the
complexity of the latter procedure is 3 and that of the former is 2, we can think of the
second question as being more complex than the first.

2.4 Reliability of a procedure

Let us now go back to the focus of this article: the reliability of inductive methods to
construct models. We want to link the reliability of a procedure P to its complexity.
Two Fundamental issues of investigation are:

(I) how does the reliability of a procedure depend on its complexity?

We expect that asking simple questions, viz. the procedure has low complexity, pro-
duces reliable models in such a way that the answer we obtain warrants our trust. How
can this intuition be put on solid quantitative grounds?

Suppose next that we ask a difficult question, but we accept the answer only when
the answer turns out to be simple, that is, the procedure has high complexity, but we use
the model only when the procedure for the sample at hand has low enough complexity.

(II) Can we then be as confident in the use of the model as when a simple question is
asked in the first place?

We want to make the above questions precise and provide answers supported by
quantitative methods. The first step along this route is to formalize the concept of
reliability.

When the model is obtained from a sample, it is natural to define the reliability of
the model as the proportion of the rest of the population besides the sample that is
correctly predicted by the model, as precisely formalized in the following definition.

Definition 3 (reliability of amodel)Assume that N < #(members of the population).10

The reliability of a model M is defined as

R(M) = #(members of the population in M) − N

#(members of the population) − N
,

where the symbol # means number of elements in the set specified in parenthesis and
N is the size of the sample. ∗
10 If N = #(members of the population), we are in the extreme case that all members of the popu-
lation is in the sample, in which case no reliability issue arises. At a mathematical level, condition
N < #(members of the population) prevents division by zero in the definition of R(M). This condition in
force throughout the rest of this article.
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For example, ifwe consider the Italian population and themodelM = [0, 2meters]
is used to describe the height of Italians, then we have

R(M) = #(Italians not taller than 2 meters) − N

#(Italians) − N
.

Given a procedure, the model depends on the sample S, and so does the reliability
of the model. For example, if we construct a model of the type [0,max{heighti }] and
Giovanni, who is 1.92 meters tall, happens to be the tallest in the sample, then the
reliability of the model is the proportion of individuals not taller than 1.92 meters; but
if Marco, who is 2 meters tall, is in the sample and nobody in the sample is taller than
him, then the reliability of the model rises to the proportion of individuals that are not
taller than 2 meters. The reliability of a procedure based on samples of N elements is
the average reliability of the models that the procedure generates when it is applied to
samples of N elements. This concept is formalized in the next definition.

Definition 4 (reliability of a procedure) The reliability of a procedure P is defined as

R(P) =
∑

{S:|S|=N } R(P(S))

#(subsets of the population with N elements)
. (2)

∗
In this definition, summation is taken over all possible samples S such that |S| = N ,

that is, all possible subsets of the population with N elements.11 The denominator
equals the number of elements in the summation and it is used as a normalization
factor so that R(P) is the average of R(P(S)).

Normally, the number of terms in the summation is truly large. If e.g. N = 100
and the individuals are sampled from the Italian population, which is of 60 million,
then the number of terms in the summation is approximately 10619, a 1 followed by
619 zeros! Even if for a moment we assume that the attributes of all the Italians were
known to us, then this extremely large number would nevertheless make it impractical
to compute R(P). On the other hand, we want to repeat once more (so as to position
the nature of the problemwe are studying at a level of clarity that admits no possibility
of misinterpretation) that computing R(P) from its definition in a real application is
not just impractical, it is even impossible. Indeed, computing R(P) requires to eval-
uate R(P(S)) for any S and this, in turn, entails that one has access to a complete
description of the population, which is not available in practice.12 Nonetheless, in
what follows we state a proposition by which we can get around of this difficulty:
in the next Proposition 1 it is shown that an abstract argument permits one to estab-
lish a fundamental link between reliability and complexity, so that reliability can be
estimated from the complexity without any additional knowledge on the population.
Interestingly, this result is tight in the sense that it holds with equality for certain
populations and, therefore, it is not improvable.

11 |S| is the cardinality of S, i.e., the number of elements in S.
12 Should a complete description of the population be available, then we would have nothing to learn as the
attributes of the whole population would be known, and the inductive problem would not exist altogether.
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Proposition 1 Relation

R(P) ≥ 1 − c(P)

N + 1

holds true irrespective of the population. ∗
The derivation of Proposition 1 is given in Sect. 5.2. We also note that Proposition

1 is the discrete counterpart of Theorem 1 in Calafiore and Campi (2005).
A couple of examples help clarify the result in Proposition 1.13

Example 3 (Enumerative induction) A classical problem in inductive reasoning takes
the following form: all objects of type T observed so far have quality Q; what can I
conclude about one next object of the type T that I shall observe in the future? Will
it also have quality Q? For example, all pieces of bread of a certain appearance have
thus far been nourishing, can I conclude that a next similar piece of bread will also
be nourishing? This is known as the problem of “enumerative induction”, see, e.g.,
Goodman (1955) and Steel (2010).

To cast enumerative induction in the setup of our procedure P , let us consider a
class M of models that contains only two elements, {Q} (the set formed by the sole
Q) andU = {Q, Q̄}, called the “universe”, which contains Q and its opposite Q̄. {Q}
is given the smallest value in the criterion of optimality (b) of Procedure P , so that
{Q} is selected if all observations have quality Q (one, e.g., makes the model that all
pieces of bread of a certain appearance nourish). In the opposite, {Q} is discarded in
favor of U , i.e., both Q and Q̄ are considered possible (this corresponds to conclude
that not all pieces of bread of a certain appearance nourish if one has seen one such
piece of bread that does not nourish). Observing that with no observations one chooses
{Q} and that U is chosen with only one negative observation, the conclusion can be
drawn that C(P) = 1 in this case. With, e.g., 49 observations, applying Proposition 1
yields that this procedure has reliability at least 1 − c(P)

N+1 = 1 − 1
50 = 98%. ∗

Example 2—Cont’ed Suppose that a model of the type [0,max{heighti }] ×
[0,max{weighti }] is constructed using a sample of N = 99 Italians. Proposition
1 states that the reliability of the procedure is at least 1 − c(P)

N+1 = 1 − 2
100 = 98%. If,

instead, a Tchebyshev layer is used, the reliability is at least 1− c(P)
N+1 = 1− 3

100 = 97%
(recall from Example 2 that c(P) ≤ 3 in this case).

Interestingly, applying one of these two procedures to the smaller population of
Luxemburg, or to the larger population of Brasil, would result in the same conclusions
as for Italy. The interpretation is that informative results can be obtained for any large
population, provided the question we ask is simple enough. ∗

Proposition 1 links the reliability of a procedure to its complexity, that is, to the
largest possible number of dominant observations and this justifies the title of this
article “Inductive knowledge under dominance”.

13 The reader may also be interested in consulting the recent monograph Campi and Garatti (2018) that
contains a broad presentation of real learning problems in a context of dominance.
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Referring to the formula in the proposition, function 1 − c(P)
N+1 tends to 1 as N

tends to infinity at a rate that is proportional to the inverse of N .14 So, roughly (we
say “roughly” because the denominator contains N + 1 and not just N ), doubling the
sample size halves the risk of incorrect prediction. The complexity of the procedure
c(P) sets the coefficient in the convergence rate. With a procedure that is twice as
complex as another procedure we roughly need to double the sample to get the same
reliability. In a learning problem, the result in Proposition 1 helps sizing the sample
so that a desired level of reliability is achieved. Note also that Proposition 1 addresses
issue (I) at the beginning of this Sect. 2.4.

Remark 3 Proposition 1 refers to the proportion of members in the population con-
tained in the model, and it belongs to the branch of mathematics called combinatorics.
In Sect. 4, this result is re-interpreted in probabilistic terms within the context of
exchangeable processes under the assumption that each list of observations has the
same probability to be drawn.15 We also note that, when preparing this manuscript, we
endeavored to engage the largest possible audience and, hence, we spent a substantial
amount of time to leave out any continuous mathematics. On the other hand, the inter-
ested reader can consult Theorem 1 in Calafiore and Campi (2005), which provides
a result in the same spirit as Proposition 1 that can be applied to generic probability
spaces. ∗

3 Beyond the complexity of a procedure: reliability withmodel
rejection

Computing c(P) is not always an easy task and,when c(P) is not available, Proposition
1 cannot be resorted to to determine the reliability of Procedure P . Moreover, in some
cases c(P) is computable but it turns out to be too large, or even equal to infinity, so
that Proposition 1 is of no help to bound the reliability. For example, given a sample
of points in R

2, consider the model M given by the convex hull of the points, see
Fig. 5.16 To see that in this case c(P) = ∞, consider a sample S of distinct points that
belong to a circle; then, certainly, all points in S are vertexes of the convex hull and
removing any of them before running the procedure results in a convex hull of reduced
size. Hence, c(P, S) equals the cardinality of S. On the other hand, the cardinality of
S can be arbitrarily large, from which it follows that c(P) = supS c(P, S) = ∞.

14 Aswe have said before the statement of Proposition 1, the evaluation of R(P) provided in the proposition
cannot be improved because it holds with equality for certain populations, a fact that is further commented
upon in Sect. 5.2. On the other hand, it remains that the evaluation of R(P) is worst-case and R(P) can
decay at a rate faster than the inverse of N for specific populations.
15 This positions the result within the tradition of the principle of indifference (a terminology coined by
John M. Keynes). While inchoate versions of this principle were already present in Blaise Pascal, Jacob
Bernoulli and Gottfried W. von Leibniz, the principle of indifference was fully developed into a theoretical
apparatus mainly in de Moivre (1718), and, later, in Laplace (1814).
16 A convex set is a set where the line segment connecting any two points in the set is entirely contained in
the set. Hence, a square or a disk is convex, but a horseshoe-shaped set is not. The “convex hull” of given
points is the smallest convex set that contains all the points.
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Fig. 5 The convex hull of N
points

The goal of this section is to provide an alternative that can be applied when a
suitable bound for c(P) is not available. The idea is that one waits until after the
model is constructed, and the model is accepted and used only when the complexity
of the procedure for the sample at hand turns out to be not too high; otherwise, the
model is judged to be too risky to use and therefore rejected. This study will lead us
to give an answer to question (II) posed at the beginning of Sect. 2.4.

To be specific, suppose that after P(S) is constructed, one evaluates c(P, S) and, if
c(P, S) is below or equal to an assigned threshold c (c < N ), the model is accepted,
otherwise it is rejected. In this context, the definition of reliability needs be modified
as follows (the index “c” in Rc(P) refers to the threshold c):

Rc(P) =
∑

{S:|S|=N and c(P,S)≤c} R(P(S)) + ∑
{S:|S|=N and c(P,S)>c} 1

#(subsets of the population with N elements)
. (3)

In the numerator, the reliability R(P(S)) is replaced by 1 (full reliability) whenever
c(P, S) > c since, in this case, the model is not used and the risk of incurring a wrong
prediction is therefore null.

By observing that in (3) the reliability R(P(S)) is accounted for only when
c(P, S) ≤ c, one might expect that Rc(P) cannot be lower than the reliability that
hold when c(P) = c (in which case the reliability R(P(S)) is always accounted for),
which, using the bound in Proposition 1, would give Rc(P) ≥ 1− c

N+1 . Somehow sur-
prisingly, this result is incorrect as Example 4 below shows.17 This fact is interpreted
as follows:

if we ask a complex question with c(P) > c and accept the answer only when the
answer turns out to be simple enough (c(P, S) ≤ c), then the answer is not as

17 A word of clarification is perhaps appropriate to dissipate any doubts regarding this claim. For a given
procedure and a given population, the right-hand side of (3) does return a value that is equal to or bigger
than that returned by the right-hand side of (2). The very point is that (3) applies also to populations that
lie outside the domain of applicability of (2) (populations for which the complexity exceeds c). When (3)
is applied to one of these populations, it can return a value larger than the upper bound given in Proposition
1 with c(P) = c despite the fact that one only accepts the model when the complexity is no more than the
threshold c.
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Fig. 6 Population for example showing that Rc(P) ≥ 1 − c/(N + 1) is not a valid bound

trustworthy as when we ask a simple question (c(P) = c) in the first place. That
is, the high complexity of a question is not compensated for by the simplicity of its
answer (refer back to question (II) at the beginning of Sect. 2.4).

The margin (1− c
N+1 ) − Rc(P) is a measure of the cost one pays for having asked a

complex question, even if the answer is accepted only when it turns out to be simple.

Example 4 (Rc(P) ≥ 1 − c/(N + 1) is not a valid bound) Consider a very simple
population with 4 members A, B,C, D where each member is described by 2 real
attributes x ′ and x ′′ as visualized in Fig. 6. Given a sample of N = 2 members,
suppose that M is given by the smallest rectangle with sides parallel to the coordinate
axes and a vertex in the origin (0, 0) that contains the sample of 2 members.
Take c = 1. There are 6 subsets of the population with 2 elements, which we next
analyze exhaustively. If S = {A, B}, then the dashed rectangle in Fig. 6 is obtained,
c = 1 and R(P(S)) = 0. If S = {A,C} or {A, D} or {B,C} or {B, D}, then c = 1 and
R(P(S)) = 1/2. Finally, if S = {C, D}, then the dashed-dotted rectangle is obtained
and, since in this case c = 2, the model is not used. Hence, R1(P) = (0 + 1/2 +
1/2+1/2+1/2+1)/6 = 1/2. However, 1− c/(N +1) = 1−1/3 = 2/3 > R1(P).
By increasing the number of points, one can see that counterexamples to relation
Rc(P) ≥ 1 − c/(N + 1) can be found for populations of any arbitrarily large size. ∗

Hence, asking difficult questions has a price even if we listen to the answer only
when the answer turns out to be simple, which is an epistemologically important fact.
On the other hand, it turns out that, quantitatively, the price is modest and the following
proposition delivers a lower bound for Rc(P).18

18 For simplicity, the proposition refers to when the cardinality of the population tends to infinity, which
is referred to as the “large population” set-up. The reader unfamiliar with the notation

(N
c
)
is referred to

Sect. 5.1 for an explanation. We also note that, in the formula, 1
N−c corresponds to exponentiation, that is,

the binomial coefficient
(N
c
)
is raised to the fractional exponent 1

N−c .
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Proposition 2 Given any procedure P, relation

Rc(P) ≥ 1
(N
c

) 1
N−c

· N − c

N − c + 1
(4)

holds true for any “large population”. ∗
The proof is given in Sect. 5.3.
It is useful to compare visually the lower bound given by Proposition 2 against

the bound 1 − c
N+1 in Proposition 1; this is provided in Fig. 7 for c = 1, 4, 10 and

increasing values of N .

4 Discussion

4.1 Interpretation in terms of exchangeable processes

Consider an ordered list (x1, x2, . . . , xN+1) of N + 1 members of the population.19

We assume that the set of all such lists forms the space of outcomes in a probabilistic
model in which each list is given the same probability. To compute this probability,
observe that in a population of, say, Q members, x1 can be any of the Q members, x2
can be any of the Q members except x1, and hence it is chosen from a set of Q − 1
members, and so on till the completion of the list. Therefore, the total numbers of lists
is Q · (Q − 1) · (Q − 2) · · · (Q − N ) = Q!/(Q − N − 1)! and the probability of
each list is the inverse of this number, i.e., p = (Q − N − 1)!/Q! (this makes the sum
of the probabilities of all lists equal to 1). In probabilistic terminology, this model is
said to be exchangeable, a word that remarks on the fact that the probability of lists
does not depend on the order in which members in the list appear.20 In this context,
the reliability R(P) of procedure P (Definition 4) can be re-written as a probability
as follows:

R(P) = P{xN+1 ∈ P(S(x1, . . . , xN ))}, (5)

where S(x1, . . . , xN ) is the sample obtained from the list (x1, . . . , xN ) by removing
its ordering [see Sect. 5.4 for a proof of equation (5)]. The interpretation is that R(P)

corresponds to the probability of constructing a model from the first N members in
a list of N + 1 members and then the (N + 1)-th member is correctly described by
the model. Further, by an application of the law of large numbers (see any textbook
on probability, e.g., Shiryaev (1996)) we also conclude that R(P) is the long term
average of successes in a repeated use of the procedure P over independent trials:

R(P) = lim
T→∞

1

T

T∑

i=1

1(x (i)
N+1 ∈ P(S(x (i)

1 , . . . , x (i)
N )),

19 The difference between a list and a sample is that the sample is a set and does not contain a concept of
ordering. Hence, two lists (a, b, c) and (b, c, a) are different, however, they correspond to the same sample.
20 The notion of exchangeability captures, and suitably formalizes, the principle of uniformity of nature
formulated by Hume (2008).
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Fig. 7 The right-hand side of (4) (blue, dash-dotted graph) against 1 − c
N+1 (green, dashed graph) for

c = 1, 4, 10. The horizontal axis gives the sample size N

where superscript (i) indicates the i-th trial and convergence of the limit on the right-
hand side to R(P) takes place in all common probabilistic ways (e.g., with probability
1 or in mean square sense).

4.2 Interpretation in the context of Popper’s theory of conjectures and refutations

In Popper’s refutation theory, a model is conjectured and tested against various
observations. The longer the model survives these attempts of falsification the more
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corroborated it becomes, and it is therefore expected to survive new invalidation tests
as they come along down the stream of observations, Popper (1963).

This soft description of Popper’s refutation approach can be given a quantitative
form by means of the theory of this article. In Popper’s approach a model M is
conjectured and provided beforehand (rather than constructed from observations).
To accommodate this situation, we can consider a class M of models that has the
conjectured model M as “base point”, while M also contains other subsets of the
population that are larger than M (that is, M is contained in all models). M is given
the smallest value in the criterion of optimality (b) of Procedure P in Sect. 2.2. In this
way, we accept M if all N observations are contained in M , in which case M is not
falsified. Correspondingly, we can use Proposition 2 with c = 0 (when M survives,
the complexity is zero because with no observations we choose model M) to lower
bound the reliability associated with accepting the model when it is not falsified. This
lower bound equals N

N+1
21 and this result can be interpreted as a quantitative statement

on the level of corroboration in Popper’s refutation theory. As N grows, the level of
corroboration increases, converging to the value 1 when, in the limit, infinitely many
observations are used to confirm the model.

Interestingly, the theory of this article also accommodates procedures that allow on-
line updating of the model as new observations come along, so that the conjecture and
refutation paradigm becomes a special case of a broader framework. To understand
this, suppose that we collect observations in succession and update our model by
using procedure P in Sect. 2.2 so obtaining a sequence of models M1, M2, M3, . . .

generated after we have obtained N = 1, 2, 3, . . . observations. If we know in advance
the complexity c(P) of the procedure, to all these models Proposition 1 can be applied
and the reliability is lower bounded by 1 − c(P)

N+1 ; as before, this can be interpreted
as a quantitative statement on the level of corroboration and it approaches 1 as N
increases, with a constant set by the value of c(P). Moreover, to boost the reliability
of the procedure, we can also decide to reject a model when it is too complex and
Proposition 2 can be applied to this context. Following this approach, we can come
up with a rigorous evaluation of the level of corroboration (regardless of whether or
not the value c(P) is available), so expanding the scope of Popper’s analysis.22 These
results provide a justification of inductivemethods bywhich theories are progressively
updated based on observations.

5 Derivation of the results

5.1 Frequently used symbols

1(x ∈ M) is “indicator function” of the model M , i.e. 1(x ∈ M) is 1 corresponding
to members x of the population that are in M and 0 otherwise.
Given an integer L , symbol L!, to be read “L factorial”, stands for the number obtained
by multiplying all integers from L downward till 1: L! = L · (L − 1) · · · 2 · 1.
21 Recall that

(N
0
) = 1. so that the first factor in the right-hand side of (4) is 1.

22 In Popper’s approach, a model is rejected as soon as complexity exceeds the value 0.
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Symbol
(Q
N

)
, to be read “Q choose N”, is the number of distinct subsets of cardinality N

that canbe constructed froma set of cardinalityQ. It turns out that
(Q
N

) = Q!
(Q−N )!N ! . For

example, the number of distinct subsets of cardinality N = 2 that can be constructed
from a set of cardinality Q = 3 is 3, and this number is given by

(Q
N

) = Q!
(Q−N )!N ! =

3·2·1
(1)(2·1) = 3.

5.2 Derivation of Proposition 1

Refer to Sect. 5.1 for the definition of symbols.
Letting Q be the size of the population, we have

R(P) =
∑

{S:|S|=N } R(P(S))
(Q
N

)

=
∑

{S:|S|=N }
#(members of the population in P(S))−N

#(members of the population)−N
(Q
N

)

=
∑

{S:|S|=N }
∑

{x∈population} 1(x∈P(S))−N
Q−N

(Q
N

)

=
∑

{S:|S|=N }

∑
{x∈population−S} 1(x ∈ P(S))

(Q − N ) · (QN
) , (6)

where “population− S” is the set of all members in the population except those in S.
In the last expression, the two summations considered together range over all pairs of
subsets of the population, where the first subset S has cardinality N and the second {x}
has cardinality 1 and this one is not in the first subset. The indicator function checks
for the membership of x , which acts as a test member, to the model constructed from
S. We can reorganize these summations by first selecting N + 1 members from the
population in all possible ways, and then, one by one, let each of the N + 1 members
of this subset act as a test member. In this way, (6) becomes (G − x means subset G
from which x is removed):

1

(Q − N ) · (Q
N

)
∑

{G:|G|=N+1}

∑

{x∈G}
1(x ∈ P(G − x)). (7)

To proceed, we consider P(G), the model constructed by P when the sample is
the whole G (without removing x). By Definition 1, a set of members of cardinality
c(P,G) fromG suffices to generate model P(G) using P . Let H be one such set (“one
such” and not “the” because the set may not be unique). Hence, P(H) = P(G). Note
that if H is augmented with other members taken from G so that an enlarged subset
H ′ is obtained, then P(H ′) = P(H). In fact, since P(H) = P(G) and P(G) contains
the whole subset G, P(H) already contains the new members that have been added to
obtain H ′ from H . Hence, P(H ′) = P(H) = P(G). Consider now G − x ; if G − x
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contains H , then we can take H ′ = G − x and conclude that x ∈ P(G) = P(G − x).
Therefore, x ∈ P(G − x) holds true for at least (we say “at least” because removing
a member x that is in H can still give a set G − x that contains H ; this may happen
when G contains multiple repeats of x , i.e., the same x appear more than once in G)
N +1−c(P,G) choices of x . On the other hand, Definition 2 yields c(P,G) ≤ c(P),
so that N + 1 − c(P,G) ≥ N + 1 − c(P). We conclude that (7) is bounded from
below by the following quantity

1

(Q − N ) · (Q
N

)
∑

{G:|G|=N+1}
(N + 1 − c(P))

= 1
Q−N
N+1 · (Q

N

)
∑

{G:|G|=N+1}

N + 1 − c(P)

N + 1
. (8)

Note now that

Q − N

N + 1
·
(
Q

N

)

= Q − N

N + 1
· Q!
(Q − N )!N ! = Q!

(Q − N − 1)!(N + 1)! =
(

Q

N + 1

)

,

so that (8) becomes

1
( Q
N+1

)
∑

{G:|G|=N+1}

(

1 − c(P)

N + 1

)

= 1 − c(P)

N + 1

because summation runs over all distinct subsets G of cardinality N + 1 constructed
from a set of cardinality Q, which is equal to

( Q
N+1

)
. This concludes the derivation. 
�

By inspecting the derivation, one can see that if, for any G, c(P,G) = c(P)

and set H is unique, then all inequalities in the derivation become equality so that
R(P) = 1−c(P)/(N+1). It is not difficult to construct examples where this happens,
which shows that the result in Proposition 1 is not improvable.

5.3 Derivation of Proposition 2

Let Q be the size of the population. Given a sample S of cardinality N , let K (S) :=
|P(S)| − N , so that (compare with Definition 3)

R(P(S)) = K (S)

Q − N
.

For any given K ∈ [0, Q − N ], we have

#(S : c(P, S) ≤ c and K (S) ≤ K ) ≤
{(Q

c

)(K+N−c
N−c

)
, if K ≤ K̄

(Q
N

)
, otherwise,

(9)
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where K̄ ≥ 0 is the biggest integer such that
(Q
c

)(K+N−c
N−c

)
is smaller than or equal to

(Q
N

)
.23 Proving (9) requires some attention. For an S to be counted in the left-hand side

of (9), this S must first of all satisfy c(P, S) ≤ c, that is, there exists a sub-sample of
at most cmembers of S so that the procedure applied to this sub-sample gives P(S). If
this sub-sample has less than cmembers, then augment it with arbitrary members from
S so as to get a sub-sample of cardinality c. The procedure P applied to this latter sub-
sample also gives P(S). Consider all possible sub-samples of cardinality c from the
population. There are

(Q
c

)
such sub-samples, which we enumerate as SS1, · · · , SS(Qc )

(SS stands for “Sub-Sample”). Hence, P(S) = P(SS j ) for some j ∈ [1, (Qc
)]. The

second condition for an S to be counted in the left-hand side of (9) is that K (S) ≤ K .
This implies that |P(S)| = K (S) + N ≤ K + N . As a consequence, we can bound
the left-hand side of (9) as follows:

#(S : c(P, S) ≤ c and K (S) ≤ K )

≤ #(S : P(S) = P(SS j ) for some j ∈
[

1,

(
Q

c

)]

and |P(S)| ≤ K + N )

≤
(Qc )∑

j=1

#(S : P(S) = P(SS j ) and |P(SS j )| ≤ K + N ). (10)

Consider a fixed j , say j = j̄ . In order that P(S) = P(SS j̄ ) (first condition in (10)),
the other N−cmembers in S besides SS j̄ must be in P(SS j̄ ), which (second condition
in (10)) is a set that has no more than K + N − c elements besides SS j̄ . It follows that

the number of distinct ways S can be selected is at most
(K+N−c

N−c

)
, i.e.,

#(S : P(S) = P(SS j̄ ) and |P(SS j̄ )| ≤ K + N ) ≤
(
K + N − c

N − c

)

.

Hence, the right-hand side of (10) is bounded by
(Q
c

)(K+N−c
N−c

)
. This establishes the

first bound in the right-hand side of (9). The second bound
(Q
N

)
in the right-hand side

of (9) is obviously true since the total number of samples S that can be formed from
a population of Q members is

(Q
N

)
.

Equation (9) is the fundamental building block in the derivation that follows.
Write,24

Rc(P) =
∑

{S: c(P,S)≤c} R(P(S)) + ∑
{S: c(P,S)>c} 1

(Q
N

)

=
∑

{S: c(P,S)≤c} R(P(S)) + ∑
{S: c(P,S)>c} 1

(Q
N

)

23 If
(Q
c
)(K+N−c

N−c
)

>
(Q
N

)
for all K ≥ 0, then the right-hand side of (9) is taken always to be equal to

(Q
N

)
.

24 To ease the notation, in the equation belowwewrite the set overwhich summation runs as {S : c(P, S) ≤
c} instead of {S : |S| = N and c(P, S) ≤ c}, that is, the cardinality of set S is omitted; a similar shorthand
applies to the the case c(P, S) > c.
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+
∑

{S: c(P,S)≤c} 1 − ∑
{S: c(P,S)≤c} 1

(Q
N

)

= 1 −
∑

{S: c(P,S)≤c}(1 − R(P(S)))
(Q
N

)

= 1 −
∑

{S: c(P,S)≤c}
Q−N−K (S)

Q−N
(Q
N

) . (11)

Note that Q−N −K (S) = ∑Q−N−1
K=0 1(K (S) ≤ K ), so that

∑
{S: c(P,S)≤c}(Q−N −

K (S)) = ∑
{S: c(P,S)≤c}

∑Q−N−1
K=0 1(K (S) ≤ K ) = ∑Q−N−1

K=0

∑
{S: c(P,S)≤c} 1(K (S)

≤ K ) = ∑Q−N−1
K=0 #(S : c(P, S) ≤ c and K (S) ≤ K ), which, using (9), is bounded

by
K̄∑

K=0

(
Q

c

)(
K + N − c

N − c

)

+
Q−N−1∑

K=K̄+1

(
Q

N

)

. (12)

Using this expression in (11) yields:

Rc(P) ≥ 1 − 1

Q − N

(Q
c

)

(Q
N

)

K̄∑

K=0

(
K + N − c

N − c

)

− Q − N − 1 − K̄

Q − N

= 1 + K̄

Q − N
− 1

Q − N

(Q
c

)

(Q
N

)

K̄∑

K=0

(
K + N − c

N − c

)

. (13)

Term
∑K̄

K=0

(K+N−c
N−c

)
can be further bounded as follows (the first equality is the

hockey-stick identity)

K̄∑

K=0

(
K + N − c

N − c

)

=
(
K̄ + 1 + N − c

N − c + 1

)

≤ (K̄ + 1 + N − c)N−c+1

(N − c)!(N − c + 1)
, (14)

which, used in (13), gives

Rc(P) ≥ 1 + K̄

Q − N
− 1

Q − N

(Q
c

)

(Q
N

)
(K̄ + 1 + N − c)N−c+1

(N − c)!(N − c + 1)

= 1 + K̄

Q − N
− 1

Q − N

Q!
(Q−c)!c!

Q!
(Q−N )!N !

(K̄ + 1 + N − c)N−c+1

(N − c)!(N − c + 1)

= 1 + K̄

Q − N
− 1

Q − N

(Q − N )!
(Q − c)!

(
N

c

)
(K̄ + 1 + N − c)N−c+1

N − c + 1
. (15)
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To proceed, we evaluate K̄ and show the validity of relation

K̄ = 1
(N
c

) 1
N−c

Q + o(Q), (16)

where o(Q) stands for a quantity that grows with Q less than linearly or, in formulae,
limQ→∞ o(Q)/Q = 0. To show (16), recall that K̄ ≥ 0 is the biggest integer such
that

(
Q

c

)(
K + N − c

N − c

)

= Q!
(Q − c)!c!

(K + N − c)(K + N − c − 1) · · · (K + 1)

(N − c)!

is smaller than or equal to

(
Q

N

)

= Q!
(Q − N )!N ! ,

which, after reorganizing the terms, becomes

(
N

c

)

(K + N − c)(K + N − c − 1) · · · (K + 1)

≤ (Q − c)(Q − c − 1) · · · (Q − N + 1).

Dividing both sides of this inequality by QN−c, with the position α := K/Q one
obtains

(
N

c

) (

α + N − c

Q

)(

α + N − c − 1

Q

)

· · ·
(

α + 1

Q

)

≤
(

1 − c

Q

) (

1 − c + 1

Q

)

· · ·
(

1 − N − 1

Q

)

. (17)

α takes on rational value K/Q. As Q → ∞, α can approach any real in [0, 1] so that in
the limit when Q → ∞ the largest α satisfying (17) is the solution of the polynomial
equation obtained from (17) by setting to zero the terms that vanish as Q → ∞, this
polynomial is

(
N

c

)

αN−c = 1.

Hence,with the notation K̄ (Q), which emphasizes the dependence of K̄ on Q, we have

K̄ (Q)/Q =: ᾱ(Q) → 1/
(N
c

) 1
N−c as Q → ∞, or, equivalently, K̄ (Q) = Q/

(N
c

) 1
N−c +

o(Q), which is (16).
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Now, to obtain the result in Proposition 2 substitute (16) in equation (15) to obtain

Rc(P) ≥
1 + 1

(Nc )
1

N−c
Q + o(Q)

Q − N

− 1

Q − N

(Q − N )!
(Q − c)!

(
N

c

)

(

1

(Nc )
1

N−c
Q + o(Q) + 1 + N − c

)N−c+1

N − c + 1
.

(18)

As Q → ∞, the first term in the right-hand side of (18) tends to 1/
(N
c

) 1
N−c ; the second

term can instead be handled as follows:

1

Q − N

(Q − N )!
(Q − c)!

(
N

c

)

(

1

(Nc )
1

N−c
Q + o(Q) + 1 + N − c

)N−c+1

N − c + 1

= 1

Q − N

1

(Q − c) · · · (Q − N + 1)

(
N

c

)

(

1

(Nc )
1

N−c
Q + o(Q)

)N−c+1

N − c + 1
(term 1 + N − c has been incorporated in o(Q))

= Q

Q − N

QN−c

(Q − c) · · · (Q − N + 1)

(
N

c

)

⎛

⎝ 1

(Nc )
1

N−c
Q+o(Q)

⎞

⎠

N−c+1

QN−c+1

N − c + 1
,

where the last expression has been obtained by multiplying the numerator and
the denominator by QN−c+1. As Q → ∞, this latter expression tends to(N
c

) 1

(Nc )
N−c+1
N−c

1
N−c+1 = 1

(Nc )
1

N−c

1
N−c+1 . Using the results obtained for the first term

and the second term in (18), we conclude that, as Q → ∞ (large population), Rc(P)

satisfies the relation

Rc(P) ≥ 1
(N
c

) 1
N−c

(

1 − 1

N − c + 1

)

,

and this concludes the derivation of the proposition. 
�

5.4 Derivation of equation (5)

Note first that there are N ! lists of N members that give the same sample. In fact,
a permutation of the members of the list does not change the sample and the total
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number of permutations is N !: one first chooses a member from a collection of N
members to be placed in first position, then chooses a member to be placed in second
position from the collection of the remaining N −1 members and so on corresponding
to an overall number of choices given by N · (N − 1) · (N − 2) · · · 1 = N !. Hence,
the expression

∑
{S:|S|=N } R(P(S)) appearing in Definition 4 of R(P) can also be

written as
∑

{list:|list|=N } R(P(S(list)))
N ! , where S(list) is the sample generated from a list by

removing its ordering. We therefore have:

R(P) =
∑

{S:|S|=N } R(P(S))

#(subsets of the population with N elements)

=
∑

{list:|list|=N } R(P(S(list)))

N ! · #(subsets of the population with N elements)

=
∑

{list:|list|=N }
#(members of the population in P(S(list)))−N

Q−N

N ! · (Q
N

)

[use Definition 3]

= (Q − N − 1)!
Q!

∑

{list:|list|=N }
[#(members of the population in P(S(list))) − N ].

(19)

Note now that, given any list of N members, quantity [#(members of the population in
P(S(list))) − N ] can be evaluated by referring to all lists of N + 1 members that are
obtained from the original list of N members by augmenting this list with one more
arbitrary member that was not in the original list and then counting in howmany cases
this added member is in the model generated by the original list. This gives:

∑

{list:|list|=N }
[#(members of the population in P(S(list))) − N ]

=
∑

{list:|list|=N+1}
1(xN+1 ∈ P(S(x1, . . . , xN ))),

which, used in (19), finally gives

R(P) = p ·
∑

{list:|list|=N+1}
1(xN+1 ∈ P(S(x1, . . . , xN ))),

wherewe have also used the fact that (Q−N−1)!/Q! is the probability p of each list of
N +1members. The derivation of the result is completed by noting that the expression
on the right-hand side is the probability of the event {xN+1 ∈ P(S(x1, . . . , xN ))}.
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