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Abstract— Data-driven methods aim to design predictors
and controllers that adapt to the environment by utilizing
information sourced from data. Due to their reliance on a
finite amount of data, these designs are inevitably subject to a
degree of imprecision, which can result in mistakes when they
are applied to new cases. In this contribution, we introduce
a sequential decision scheme in which the user is provided
at each step with both a design and an assessment of the
associated risk of making mistakes. The user decides whether
to apply the design based on a threshold on the acceptable
risk level. Novel results are presented to evaluate the average
number of mistakes in this sequential data-driven risk-averse
decision making framework. This requires in-depth analyses
because, as we will see, naive evaluations based on common
sense may lead to misleading results. Many are the potential
applications, including the optimization of control actions over
shifting windows (as in MPC), investments with recourse, and
sequential prediction approaches.

I. INTRODUCTION AND PROBLEM STATEMENT

The scenario approach is a data-driven paradigm for
control, design and decision-making at large in the presence
of uncertainty, [1]. Motivated by robust control techniques,
the scenario approach was originally developed in a robust
convex optimization framework, [2]–[4], but through the
years has come to encompass much more general decision
schemes, [5]–[10], with applications to machine learning,
economics and game theory. See [11] for a recent survey.
The robust convex optimization setup, however, remains
relevant in many applications and the sake of concreteness
suggests us to refer to this context in the present paper.
In this framework, the decision process is abstracted as
follows. Given a family of convex constraint sets Xδ ⊆ Rd

parameterized by an uncertainty element δ, a decision vector
of optimization variables x ∈ Rd has to be chosen within
a convex decision set X so as to minimize a convex cost
function c(x), with the requirement that constraint x ∈ Xδ

is satisfied for a large enough portion of the possible values
of δ (some values of δ can be disregarded to avoid over-
conservatism in the design). δ is modeled as the outcome
from a probability space (∆,D,P), while no knowledge
on this probability space is assumed to be in the user’s
hands (unknown uncertainty generation mechanism). The
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user is given a sample of independent draws from (∆,D,P),
denoted by δi, i = 1, . . . , N . These draws are called the
scenarios. They are used in a data-driven robust program
where scenarios substitute the way vaster multitude of all
possible δ’s. This leads to the so-called robust1 scenario
optimization problem:

min
x∈X⊆Rd

c(x)

subject to: x ∈
⋂

i=1,...,N

Xδi , (1)

whose solution, assuming it exists and is unique, is denoted
by x∗

N and is called the scenario solution.
While x∗

N is feasible for the observed scenarios
δ1, . . . , δN , still it can be in violation of the constraints
associated to δ’s that have not be seen. Hence, it matters
to quantify the probability for this to happen because this
describes the robustness of the design against instances of δ
that are encountered in the future. Such probability is called
the risk of x∗

N . The main issue with its evaluation is that
the risk is not directly accessible because of the lack of
knowledge of P.

In mathematical terms, this is captured by the following
definition.

Definition 1 (risk of a generic x): The risk of a given
x ∈ X is defined as V (x) = P{δ ∈ ∆ : x /∈ Xδ}. ⋆

The risk of x∗
N is then given by V (x∗

N ). This is a random
variable over (∆N ,DN ,PN ) given the dependence of x∗

N on
δ1, . . . , δN . The theory of the scenario approach then aims
at characterizing V (x∗

N ) distribution-free, that is, the aim is
to identify properties of V (x∗

N ) that are valid for every P
and, therefore, can be applied even when P is unknown.

We quickly recall three milestones in the theory of the
scenario approach that are relevant to the present work. In
[12], E[V (x∗

N )], the expected value of V (x∗
N ), was proven

to be bounded by d
N+1 ; in [13], the distribution of V (x∗

N )
was proven to be (first-order) stochastically dominated by a
Beta distribution with parameters d and N−d+1; in [14], the
risk V (x∗

N ) has been put in relation with a data-dependent
quantity s∗N , called complexity, which is the number of a

1Problem (1) is robust in the sense that all the constraints indexed by
δ1, . . . , δN are rigidly enforced, so expressing an attitude to safeguard
against the worst. We reiterate that the theory of the scenario approach
has been extended to more flexible schemes such as relaxed optimization
problems where a solution is allowed to violate some of the constraints
(see [11, Section 3.4]). In the same vein, the results in this paper can also
be extended to relaxed optimization problems; we do not delve into this
extension due to space limitations.
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minimal amount of scenarios that suffice to reconstruct x∗
N

(see Definition 3 below). The complexity can be measured
from data and has been proven to be a valid statistic to
estimate V (x∗

N ).
In the next subsection I-A, we start with revising more

deeply previous results on E[V (x∗
N )] and their relevance to

the problem of evaluating the average number of mistakes
in sequential data-driven decision making. This provides the
starting point toward establishing our main contribution in
this paper: the introduction of a new risk-averse data-driven
decision making framework and the evaluation of its average
number of mistakes.

A. Existing results on E[V (x∗
N )] and their implications

Two of the first investigations in the scenario approach,
[12], [15], targeted explicitly the quantity E[V (x∗

N )]. The
key result in [12] is that, if s∗N never exceeds a given value
c, then

E[V (x∗
N )] ≤ c

N + 1
. (2)

The aforementioned bound d/(N + 1) then follows because
provably, see [12], s∗N ≤ d holds for every problem within
the framework of (1).

Under the assumption that scenarios are i.i.d. draws, it
is easy to reinterpret E[V (x∗

N )] as the total probability that
N + 1 scenarios δ1, . . . , δN , δN+1 are drawn such that the
“test” constraint x ∈ XδN+1

is violated by the solution x∗
N

obtained by solving (1) with the first N scenarios, see [15].
In formulas, this is written as

E[V (x∗
N )] = PN+1{x∗

N /∈ XδN+1
}. (3)

This interpretation makes the bound on E[V (x∗
N )] valuable

in sequential decision schemes where the solution is built
based on δ1, . . . , δN and used against a new scenario δN+1,
and then the process is repeated over and over, each time
considering a new sample of scenarios δ1, . . . , δN , δN+1.
By the law of large numbers, the bound on E[V (x∗

N )] =
PN+1{x∗

N /∈ XδN+1
} provides an upper bound to the long-

run frequency of failures of the solution against the N+1-th
scenario. We mention here two applications that have been
explored in the literature.

1) Investments based on a sliding window of data: In
[16, Section 4.2], a sequence of time-indexed scenarios {δt :
t = 1, 2, 3, . . .} representing the rate of returns of a body
of financial assets is considered. At a time t ≥ N , the user
decides how to invest a given budget on the assets by solving
a problem like (1) based on the last N observed scenarios,
over the time window t, . . . , t−N+1. The process is repeated
at t, t+1, t+2, . . . because every next day a new scenario
is revealed and one wants to update the investment to better
adhere to the market trends. In this context, the risk V (x∗

N )
is the probability of exceeding a pre-defined loss threshold
(shortfall event), and, under the i.i.d. assumption, the law of
large numbers ensures that the frequency of shortfalls in the

long run can be bounded by the right-hand side of (2).2 Note
that the usage of a sliding window of fixed length N allows
one to accommodate slow time-varying distribution Pt (as is
the case in practice). The idea is that if Pt can be considered
as constant along a time window, then the conclusions drawn
under the ideal i.i.d. assumption remain approximately valid.

2) Receding Horizon Control of Dynamic Systems: In
[17], the result in (2) is employed to bound the average
number of constraint violations in Scenario-based Model
Predictive Control, where at each time step a new control
action is computed based on a sample of scenarios according
to the receding horizon paradigm. In this dynamic setup,
there exists a non vanishing correlation between problems
at various time steps because of the coupling effect of the
system state. While the classic law of large number is not
directly applicable, martingale theorems are employed in
[17] to relate the frequency of violations in the long run
to E[V (x∗

N )].

B. The contribution of this paper

A severe limitation of the result in (2) is that it relies on
bounding s∗N a priori by means of a constant c, which may be
conservative. Indeed, for many problems s∗N ≪ c with high
probability. Results in [14] have shown that s∗N is actually
directly linked to the risk: with high confidence low values
of s∗N correspond to low risk, while a large s∗N signals a
high risk. Since s∗N is accessible to the user, this suggests
new sequential decision schemes, where solutions are still
repeatedly computed on multiple samples of scenarios, but
at each iteration the user decides after computing the actual
value of s∗N whether to employ the current solution x∗

N . For
example:

1) in a sequence of investments (Section I-A.1), if s∗N is
“too high”, suggesting a high risk of shortfall, the user
may not invest or may invest in an alternative low risk
asset;

2) in receding horizon control (Section I-A.2), if s∗N is “too
high”, suggesting a high risk of violating the constraints,
the user may opt for a backup control policy, cautious
but safer.

Let us denote by k̄, k̄ ≤ N the user-chosen complexity
threshold, so that x∗

N is adopted when s∗N ≤ k̄ (using a
machine learning terminology, we can say that the solution
“is rejected” when s∗N > k̄, [18]).3 Then, the question arises:
what is the probability Pk̄ of the event that

(i) a solution x∗
N is computed from (1) based on

N scenarios δ1, . . . , δN ,

2This is true in spite of the partial overlap between time windows. Indeed,
the problems solved at the time instants N, 2N, 3N, 4N, . . . are the same
problem instantiated with different i.i.d. data and the law of large numbers
allows one to bound the average number of shortfalls incurred over the time
instants N, 2N, 3N, 4N, . . . by means of E[V (x∗

N )]. The same argument
can be repeated for the average number of shortfalls along the time instants
k + N, k + 2N, k + 3N, . . ., for k = 1, 2, . . . , N − 1, yielding a bound
for the average number of shortfalls over all t.

3In some contexts, rejecting to use a decision comes to a cost. Such a
cost needs be considered when setting up a rejection policy. However, such
an issue is not explored in this paper, which only aims at investigating how
the number of mistakes computed in this scheme evolve.
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(ii) the complexity of the solution is small enough
(s∗N ≤ k̄),
(iii) the solution violates the next constraint asso-
ciated with δN+1 (i.e., x∗

N /∈ XδN+1
)?

As is clear, by the law of large numbers, Pk̄ relates to the
frequency of mistakes (x∗

N /∈ XδN+1
) in this new sequential

scheme, and the question above, which has thus far remained
unanswered, is crucial to quantify the advantage offered
by incorporating a rejection option in a sequential scenario
scheme.

The main contribution of this paper lies in obtaining a
valid upper bound for Pk̄ for any k̄. Specifically, in the next
Section II formal definitions and assumptions are introduced.
Section III then contains the main results of this paper: first,
it is shown that (contrary to what one may be tempted to
think by a hasty analogy with (2)) k̄

N+1 is not a valid upper
bound to Pk̄; then, valid distribution-free bounds for Pk̄ are
provided. Finally, Section IV illustrates the usage of our
bounds on a simple sequential prediction problem, while
some conclusions are drawn in Section V.

II. MATHEMATICAL PRELIMINARIES

We start with some formal definition and standard assump-
tions borrowed from [14].

Assumption 1 (existence and uniqueness): For every N
and for every sample δ1, δ2, . . . , δN , problem (1) admits a
solution. If more than one solution exists, x∗

N is singled out
by the application of a convex tie-break rule, which breaks
the tie by minimizing an additional convex function t1(x),
and, possibly, other convex functions t2(x), t3(x), . . . if the
tie still occurs. ⋆

Definition 2 (support constraint): A constraint x ∈ Xδi

of the scenario optimization problem (1) is called a support
constraint if its removal (while all other constraints are
maintained) yields a new solution, different from x∗

N . ⋆

The following assumption rules out situations where the
boundary of distinct constraints accumulate anomalously.
The reader is referred to [14] for a thoroughgoing discussion
on this assumption.

Assumption 2 (non-degeneracy): For every N , the solu-
tion x∗

N to problem (1) coincides with probability 1 (with
respect to the sample δ1, δ2, . . . , δN ) with the solution that
is obtained after eliminating all the constraints that are not
of support. ⋆

Definition 3 (complexity): The complexity s∗N of the sce-
nario optimization problem (1) is the number of its support
constraints. ⋆

The complexity s∗N depends on the random sample
δ1, δ2, . . . , δN and is therefore a random variable over
(∆N ,DN ,PN ) like V (x∗

N ). Importantly, given a set of
scenarios δ1, . . . , δN , the user can compute the value of
s∗N , while computing V (x∗

N ) requires knowledge of the
distribution P, which is unknown.

Remark 1: The terminology “complexity” was first intro-
duced in [19]. It hints at the fact that the solution can be

reconstructed from s∗N scenarios and, hence, s∗N represents
a “complexity of representation” of the solution. The recent
literature on the scenario approach has determined that the
joint distribution of V (x∗

N ) and s∗N has notable problem-
invariant properties. In particular, it is possible to construct
valid and effective confidence intervals for V (x∗

N ) based on
s∗N , [19]. This is the theoretical ground justifying using s∗N
as a proxy for the inaccessible risk V (x∗

N ); ⋆

Going back to the problem stated in Section I-B, we recog-
nize that

E[V (x∗
N )1

(
s∗N ≤ k̄

)
]

(1 (·) is the indicator function: 1 (·) = 1 if · is true, 1 (·) = 0
otherwise) is the crucial quantity to be bounded instead of
E[V (x∗

N )]. In fact, by the definition of V (x∗
N ),

E[V (x∗
N )1

(
s∗N ≤ k̄

)
]

=

∫
∆N

[∫
∆

1 (x∗
N /∈ Xδ) P(dδ)

]
· 1

(
s∗N ≤ k̄

)
PN (dδ1, . . . ,dδN )

=

∫
∆N+1

1
(
x∗
N /∈ XδN+1

∧ s∗N ≤ k̄
)

PN (dδ1, . . . ,dδN ,dδN+1)

= PN+1{x∗
N /∈ XδN+1

∧ s∗N ≤ k̄}. (4)

That is, E[V (x∗
N )1

(
s∗N ≤ k̄

)
] is the quantity Pk̄ defined

in the Introduction.

III. MAIN RESULTS

The main achievement of this paper is offering a valid
(and useful) upper-bound for E[V (x∗

N )1
(
s∗N ≤ k̄

)
]. This is

stated as Theorem 1 in Section III-B. Before doing this, we
show that the naive bound k̄

N+1 is not valid and, therefore,
that it is necessary to take a margin from it.

A. An impossibility result

Motivated by (2), it is tempting to conjecture that

(conjecture) E[V (x∗
N )1

(
s∗N ≤ k̄

)
] ≤ k̄

N + 1
. (5)

Proposition 1: The conjecture (5) is false in general. ⋆

Proof: We quickly note that the conjecture (5) was re-
futed for exchangeable (but non-i.i.d.) sequences of scenarios
in [20, Section 3]. Here, we construct a simple counterex-
ample under the current assumptions, building on the same
optimization problem as in [14, Section 8]. The problem is
briefly recalled in Fig. 1. Let us consider N = 2 constraints,
and set k̄ = 1. The probability of s∗N ≤ 1 is (1 − p)2 +
2p(1−p), which is the probability of sampling two U-shaped
constraints or one V-shaped constraint together with one U-
shaped constraint. In both cases, the risk is no smaller than
the probability of drawing a V-shaped constraint, which is p.
Therefore, E [V (x∗

N )1 (s∗N ≤ 1)] ≥ p · [(1−p)2+2p(1−p)].
With p = 1√

3
, we obtain E [V (x∗

N )1 (s∗N ≤ 1)] ≥ 1√
3
· 2
3 >

1
3 = 1

2+1 .
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optimization
direction

Fig. 1. Representation of the 2-dimensional optimization problem of [14,
Section 8], where one minimizes x2 subject to random constraints belonging
to two classes: V-shaped constraints have probability p to be drawn, while
U-shaped constraints have probability 1− p.

B. Valid bound for E[V (x∗
N )1

(
s∗N ≤ k̄

)
]

Theorem 1: Under Assumptions 1 and 2, it holds that

E[V (x∗
N )1

(
s∗N ≤ k̄

)
] ≤

{
rN,k̄ if k̄ < N

2
k̄
N if k̄ ≥ N

2

,

where

rN,k̄ := min
ℓ=0,1,...,N

(
N
k̄

)(
ℓ
k̄

) (
N − ℓ

N − ℓ+ 1

)N−ℓ
1

N − ℓ+ 1
.

⋆
Proof: The proof can be found in the internal

report [21], which is available at the following URL:
https://algocare.it/IntRep/CDC2024AverageProofTh1.pdf.

Remarkably, the bound is rather close to the unattainable
value k̄

N+1 , even for small values of N , see Figure 2.

IV. NUMERICAL EXAMPLE

We illustrate an application of Theorem 1 to sequential
predictions, performed by an Interval Predictor Model (IPM),
[22]–[25]. IPM is a rule that assigns to each value of an
explanatory variable u (system input) an interval that is used
to predict the corresponding system output y. The prediction
scheme is described in the next section.

A. A sequential prediction scheme

In the present context the scenarios are input-output pairs
(u, y) ∈ R2 that are sequentially generated by an unknown
system, in such a way that (u1, y1), (u2, y2), . . . are i.i.d.
draws from a probability measure P. N and d below are two
given positive integers with d ≥ N .

At every time t ≥ N , we have access to the last N data
points (ut−N+1, yt−N+1),(ut−N+2, yt−N+2),. . .,(ut, yt); an
interval predictor is trained on these N data points and
possibly rejected based on its complexity; if it is not rejected,
then, as soon as the next input ut+1 becomes available,
the predictor is used to predict the corresponding, not yet
available, output yt+1. The exact details of the procedure
are provided below. Note that the procedure depends on two
user-chosen hyperparameters:

• k̄ is the complexity threshold that, when exceeded,
determines the rejection of the predictor;

• w ∈ R is the enforced width of the prediction interval.
Moreover, M is the number of runs after which we stop
the iterative procedure. The procedure is initialized at time
t := N , by setting a misprediction counter mt to zero, i.e.,
mN := 0.
ITERATIVE PROCEDURE
P.1 Solve the following polynomial fitting problem (with

L2-norm Morozov regularization4), where θj denotes
the j-th component of vector θ ∈ Rd:

min
θ∈Rd

∥θ∥2

subject to:

∣∣∣∣∣∣yi −
d∑

j=1

θj · (ui)
j−1

∣∣∣∣∣∣ ≤ w,

i = t−N + 1, . . . , t (6)

P.2 Denote by θ∗N the solution to the problem above.
Compute s∗N , the number of support constraints of (6).

P.3 IF s∗N > k̄, THEN reject the predictor θ∗N ; wait until the
next input ut+1 and the next output yt+1 are available,
and record them; set mt+1 := mt and GO TO step P.6;
ELSE proceed with the next step P.4.

P.4 Wait until the next input ut+1 becomes available, and
record it. Construct the prediction interval [

∑d
j=1 θ

∗
N,j ·

(ut+1)
j−1−w,

∑d
j=1 θ

∗
N,j ·(ut+1)

j−1+w] for the output
yt+1.

P.5 Wait until the actual value of yt+1 becomes available
and record it. IF yt+1 /∈ [

∑d
j=1 θ

∗
N,j · (ut+1)

j−1 −
w,

∑d
j=1 θ

∗
N,j · (ut+1)

j−1 + w] (i.e., there is a mis-
prediction), THEN set mt+1 := mt + 1; ELSE set
mt+1 := mt.

P.6 Let the time windows shift by setting t := t+1. IF t <
N +M , THEN GO TO P.1; ELSE end the procedure.

When the procedure ends, the misprediction rate is given
by 1

MmN+M . We show next that choosing k̄ according to
Theorem 1 allows one to keep control on the misprediction
rate.

B. Usage of Theorem 1

For the sake of concreteness, let N = 100 and d = 101,
and assume that delivering a prediction is desirable, provided
that the misprediction rate be no larger than 7.5% in the long
run. Theorem 1 can be applied to achieve this goal. To do
this, note that (6) is a convex scenario program (θ∗N is just a
concrete instance of x∗

N ), and the probability of mispredic-
tion P{(u, y) : |y−

∑d
j=1 θ

∗
N,j ·(u)j−1|> w} associated with

the predictor θ∗N is the risk V (θ∗N ). Using Theorem 1, we can
select the largest k̄ such that E[V (x∗

N )1
(
s∗N ≤ k̄

)
] ≤ 0.075.

4In (6), the L2 norm of θ is a measure of the capacity of the fitting
polynomial; thus, the program (6) can be interpreted as follows: we look
for the “simplest” polynomial that fits the data with tolerance w. Though
heuristic, this interpretation is rigorous for the limit cases: if w = 0, then
the solution is a polynomial of degree N that interpolates all data and the
complexity is at its maximum, i.e. s∗N = N ; if w = ∞, then θ = 0 is a
data-independent solution and s∗N = 0.
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_ _

(a) N = 10 (b) N = 100

Fig. 2. The black dots depicts the bound given by Theorem 1 for k̄ = 0, 1, . . . , N , when (a) N = 10 and (b) N = 100. The gray line corresponds to
the unattainable value k̄

N+1
.

This yields k̄ = 7. Finally, (4) and a suitable application
of the strong law of large numbers (akin to what done in
Section I-A.1) yields that limM→∞

1
MmN+M ≤ 7.5% with

probability 1.

Remark 2 (a technical clarification): Theorem 1 applies
to (6) under Assumptions 1 and 2. When carefully examined,
the existence assumption (Assumption 1) looks limiting for
(6) because it requires that the problem be feasible not
only for N = 100, but for any other sample size N given
the (fixed) optimization dimension d = 101. It is worth
remarking, however, that this difficulty can be avoided by
defining the solution through a suitable generalized decision
map that takes a special value (with complexity N ) when the
optimization problem is unfeasible. Such a map can be seen
to satisfy the conditions in [19, Section 5], and the proof of
Theorem 1 in [21] carries over in this more general setup.
Regarding Assumption 2, non-degeneracy holds if the regular
conditional distribution of y given u admits a density with
probability 1. This can be proven using the same arguments
as in [9, Section 3.1].

C. Numerical results

We applied our prediction scheme in a concrete example
with artificially generated data,5 with w = 0.3 (and N =
100, d = 101, k̄ = 7).

We iterated the fitting and prediction procedure M =
10000 times. The predictor was rejected in 804 cases out
of 10000, and there were overall 670 mispredictions, see
Figure 3. As it appears, the misprediction rate keeps below
7.5% in the long run.

5In our simulation, u was uniformly distributed over [0, 1], and y =
3(u−0.4)3+0.1v, where v had standard normal distribution, independent
of u. This information is shared with the reader to ensure reproducibility:
clearly, in a real setup, the generating distribution is unknown to the user.

V. CONCLUSIONS AND FINAL REMARKS

We have provided valid bounds for the average number of
mistakes in sequential applications of data-driven solutions,
allowing the user the possibility to accept or reject each
solution based on its complexity. The bounds are rather close
to the bound k̄

N+1 , which we proved to be unattainable.
By inspecting Figure 2(b), a curious, relatively small yet
visible departure from the general trend is experienced when
k̄ ≈ 0.4N . This somehow entices us to seek for (slightly)
improved bounds.

An interesting development of the approach of this paper
would involve the extension to the case where N is not fixed
in advance but is possibly chosen by the user in an iterative
manner, by adding constraints until the complexity of the
solution is small enough with respect to N . It is known that
procedures of this kind can be used to keep the tail prob-
ability of V (x∗

N ) under control, see [10]; similar schemes
aimed at regulating the expected number of mistakes would
be highly valuable in applications such as receding horizon
control.

Taking a step back from the technical results, we ob-
serve that the theory here presented sheds new light on
the role of prior knowledge in risk assessments. In fact,
it is often the case that a user has freedom in setting up
problem (1). For example, in the prediction example of Sec-
tion IV, the usage of polynomial regression and of a specific
kind of regularization in (6) is typically a user’s choice,
which depends on educated guesses. A common theoretical
approach to explaining how preliminary guesses relate to
predictive performances is demonstrating that certain specific
predictive models work well under restricted data generating
mechanisms. Instead, the theory here presented follows a
radically different approach: it shows that the data-dependent
complexity s∗N reveals the degree to which the (rather free)
prior guesses align with the (unrestricted) data generating
reality. Since the complexity can be measured in real-time,
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Fig. 3. Results on simulated data. (a) shows the data points at t = N = 100, with a representation of the interval predictor around the fitted polynomial.
In this case, the predictor had 6 support constraints; thus, it was not rejected. After observing u101 = 0.78, it yielded the prediction interval [0.945,1.545];
as the actual value of y101 turned out to be 1.33 (not shown), the prediction was correct. (b) shows the misprediction rate 1

t−100+1
mt+1 from t = 100

to t = 10099 (with a zoomed view until t = 400). The dotted line is the guaranteed bound 7.5% as provided by Theorem 1.

our findings enable the safe exploitation of prior, tentative
knowledge, in an otherwise agnostic setup.
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models with universal reliability,” Automatica, vol. 110, p. 108542,
2019.

[25] C. Wang, C. Shang, F. Yang, D. Huang, and B. Yu, “Robust interval
prediction model identification with a posteriori reliability guarantee,”
in Proceedings of the 21th IFAC World Congress, Berlin, Germany,
2020.

8250


