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Abstract. Sign-perturbed sums (SPS) is an identification method that constructs confidence
regions for the unknown parameters of a system. In this paper, we consider a new version of SPS for
application to autoregressive exogenous systems and establish that the ensuing confidence regions
include the true parameters with exact, user-chosen, probability under mild statistical assumptions.
This property holds true for any finite number of observed input-output data. Furthermore, the con-
fidence regions are proven to be strongly consistent, that is, they shrink around the true parameters
as the number of data points increases and, asymptotically, parameters different from the true ones
are almost surely excluded from the regions.
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1. Introduction. Estimating parameters of unknown systems based on noisy
observations is a classical problem in system identification, as well as signal processing,
machine learning, and statistics. Standard solutions such as the least-squares (LS)
method or, more generally, prediction error methods provide point estimates. In many
situations (for example, when the safety, stability, or quality of a process has to be
guaranteed), a point estimate needs to be complemented by a confidence region that
certifies the accuracy of the estimate and serves as a basis for securing robustness.
If the noise is known to belong to a given bounded set, set membership approaches
can be used to compute the region of the parameters that are consistent with the
observed data; see, e.g., [46, 48, 37, 47, 53, 13, 34]. The need for deterministic
priors on the noise can be relaxed by working in a probabilistic framework; see, e.g.,
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SPS CONFIDENCE REGIONS FOR ARX SYSTEMS 1903

[32, 17]. However, traditional methods for the construction of confidence regions in a
probabilistic setting rely on approximations based on asymptotic results and are valid
only if the number of observed data points tends to infinity; see, e.g., [44]. In spite
of the well-known fact that evaluating finite-sample estimates based on asymptotic
results can lead to misleading conclusions [26], the study of the finite-sample properties
of system identification algorithms has remained a niche research topic until recent
times.

A notable (and now expanding) literature has been investigating how the qual-
ity of finite-sample estimates relates to specific characteristics of the system under
consideration. Seminal works in this line, addressing in particular finite impulse re-
sponse (FIR) and autoregressive exogenous (ARX) systems, are [74, 28, 75, 72, 66],
which have been followed by several more recent studies for various classes of linear
[50, 56, 33, 49, 61, 62, 54, 58] and nonlinear [67, 25, 55, 45] systems, also in relation
to control frameworks [1, 5, 21, 24]. See [63] for a survey and more references. While
confidence regions for the unknown parameters are easily obtained as side products
of these investigations, these regions are typically conservative because their valid-
ity relies on uniform bounds and, moreover, they have rigid shapes, parametrized by
characteristics of the system, which must be known to the user. On the other hand,
the goal of producing nonconservative confidence regions by exploiting the observed
dataset along more flexible approaches has been pursued by another, complementary
research effort, a product of which is the sign-perturbed sums (SPS) algorithm, which
forms the subject of this paper.

SPS was introduced in [14] with the aim of constructing finite-sample confidence
regions for systems that have a known structure, but are otherwise completely unspec-
ified, in a noise quasi distribution-free setup. SPS has connections with the bootstrap
literature [20, 27, 22] and, in particular, with wild bootstrap with Rademacher signs
[41, 19]. Bootstrap methods, however, either assume that the regressors are indepen-
dent of the noises, or only provide asymptotic coverage guarantees. The reader is
referred to [12] for a discussion on the relation between SPS and other finite-sample
methods, such as the bootstrap-style perturbed dataset methods of [39] and the leave-
out sign-dominant correlation regions (LSCR) method, a (more conservative) prede-
cessor of SPS that was introduced in [9] and then extended to quite general classes of
systems, and applied in a variety of contexts, in [18, 30, 2, 31].

SPS was studied from a computational point of view in [38] and extended to a
distributed setup in [76]. Applications of SPS can be found in several domains, ranging
from mechanical engineering [69, 70] and technical physics [23, 29, 68] to wireless
sensor networks [8] and social sciences [60]. Moreover, the SPS idea constitutes a
core technology of several recent algorithms, including techniques for state estimation
[51], for the identification of state-space systems [3, 59], for error-in-variables systems
[35, 36], and for kernel-based estimation [16, 4].

The theoretical analysis of SPS was conducted in [15] for linear regression models
where the regressors are independent of the noise, which, in particular, applies to open-
loop FIR systems. In this setting, it was shown that SPS provides exact confidence
regions for the parameters and that the region includes the least-squares estimate
(LSE). The main assumptions on the noise in [15] are that it forms an independent
sequence and that its distribution is symmetric about zero; however, the distribution
is otherwise unknown and it can be time-varying, even in each time-step.

In the first part of this paper, we extend the SPS method to cover ARX systems
and show that it has the same finite-sample properties as the SPS for FIR systems. In
the rest of the paper, we develop an asymptotic analysis of the extended SPS method.
Although the characterizing property of SPS remains the finite-sample guarantees, its
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1904 A. CAR\`E, E. WEYER, B. CS. CS\'AJI, AND M. C. CAMPI

asymptotic properties are also of interest because they shed light on the capability of
SPS to exploit the information carried by a growing amount of data points. Asymp-
totic properties, for example, play a role in the important problem of detecting model
misspecifications; see [10]. The asymptotic analysis of the SPS algorithm presented in
[15] was carried out in [73], but that analysis does not apply to the ARX case because
of the existing correlation between the regressor vector and the system output. In
this paper we show that also SPS for ARX systems is strongly consistent, in the sense
that the confidence region shrinks around the true parameters and, asymptotically, all
parameters different from the true ones are almost surely excluded from the region.

Structure of the paper. The paper is organized as follows. In the next section
we introduce the problem setting and the LS method for ARX models is revisited.
Then, in section 3, the SPS method for ARX systems is presented along with its
fundamental finite-sample properties (Theorem 4.1). The strong consistency of the
method is proved in section 5 (Theorem 5.5). A simple simulation example is given
in section 6, and conclusions are drawn in section 7. The proofs of the theorems are
postponed to the appendices. A preliminary version of the SPS algorithm for ARX
systems was presented in [14], where a theorem on its finite-sample guarantees was
proven under slightly stronger assumptions than those of Theorem 4.1 in this paper.
The strong consistency theorem (Theorem 5.5) is stated and proven in this paper for
the first time.

2. Problem setting.

2.1. Data generating system and problem formulation. The data gener-
ating ARX system is given by

Yt + a\ast 1Yt - 1 + \cdot \cdot \cdot a\ast na
Yt - na

= b\ast 1Ut - 1 + \cdot \cdot \cdot b\ast nb
Ut - nb

+Nt,(2.1)

where Yt \in \BbbR is the output, Ut \in \BbbR the input, and Nt \in \BbbR the noise at time t. Equation
(2.1) can be written in linear regression form as

Yt =\varphi T
t \theta 

\ast +Nt,(2.2)

\varphi t \triangleq [ - Yt - 1, . . . , - Yt - na
,Ut - 1, . . . ,Ut - nb

]T,(2.3)

\theta \ast \triangleq [a\ast 1, . . . , a
\ast 
na
, b\ast 1, . . . , b

\ast 
nb

]T.(2.4)

Aim: construct a confidence region with a user-chosen coverage probability p
for the true parameter \theta \ast from a finite sample of size n, that is, from the regressors
\varphi 1, . . . ,\varphi n and the outputs Y1, . . . , Yn.

We make the following two assumptions.

Assumption 2.1. \theta \ast is a deterministic vector, and the orders na and nb are known.

Assumption 2.2. The initial conditions (Y0, . . . , Y1 - na
and U0, . . . ,U1 - nb

in \varphi 1)
and the input sequence U1, . . . ,Un are deterministic, and the stochastic noise sequence
N1, . . . ,Nn is symmetrically distributed about zero (that is, for every st \in \{ 1, - 1\} ,
t = 1,2, . . . , n, the joint probability distribution of (s1N1, . . . , snNn) is the same as
that of (N1, . . . ,Nn)) and is otherwise generic.

Assumption 2.2 is relatively ``mild"" in the following respects: (i) the specific dis-
tribution of \{ Nt\} is not assumed to be known; (ii) the independence of \{ Nt\} is not
assumed, the value of | Nt+1| can be a function of the past values of | Nt| , | Nt - 1| , . . .
(e.g., it could be a GARCH process [6] driven by symmetric innovations); (iii) the
marginal distribution of Nt can be time-varying (that is, noise is not necessarily
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SPS CONFIDENCE REGIONS FOR ARX SYSTEMS 1905

identically distributed). Notably, Assumption 2.2 covers the case of a heavy-tailed
noise process \{ Nt\} (e.g., Nt could be Cauchy distributed, with undefined \BbbE [Nt] and
E[N2

t ] = \infty ). On the other hand, if \{ Nt\} has finite second moments, then Assump-
tion 2.2 implies the standard assumptions that \BbbE [Nt] = 0 and that noises are un-
correlated, i.e., \BbbE [NtNt - \tau ] = 0, for all \tau \not = 0. In fact, Assumption 2.2 implies that
\BbbE [Nt | | Nt| ] = \BbbE [ sign(Nt) | | Nt| ] \cdot | Nt| = 0 almost surely; hence, \BbbE [Nt] = 0. Similarly,
conditioning on | Nt| \cdot | Nt - \tau | , it follows that \BbbE [NtNt - \tau ] = 0. The assumption that
the input is deterministic corresponds to an open-loop configuration. We also note
that the results in the paper remain valid with some additional generality when \{ Ut\} 
is stochastic and the assumption that N1, . . . ,Nn is symmetrically distributed about
zero holds conditionally on \{ Ut\} .

2.2. Review of the least-squares estimate. The SPS method, which will be
introduced in section 3, is LSE-oriented, in the sense that the inclusion of a candidate
parameter \theta in the SPS confidence region depends on the normal equation arising in
LS estimation, which we briefly review in this section. Let \theta be a generic parameter

\theta = [a1, . . . , ana , b1, . . . , bnb
]T,(2.5)

and let d= na + nb be the number of elements in \theta . Let the corresponding predictor
be given by

\^Yt(\theta ) \triangleq \varphi T
t \theta 

and the prediction errors by

\^Nt(\theta ) \triangleq Yt  - \^Yt(\theta ) = Yt  - \varphi T
t \theta .(2.6)

The LSE is found by minimizing the sum of the squared prediction errors, that is,

\^\theta n \triangleq argmin
\theta \in \BbbR d

n\sum 
t=1

\^N2
t (\theta ) = argmin

\theta \in \BbbR d

n\sum 
t=1

(Yt  - \varphi T
t \theta )

2.(2.7)

The solution can be found by solving the normal equation,

n\sum 
t=1

\varphi t
\^Nt(\theta ) =

n\sum 
t=1

\varphi t(Yt  - \varphi T
t \theta ) = 0,(2.8)

which, when
\sum n

t=1\varphi t\varphi 
T
t is invertible, has the (unique) solution

\^\theta n =

\biggl( n\sum 
t=1

\varphi t\varphi 
T
t

\biggr)  - 1\biggl( n\sum 
t=1

\varphi tYt

\biggr) 
.(2.9)

3. Construction of an exact confidence region. The SPS method for ARX
systems will be presented in section 3.2. To gradually introduce the main ideas behind
it, we first review SPS in the simpler case of FIR systems, where

Yt = b\ast 1Ut - 1 + \cdot \cdot \cdot b\ast nb
Ut - nb

+Nt.(3.1)

This is a simpler case, since the regressors \varphi t = [Ut - 1, . . . ,Ut - nb
]T are independent of

the noise sequence, which simplifies the analysis [15].
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1906 A. CAR\`E, E. WEYER, B. CS. CS\'AJI, AND M. C. CAMPI

3.1. Review of SPS for noise-indepedendent regressors. The fundamental
step of the original SPS algorithm [15] for (3.1) consists in generating m  - 1 sign-
perturbed sums by randomly perturbing the signs of the prediction errors in the normal
equation (2.8). The sums are given by

Hi(\theta ) =

n\sum 
t=1

\alpha i,t\varphi t(Yt  - \varphi T
t \theta )

=

n\sum 
t=1

\alpha i,t\varphi t\varphi 
T
t
\~\theta +

n\sum 
t=1

\alpha i,t\varphi tNt, i= 1, . . . ,m - 1,

where \~\theta = \theta \ast  - \theta , and \{ \alpha i,t\} are random signs, i.e., independent and identically
distributed (i.i.d.) random variables that take on the values \pm 1 with probability 1/2
each. For a given \theta , the reference sum is the left-hand side of the normal equation
(2.8), i.e.,

H0(\theta ) =

n\sum 
t=1

\varphi t(Yt  - \varphi T
t \theta ) =

n\sum 
t=1

\varphi t\varphi 
T
t
\~\theta +

n\sum 
t=1

\varphi tNt.

For \theta = \theta \ast , these sums can be simplified to

H0(\theta 
\ast ) =

n\sum 
t=1

\varphi tNt,

Hi(\theta 
\ast ) =

n\sum 
t=1

\alpha i,t\varphi tNt =

n\sum 
t=1

\pm \varphi tNt,

where in the last equation we have written \pm instead of \alpha i,t for intuitive understand-
ing. The crucial observation is that, since the regressors are independent of the noise,
and the noise is jointly symmetric, it follows that H0(\theta 

\ast ) and Hi(\theta 
\ast ) have the same

distribution, and there is no reason why \| H0(\theta 
\ast )\| 2 (\triangleq H0(\theta 

\ast )TH0(\theta 
\ast )) should be

bigger or smaller than any other \| Hi(\theta 
\ast )\| 2, i = 1, . . . ,m - 1. In fact, in [15] it was

proven that the probability that \| H0(\theta 
\ast )\| 2 is the kth largest one in the ordering of

the m values \{ \| Hi(\theta 
\ast )\| 2\} m - 1

i=0 is exactly 1/m, and the probability that it is among
the q largest ones is q \cdot 1

m . The SPS region with confidence 1 - q
m was then defined

in [15] as the set of \theta 's such that \| H0(\theta )\| 2 is not among the qth largest values in the
ordering of \{ \| Hi(\theta 

\ast )\| 2\} m - 1
i=0 . It can be noted that \| H0(\theta )\| 2 is zero when \theta is the LSE.

Therefore, SPS is LS-driven by design.
Another crucial observation is the following. For ``large enough"" \| \~\theta \| , we will have\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

n\sum 
t=1

\varphi t\varphi 
T
t
\~\theta +

n\sum 
t=1

\varphi tNt

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

>

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
n\sum 

t=1

\pm \varphi t\varphi 
T
t
\~\theta +

n\sum 
t=1

\pm \varphi tNt

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

,

with ``high probability"" since
\sum n

t=1\varphi t\varphi 
T
t
\~\theta on the left-hand side increases faster than\sum n

t=1\pm \varphi t\varphi 
T
t
\~\theta on the right-hand side. Hence, for \| \~\theta \| large enough, \| H0(\theta )\| 2 dom-

inates in the ordering of \{ \| Hi(\theta )\| 2\} m - 1
i=0 , and values away from \theta \ast will therefore be

excluded from the confidence region; see [73] for a detailed analysis.

3.2. Main idea behind SPS for ARX systems. In the ARX case, the idea
illustrated in the above section cannot be applied directly: in fact, in the ARX case,
the distribution of the unperturbed sequence \{ \varphi tNt\} is different from the distribution
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SPS CONFIDENCE REGIONS FOR ARX SYSTEMS 1907

of the perturbed one, \{ \alpha i,t\varphi tNt\} , because \varphi t depends on the unperturbed noise \{ Nt\} .
Therefore, the distribution of H0(\theta 

\ast ) is different from that of Hi(\theta 
\ast ), i= 1, . . . ,m - 1.

To get around this difficulty, the key idea in the proposed SPS algorithm for ARX sys-
tems is to generate regressors, denoted \=\varphi i,t(\theta ), such that \{ \varphi tNt\} and \{ \alpha i,t \=\varphi i,t(\theta 

\ast )Nt\} 
have the same distribution and use them to define modified versions of H0(\theta ) and
Hi(\theta ). The elements of \=\varphi i,t(\theta ) include, instead of the observed outputs, the out-
puts of the system corresponding to the parameter \theta fed with the perturbed noise
\{ \alpha i,tNt(\theta )\} . More precisely, the perturbed output sequence \=Yi,1(\theta ), . . . , \=Yi,n(\theta ) is gen-
erated for every \theta = [a1, . . . , ana

, b1, . . . , bnb
]T according to

\=Yi,t(\theta ) + a1 \=Yi,t - 1(\theta ) + \cdot \cdot \cdot ana
\=Yi,t - na

(\theta )\triangleq b1Ut - 1 + \cdot \cdot \cdot bnb
Ut - nb

+ \alpha i,t
\^Nt(\theta ),(3.2)

where \^Nt(\theta ) is given by (2.6), and the initial conditions for \=Yi,t(\theta ) are \=Yi,t(\theta )\triangleq Yt for
1 - na \leq t\leq 0. The regenerated regressor is then given as

\=\varphi i,t(\theta )\triangleq [ - \=Yi,t - 1(\theta ), . . . , - \=Yi,t - na
(\theta ),Ut - 1, . . . ,Ut - nb

]T.(3.3)

Using this perturbed regressor, the analogue of functions H0(\theta ) and Hi(\theta ) defined
above can be constructed, and, in what follows, we will denote them S0(\theta ) and Si(\theta )
to avoid confusion. With our definitions, for \theta = \theta \ast , S0(\theta 

\ast ) and Si(\theta 
\ast ) have the same

ordering property as H0(\theta 
\ast ) and Hi(\theta 

\ast ) for FIR systems, and therefore the exact
coverage probability of the constructed confidence regions can be proven.

3.2.1. SPS for ARX systems. The SPS method for ARX systems is now
detailed in two distinct parts. The first, which is called ``initialization,"" sets the
main global parameters of SPS and generates the random objects needed for the
construction. In the initialization, the user provides the desired confidence probability
p. The second part evaluates an indicator function which decides whether or not a
particular parameter value \theta is included in the confidence region.

The pseudocode for the initialization and the indicator function is given in Ta-
bles 1 and 2, respectively. Essentially, the algorithm implements the idea presented
in section 3.2, but a few clarifications are in order. In point 4 of Table 2, in the com-
putation of S0(\theta ) and Si(\theta ), the vectors

1
n

\sum n
t=1 \varphi t

\^Nt(\theta ) and
1
n

\sum n
t=1 \alpha i,t \=\varphi i,t(\theta ) \^Nt(\theta )

have been premultiplied by the matrices R
 - 1

2
n = ( 1n

\sum n
t=1\varphi t\varphi 

T
t )

 - 1
2 and R

 - 1
2

i,n (\theta ) =

( 1n
\sum n

t=1 \=\varphi i,t(\theta ) \=\varphi 
T
i,t(\theta ))

 - 1
2 . The reason is that this results in well-shaped confidence

regions, as discussed in section 6. In point 3 in the initialization (Table 1) a random
permutation \pi is drawn, which is used in the algorithm (precisely, in points 5 and 6 of
Table 2) to unambigously decide the ordering among the values \| S0(\theta )\| 2,\| S1(\theta )\| 2, . . . ,
\| Sm - 1(\theta )\| 2 in the case of ties. Formally, given m real numbers \{ Zi\} , i= 0, . . . ,m - 1,
the ordering in the algorithm is given by the strict total order \succ \pi defined as

Zk \succ \pi Zj if and only if

(Zk >Zj) or (Zk =Zj and \pi (k)>\pi (j)) .(3.4)

The p-level SPS confidence region with p= 1 - q
m is given as

\widehat \Theta n \triangleq 
\bigl\{ 
\theta \in \BbbR d : SPS-INDICATOR(\theta ) = 1

\bigr\} 
.

Observe that the LS estimate, \^\theta n, has by definition the property that S0(\^\theta n) = 0.
Therefore, the LSE is included in the SPS confidence region, except for the very
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Table 1
Initialization of the SPS method

Pseudocode: SPS-Initialization

1. Given a (rational) confidence probability p\in (0,1), set integers m> q > 0 such that
p= 1 - q/m;

2. Generate n \cdot (m - 1) i.i.d. random signs \{ \alpha i,t\} with

\BbbP r\{ \alpha i,t = 1\} = \BbbP r\{ \alpha i,t = - 1\} =
1

2
,

for i\in \{ 1, . . . ,m - 1\} and t\in \{ 1, . . . , n\} ;
3. Generate a random permutation \pi of the set \{ 0, . . . ,m - 1\} , where each of the m! possible

permutations has the same probability 1/(m!) to be selected.

unlikely situation in which m - q other Si(\theta ) functions (besides S0(\theta )) are null at \^\theta n
and ranked smaller than S0(\theta ) by \pi .1

4. Exact confidence. Like its FIR counterpart, the SPS algorithm for the ARX
system generates confidence regions that have exact confidence probabilities for any
finite number of data points. The following theorem holds.

Theorem 4.1. Under Assumptions 2.1 and 2.2, the confidence region constructed
by the SPS algorithm in Tables 1 and 2 has the property that \BbbP r\{ \theta \ast \in \widehat \Theta n\} = 1 - q

m .

The probability in the statement of Theorem 4.1 is with respect to \{ Nt\} and the
random elements in the initialization step, Table 1 (i.e., the random signs \{ \alpha i,t\} and
the random permutation \pi ). The proof of the theorem can be found in Appendix A.1.
The simulation examples in section 6 also demonstrate that, when the noise is station-
ary, the SPS confidence regions compare in size with the heuristic confidence regions
obtained by applying the asymptotic system identification theory. However, unlike
the asymptotic regions, the SPS regions are theoretically guaranteed for any finite n,
and also maintain their guaranteed validity with nonstationary noise patterns.

5. Strong consistency. In addition to the probability of containing the true
parameter, another important aspect is the size of the SPS confidence regions. In this
section, under some additional mild assumptions, we prove a strong consistency theo-
rem which guarantees that the SPS confidence sets shrink around the true parameter
as the sample size increases, and eventually exclude any other parameters \theta \prime \not = \theta \ast .

This theorem will be proved under the basic Assumptions 2.1 and 2.2, plus the
assumptions discussed below.

5.1. Additional assumptions. Let A(z - 1;\theta ) = 1+ a1z
 - 1 + \cdot \cdot \cdot + ana

z - na and
B(z - 1;\theta ) = b1z

 - 1+\cdot \cdot \cdot +bnb
z - nb , with z - 1 the delay operator. (2.1) can be compactly

rewritten as

A(z - 1;\theta \ast )Yt \triangleq B(z - 1;\theta )Ut +Nt

1It is worth mentioning some substantial differences between the construction here proposed and
the one of [71]. In [71], extra data (the so-called instrumental variables) are assumed to be available
to the user and are required to be correlated with \{ \varphi t\} but independent of the noise \{ Nt\} . Under
this condition, the construction of [71] delivers guaranteed regions around the instrumental-variable
estimate. On the other hand, the algorithm proposed in this paper does not require any extra data
besides the regressors and the system outputs and is purely LSE-based.
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Table 2
Evaluation of the SPS indicator function

Pseudocode: SPS-Indicator (\theta )

1. For the given \theta , compute the prediction errors for t\in \{ 1, . . . , n\} 

\^Nt(\theta ) \triangleq Yt  - \varphi \mathrm{T}
t \theta .

2. Build m - 1 sequences of sign-perturbed prediction errors (\alpha i,t
\^Nt(\theta )), t= 1, . . . , n.

3. Construct m - 1 perturbed output trajectories \=Yi,1(\theta ), . . . , \=Yi,n(\theta ), i= 1, . . . ,m - 1, according to

(3.2) with \=Yi,t(\theta )\triangleq Yt for 1 - na \leq t\leq 0. Form \=\varphi i,t(\theta ) according to (3.3).

4. Evaluate

S0(\theta )\triangleq R
 - 1

2
n

1

n

n\sum 
t=1

\varphi t
\^Nt(\theta ),

Si(\theta )\triangleq R
 - 1

2
i,n (\theta )

1

n

n\sum 
t=1

\alpha i,t \=\varphi i,t(\theta ) \^Nt(\theta ),

for i\in \{ 1, . . . ,m - 1\} , where

Rn \triangleq 
1

n

n\sum 
t=1

\varphi t\varphi 
\mathrm{T}
t ,

Ri,n(\theta ) \triangleq 
1

n

n\sum 
t=1

\=\varphi i,t(\theta ) \=\varphi 
\mathrm{T}
i,t(\theta ),

and  - 1
2 denotes the inverse (or pseudoinverse) of the principal square root matrix.

5. Order scalars \{ \| Si(\theta )\| 2\} according to \succ \pi (see (3.4)).

6. Compute the rank \scrR (\theta ) of \| S0(\theta )\| 2 in the ordering, where \scrR (\theta ) = 1 if \| S0(\theta )\| 2 is the smallest
in the ordering, \scrR (\theta ) = 2 if \| S0(\theta )\| 2 is the second smallest, and so on. Mathematically,

\scrR (\theta ) = 1+ | \{ i= 1, . . . ,m - 1 : \| S0(\theta )\| 2 \succ \pi \| Si(\theta )\| 2\} | , where | \cdot | denotes cardinality.

7. Return 1 if \scrR (\theta )\leq m - q, otherwise return 0.

and (3.2) as

A(z - 1;\theta ) \=Yi,t(\theta )\triangleq B(z - 1;\theta )Ut + \alpha i,t
\^Nt(\theta ).

The following assumption is a standard condition regarding identifiability of the
true parameter.

Assumption 5.1 (coprimeness). The polynomials A(z - 1;\theta \ast ) and B(z - 1;\theta \ast ) are
coprime (i.e., only constant polynomials are factors of both of them).

The set of values of \theta that are allowed to be included in the confidence region
is normally limited by a priori knowledge on the system and, in general, it will be a
proper subset of \BbbR d. Although occasionally it can be left implicit, in this paper the
subset of values of \theta will be denoted by \Theta c and always assumed to be a compact set.

Assumption 5.2 (uniform stability). The families of filters \{ 1
A(z - 1;\theta ) : \theta \in \Theta c\} and

\{ B(z - 1;\theta )
A(z - 1;\theta ) : \theta \in \Theta c\} are uniformly stable.

We recall the definition of uniform stability [44]. First, 1
A(z - 1;\theta ) and

B(z - 1;\theta )
A(z - 1;\theta ) must

be stable for every \theta \in \Theta c. Then, we can define the coefficients h0(\theta ), h1(\theta ), . . . from
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1910 A. CAR\`E, E. WEYER, B. CS. CS\'AJI, AND M. C. CAMPI

relation
\sum \infty 

t=0 ht(\theta )z
 - t = 1

A(z - 1;\theta ) , and g1(\theta ), g2(\theta ), . . . from relation
\sum \infty 

t=1 gt(\theta )z
 - t =

B(z - 1;\theta )
A(z - 1;\theta ) . Uniform stability means that

sup
\theta \in \Theta c

| ht(\theta )| \leq \=ht and sup
\theta \in \Theta c

| gt(\theta )| \leq \=gt, \forall t,

for some \=ht and \=gt such that

\infty \sum 
t=0

\=ht <\infty and

\infty \sum 
t=1

\=gt <\infty .

Basically, Assumption 5.2 excludes that the dynamics of the system can be arbitrarily
slow and that the static gain can be arbitrarily large.

The following type of conditions are standard for consistency analysis.

Assumption 5.3 (independent noise, moment growth rate). \{ Nt\} is a sequence of
independent random variables. Moreover, the limit

lim
n\rightarrow \infty 

1

n

n\sum 
t=1

\BbbE [N2
t ](5.1)

exists and

limsup
n\rightarrow \infty 

1

n

n\sum 
t=1

\BbbE [N8
t ]<\infty .(5.2)

We will assume that the input sequence is persistently exciting. Precisely, follow-
ing [42], we say that the input sequence is persistently exciting of order na+nb if the
limits m= limn\rightarrow \infty 

1
n

\sum n
t=1Ut (we call m the mean) and cU,k = limn\rightarrow \infty 

1
n

\sum n
t=1(Ut  - 

m)(Ut - k  - m) exist and are finite for every k, and the matrix\left[   cU,0 . . . cU,na+nb - 1

...
. . .

...
cU,na+nb - 1 . . . cU,0

\right]   
is positive definite.

Assumption 5.4 (persistent excitation and limited growth rate). The sequence
\{ Ut\} is persistently exciting of order na + nb. Moreover,

limsup
n\rightarrow \infty 

1

n

n\sum 
t=1

U4
t <\infty .(5.3)

The reader may be interested in comparing the realizationwise condition (5.3) and
the processwise condition (5.2): in this regard, it is worth noting that the processwise
condition (5.2) implies that

limsup
n\rightarrow \infty 

1

n

n\sum 
t=1

N4
t <\infty (5.4)

holds w.p.1.
In all that follows, we will consider Yt to be the output of system (2.1) with zero

initial conditions and causal input signals (Nt, Ut are zero for t\leq 0).
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SPS CONFIDENCE REGIONS FOR ARX SYSTEMS 1911

5.2. Result. In the following theorem, B\varepsilon (\theta 
\ast ) denotes the closed Euclidean

norm-ball centered at \theta \ast with radius \varepsilon > 0, i.e.,

B\varepsilon (\theta 
\ast ) \triangleq \{ \theta \in \BbbR d : \| \theta  - \theta \ast \| \leq \varepsilon \} .

Theorem 5.5 states that the confidence regions \widehat \Theta n will eventually be included in any
given norm-ball centered at the true parameter, \theta \ast .

Theorem 5.5 (strong consistency). Under Assumptions 2.1, 2.2, 5.1, 5.2, 5.3,
and 5.4, for all \varepsilon > 0,

\BbbP r

\Biggl[ \infty \bigcup 
\=n=1

\infty \bigcap 
n=\=n

\Bigl\{ \widehat \Theta n \subseteq B\varepsilon (\theta 
\ast )
\Bigr\} \Biggr] 

= 1.

A detailed proof of the theorem is provided in Appendix A.2, preceded by an
outline.

6. Numerical example. Consider the following data generating system:

Yt =  - a\ast Yt - 1 + b\ast Ut - 1 +Nt

with zero initial conditions. a\ast = - 0.7 and b\ast = 1 are the true system parameters and
\{ Nt\} is a sequence of i.i.d. Laplacian random variables with zero mean and variance
0.1. The input signal was generated according to

Ut = 0.75Ut - 1 + Vt,

where \{ Vt\} was a sequence of i.i.d. Gaussian random variables with zero mean and
variance 1. The predictor is given by

\widehat Yt(\theta ) =  - aYt - 1 + bUt - 1 =\varphi T
t \theta ,

where \theta = [a b ]T is the model parameter, and \varphi t = [ - Yt - 1 Ut - 1 ]
T is the regressor at

time t.
A 95\% confidence region for \theta \ast = [a\ast b\ast ]T based on n = 40 data points, namely

(\varphi t, Yt), t = 1, . . . ,40, was constructed by choosing m = 100 and leaving out those
values of \theta for which \| S0(\theta )\| was among the five largest values of \| S0(\theta )\| ,\| S1(\theta )\| , . . . ,
\| S99(\theta )\| .

The SPS confidence region is shown in Figure 1. In the same picture, the confi-
dence ellipsoid based on asymptotic system identification theory is also shown, which
is guaranteed to yield a 95\% confidence region as n\rightarrow \infty [44, Chapters 8--9].2 It can
be observed that the nonasymptotic SPS region is similar in size and shape to the
asymptotic confidence region, but it has the advantage that it is guaranteed to contain
the true parameter with exact probability 95\% for finite values of n (n = 40 in this
case).

In agreement with Theorem 5.5, the size of the region decreases when n is in-
creased; see Figures 2 and 3. In Figure 3, m is also increased to 4000, and one can
observe that there is very little difference between the SPS region and the asymptotic

2Precisely, the ellipsoid is computed as \widetilde \Theta n \triangleq \{ \theta : (\theta  - \^\theta n)\mathrm{T}Rn (\theta  - \^\theta n) \leq 
F - 1

\chi 2 (0.95)\^\sigma 2
n

n
\} , where

F - 1
\chi 2 (\cdot ) is the inverse cumulative distribution function of the chi-square distribution with dim(\theta \ast ) = 2

degrees of freedom, and \widehat \sigma 2
n \triangleq 1

n - 2

\sum n
t=1(Yt  - \varphi \mathrm{T}

t
\^\theta n)2 is an estimate of the noise variance.
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Fig. 1. 95\% confidence regions, n= 40, m= 100.
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b

True value
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Fig. 2. 95\% confidence regions, n= 400, m= 100.

confidence ellipsoid. This exemplifies a quite general behavior that can be informally
expressed by saying that when n and m both tend to infinity the SPS confidence
region is included in a marginally inflated version of the asymptotic confidence el-
lipsoids. This circumstance is interesting because it shows that SPS fills smoothly
the traditional gap between finite-sample validity and asymptotic optimality. For the
FIR case, a formal statement and a proof of this fact can be found in [73, Theo-
rem 3]; an analogue theorem can be stated in our autoregressive setup. The proof,
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Fig. 3. 95\% confidence regions, n= 4000, m= 4000, and m= 100.

however, is not trivial and has been omitted from this paper due to space limitations
(the interested reader can find more details in the preprint at https://arxiv.org/abs/
2402.11528).3

6.1. Coverage with asymmetric noise. In this paper, the symmetry of the
noise has been assumed. However, it is interesting to evaluate whether the proposed
algorithm is sensitive to small asymmetries. While a comprehensive study of the
nonsymmetric case is beyond the scope of this work, some numerical evaluations were
performed. In particular, the generation mechanism of Nt in the numerical example
above was modified as follows: Nt was generated according to an asymmetric Laplace
distribution [40] with density

f(x) =

\left\{           

\surd 
2

\=\sigma 

\kappa 

1 + \kappa 2
exp

\Biggl( 
 - 
\surd 
2

\kappa \=\sigma 
(\mu  - x)

\Biggr) 
if x\leq 0,

\surd 
2

\=\sigma 

\kappa 

1 + \kappa 2
exp

\Biggl( 
 - \kappa 

\surd 
2

\=\sigma 
(x - \mu )

\Biggr) 
if x> 0.

Then, we evaluated the coverage of the SPS regions over 100,000 Monte Carlo
runs for different values of \kappa . Table 3 reports the results for \=\sigma =

\surd 
0.1 and \mu = 0: in

this way, when \kappa = 1, the distribution is the same as above (symmetric with variance
\sigma 2 = 0.1) and the coverage is guaranteed to be 95\%, while, when \kappa decreases, the

3Similarly as in [73], the result can be proven by using the central limit theorem to show that each
\| Si(\theta )\| 2 tends to be Chi-squared distributed as n\rightarrow \infty and using the Glivenko--Cantelli theorem to
show that the empirical distribution of \| S1(\theta )\| 2, . . . ,\| Sm - 1(\theta )\| 2 approximates the distribution of a
Chi-squared as m \rightarrow \infty . However, from a technical point of view there is a crucial difference with
respect to [73]: while in [73] functions \| S0(\theta )\| 2 and \| Si(\theta )\| 2, i = 1, . . . ,m - 1, were all quadratic
functions, in the present setting functions \| Si(\theta )\| 2, i= 1, . . . ,m - 1, are ratios of polynomials whose
orders increase linearly with n, so that the uniform evaluation of these functions over \theta as n \rightarrow \infty 
requires much more attention.
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Table 3
Coverages (100,000 Monte Carlo runs, p= 95\%, m= 100).

\kappa = 1 \kappa = 0.9 \kappa = 0.8 \kappa = 0.7 \kappa = 0.5 \kappa = 0.1

n= 20 0.95089 0.94216 0.91277 0.85345 0.67473 0.47360
n= 40 0.95091 0.93882 0.89617 0.81580 0.64847 0.29411

n= 400 0.95071 0.93248 0.87574 0.78354 0.58930 0
n= 4000 0.95010 0.93094 0.84372 0.64998 0.05102 0

distribution becomes skewed toward positive values (the cases \kappa = 0.5 and \kappa = 0.1
correspond to very skewed distributions) and the coverage is no longer guaranteed.

In these simulations, the noise Nt was nonzero mean and nonzero median when
\kappa \not = 1 (its mean was \sigma 1 - \kappa 2

\surd 
2\kappa 

and its median was  - \sigma 
\kappa 
\surd 
2
log 1+\kappa 2

2 ). Then, we modified
the location parameter \mu so as to generate zero-mean or zero-median noise samples.
In these cases, the coverages turned out to be much better, suggesting that correctly
estimating the mean or median of the noise is beneficial. For example, with \kappa = 0.1,
when n= 40 we obtained a coverage of 0.94496 for the zero-mean case and 0.91797 for
the zero-median case; when n = 400 we obtained 0.95003 and 0.80887, respectively.
These results, being empirical, are not conclusive. However, they are indicative of
the phenomenon that the algorithm exhibits a graceful degradation in the presence of
asymmetries (even more so if the mean is correctly accounted for), and, importantly,
they are in line with previous studies on the role of asymmetry that were performed
for the original SPS [11]. We remark that some of the analyses and robustification
techniques in [11] can be carried over to the present setup.

7. Concluding remarks and open problems. In this paper, we have pre-
sented the SPS method for ARX systems. SPS delivers confidence regions around the
least-squares estimate that contain with exact, user-chosen, probability the true sys-
tem parameter under mild assumptions on the data generation system. These regions
are built from a finite (and possibly small) sample of input-output data. Besides the
exact finite-sample guarantees, we have proven under additional and rather mild as-
sumptions that the method is strongly consistent. Moreover, the shape of the region
in relation to the approximate confidence ellipsoids obtained using the asymptotic
theory has been briefly discussed.

Finally, we want to mention some further directions of research. While the SPS
regions have many desirable features, the exact calculation of the regions is compu-
tationally demanding. For FIR systems, an effective ellipsoidal outer approximation
of the confidence regions can be practically computed by using convex programming
techniques [15] (see also [38]). Obtaining similar results for the ARX system is a chal-
lenge of great practical importance. However, when the dimension of the parameter
vector \theta is small, the SPS region can be computed by checking whether points on a
fine grid of the parameter space belong to the confidence set.

Appendix A. Proofs.

A.1. Proof of Theorem 4.1: Exact confidence. We begin with a definition
and two lemmas taken from [15].

Definition A.1. Let Z1, . . . ,Zk be a finite collection of random variables and
\succ t.o. a strict total order. If for all permutations i1, . . . , ik of indices 1, . . . , k we have
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\BbbP r\{ Zik \succ t.o. Zik - 1
\succ t.o. . . .\succ t.o. Zi1\} =

1

k!
,

then we call \{ Zi\} uniformly ordered w.r.t. order \succ t.o..

Lemma A.2. Let \alpha ,\beta 1, . . . , \beta k be i.i.d. random signs; then the random variables
\alpha ,\alpha \cdot \beta 1, . . . , \alpha \cdot \beta k are i.i.d. random signs.

The following lemma highlights an important property of the \succ \pi relation that
was introduced in section 3.

Lemma A.3. Let Z1, . . . ,Zk be real-valued, i.i.d. random variables. Then, they
are uniformly ordered w.r.t. \succ \pi .

We are now ready to prove Theorem 4.1.
By construction, the parameter \theta \ast is in the confidence region if \| S0(\theta 

\ast )\| 2 takes
one of the positions 1, . . . ,m - q in the ascending order (w.r.t. \succ \pi ) of the variables
\{ \| Si(\theta 

\ast )\| 2\} m - 1
i=0 . We will prove that \{ \| Si(\theta 

\ast )\| 2\} m - 1
i=0 are uniformly ordered, hence

\| S0(\theta 
\ast )\| 2 takes each position in the ordering with probability 1/m, thus its rank is

at most m - q with probability 1 - q/m.
Note that all the functions Si(\theta 

\ast ) depend on the sequence \{ \alpha i,tNt\} via the same
function for all i, which we denote as S(\alpha i,1N1, . . . , . . . , \alpha i,nNn) \triangleq Si(\theta 

\ast ). This is
true also for S0(\theta 

\ast ); in fact, recalling that \alpha 0,t \triangleq 1, t \in \{ 1, . . . , n\} , it holds that
\alpha 0,t

\^Nt(\theta 
\ast ) = \alpha 0,tNt =Nt, so \=Y0,t = Yt and \=\varphi 0,t =\varphi t.

Let b1, b2, . . . be a sequence of random signs independent of \{ Nt\} and \{ \alpha i,t\} , and
define \sigma t(Nt) as

\sigma t(Nt) =

\Biggl\{ 
sign(Nt) if Nt \not = 0,

bt if Nt = 0.

Clearly, Nt = \sigma t(Nt) \cdot | Nt| for every value of Nt. By Assumption 2.2, \{ | Nt| \} and
\{ \sigma t(Nt)\} are independent, and \{ \sigma t(Nt)\} is an i.i.d. sequence. Now, we will work
conditioning on \{ | Nt| \} by exploiting the independence of \{ | Nt| \} from all the other
random elements: let us fix a realization of \{ | Nt| \} and call it \{ vt\} (all the other random
elements are distributed according to their marginal distribution). Then, for all i and
t, we introduce \gamma i,t = \alpha i,t\sigma t(Nt). \{ \alpha i,t\} , i = 1, . . . ,m  - 1, are i.i.d. random signs
independent of the other random elements and of \sigma t(N1), . . . , \sigma t(Nn) in particular.
Using Lemma A.2, \gamma i,t, i = 0, . . . ,m - 1, t = 1, . . . , n, are i.i.d. random signs. Thus,
Si(\theta 

\ast ) can be equivalently expressed as Si(\theta 
\ast ) = Zi, where Zi \triangleq S(\gamma i,1v1, . . . , \gamma i,nvn).

Since Zi's are obtained by applying the same function to different realizations of an
i.i.d. sample, they are also uniformly ordered with respect to \succ \pi (Lemma A.3). Thus,
the uniform ordering property has been proven for a fixed realization of \{ | Nt| \} . As the
realization of \{ | Nt| \} was arbitrary, the uniform ordering property of \{ \| Si(\theta 

\ast )\| 2\} m - 1
i=0

holds unconditionally, and the theorem follows.

A.2. Proof of Theorem 5.5.

A.2.1. Outline of the proof. We define \^\theta i,n(\theta ) as the value of \^\theta \in \BbbR d that
minimizes

n\sum 
i=1

( \=Yi,t(\theta ) - \=\varphi i,t(\theta )
T\^\theta )2,(A.1)
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1916 A. CAR\`E, E. WEYER, B. CS. CS\'AJI, AND M. C. CAMPI

i.e., as the LSE if the output sequence were \=Yi,1(\theta ), . . . , \=Yi,n(\theta ); cf. (2.7).4 \^\theta i,n(\theta )
satisfies

1

n

n\sum 
t=1

\=\varphi i,t(\theta ) \=\varphi i,t(\theta )
T(\^\theta i,n(\theta ) - \theta ) =

1

n

n\sum 
t=1

\alpha i,t
\^Nt(\theta ) \=\varphi i,t(\theta ).(A.2)

Assuming \^\theta i,n(\theta ) is unique (we will show that this is the case for n large enough), it
is straightforward to check that \| Si(\theta )\| 2 can be written as

\| Si(\theta )\| 2 = \| Ri,n(\theta )
1
2 (\theta  - \^\theta i,n(\theta ))\| 2, i= 1, . . . ,m - 1,(A.3)

where Ri,n(\theta ) =
1
n

\sum n
t=1 \=\varphi i,t(\theta ) \=\varphi 

T
i,t(\theta ) (as defined in Table 2). Similarly, \| S0(\theta )\| 2 can

be rewritten as

\| S0(\theta )\| 2 = \| R
1
2
n (\theta  - \^\theta n)\| 2,(A.4)

where \^\theta n is the LSE (2.9), and Rn = 1
n

\sum n
t=1\varphi t\varphi 

T
t (as defined in Table 2). First, we

prove that \^\theta n \rightarrow \theta \ast w.p.1, and hence that \| S0(\theta )\| 2 eventually stays away from zero
outside a ball centered at \theta \ast . The second step is proving the uniform convergence
of \^\theta i,n(\theta ) to \theta .5 To do this, we first prove that Ri,n(\theta ), i = 1, . . . ,m  - 1, converge
uniformly in \Theta c to a matrix function \=R(\theta ) that is positive definite, with eigenvalues
that are uniformly bounded away from 0 and from \infty . Second, we show that the
right-hand side of (A.2) goes to zero uniformly in \Theta c w.p.1.6 Combining these two
facts, we will conclude that \^\theta i,n(\theta ) converges to \theta , and \| Si(\theta )\| 2 \rightarrow 0 uniformly. This
implies that, for n large enough, \| Si(\theta )\| 2, i= 1, . . . ,m - 1, are smaller than \| S0(\theta )\| 2
for all the values of \theta \in \Theta c outside a small ball centered at \theta \ast , so that such values of
\theta are excluded from the confidence region.

A.2.2. Proof. The following two lemmas are the key results to prove the theo-
rem. In the statements of these two lemmas, the assumptions of Theorem 5.5 are left
implicit. Their proofs are in Appendix A.2.3.

Lemma A.4. The limit matrix

\=R\ast \triangleq lim
n\rightarrow \infty 

1

n

n\sum 
t=1

\varphi t\varphi 
T
t

exists and is finite w.p.1. Moreover, there exists a matrix \=R(\theta ), independent of \{ Nt\} 
and \{ \alpha i,t\} , function of \theta \in \Theta c, such that limn\rightarrow \infty sup\theta \in \Theta c

\| Ri,n(\theta ) - \=R(\theta )\| = 0, i =
1, . . . ,m - 1, w.p.1. \=R(\theta ) is continuous in \theta \in \Theta c, \=R(\theta \ast ) = \=R\ast , and there exist \rho 1, \rho 2 > 0
such that I\rho 1 \prec \=R(\theta )\prec I\rho 2 for all \theta \in \Theta c.

7

4In the terminology of [39] this is the minimizer of the cost function corresponding to the ``per-
turbed dataset.""

5This requires some caution because \=Yi,1(\theta ), . . . , \=Yi,n(\theta ) is the output of the nonstandard system

(3.2), where Ut affects future noise terms through \^Nt+1(\theta ), \^Nt+2(\theta ), . . ., and the expected value of
\^N2
t+1(\theta ) given the past is not uniformly bounded. Thus, traditional consistency results such as those

in [43], although quite general and inclusive of closed-loop setups, do not apply to this setting.
6This step is carried out by using martingale arguments that are inspired by the proof in [43],

together with a suitable ``conditioning trick.""
7The symbol ``\prec "" denotes the Loewner partial ordering, i.e., given two matrices A and B, A \prec 

B \Leftarrow \Rightarrow B  - A is positive definite.
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Lemma A.5. It holds w.p.1 that

lim
n\rightarrow \infty 

1

n

n\sum 
t=1

Nt\varphi t = 0.

Moreover, for every i= 1, . . . ,m - 1,

lim
n\rightarrow \infty 

sup
\theta \in \Theta c

\bigm| \bigm| \bigm| \bigm| \bigm| 1n
n\sum 

t=1

\alpha i,t
\^Nt(\theta ) \=\varphi i,t(\theta )

\bigm| \bigm| \bigm| \bigm| \bigm| = 0

holds true w.p.1.

We first study the asymptotic behavior of the reference function \| S0(\theta )\| 2.
By definition, the LS estimate \^\theta n must satisfy the normal equation (see (2.8))

1

n

n\sum 
t=1

\varphi t\varphi 
T
t (

\^\theta n  - \theta \ast ) =
1

n

n\sum 
t=1

Nt\varphi t.(A.5)

The convergence (a.s.) of \^\theta n to \theta \ast follows by taking the norm of both the
right- and left-hand sides of (A.5) and noting that the right-hand side goes to zero
by Lemma A.5. On the other hand, because of \=R\ast = limn\rightarrow \infty 

1
n

\sum n
t=1\varphi t\varphi 

T
t \succ 0

(Lemma A.4), the left-hand side goes to zero as n\rightarrow \infty if and only if \^\theta n converges to
\theta \ast . Thus,

\| \^\theta n  - \theta \ast \|  - \rightarrow 
n\rightarrow \infty 

0 w.p.1.(A.6)

Using (A.4), we conclude that

\| S0(\theta )\| 2  - \rightarrow 
n\rightarrow \infty 

\| \=R
1
2
\ast (\theta 

\ast  - \theta )\| 2 (uniformly in \Theta c) w.p.1.(A.7)

Now we study the asymptotic behavior of the functions \| Si(\theta )\| 2, i= 1, . . . ,m - 1.
By definition, \^\theta i,n(\theta ) satisfies (A.2). By taking the norm of both sides of (A.2)

and by using Lemma A.5 we get limn\rightarrow \infty sup\theta \in \Theta c
\| Ri,n(\theta )(\^\theta i,n(\theta )  - \theta )\| 2 = 0 w.p.1,

while, by Lemma A.4, we have sup\theta \in \Theta c
\| Ri,n(\theta )(\^\theta i,n(\theta ) - \theta )\| 2 \geq \rho 21 \cdot \| \^\theta i,n(\theta ) - \theta \| 2 for

all \theta \in \Theta c, for n large enough. These two facts yield

lim
n\rightarrow \infty 

sup
\theta \in \Theta c

\| \^\theta i,n(\theta ) - \theta \| 2 = 0 w.p.1.(A.8)

Using (A.7) and Lemma A.4, we conclude that there exists w.p.1 a (realization
dependent) \=n0 such that

\| S0(\theta )\| 2 >\rho 1\epsilon 
2 \forall \theta : | | \theta  - \theta \ast | | > \epsilon 

for every n> \=n0. W.p.1, there also exists a (realization dependent) \=n large enough such
that, for every n> \=n, Ri,n(\theta )\prec I\rho 2, for all \theta \in \Theta c and i= 1, . . . ,m - 1 (Lemma A.4),

and such that \| \^\theta i,n(\theta ) - \theta \| 2 < \rho 1\epsilon 
2

\rho 2
, for all \theta \in \Theta c and i = 1, . . . ,m - 1 (A.8), which

implies

\| Si(\theta )\| 2 <\rho 1\epsilon 
2 \forall \theta \in \Theta c, i= 1, . . . ,m - 1.

Therefore, for every realization on a set of probability 1, there exist (realization de-
pendent) \=n0 and \=n such that for every n>max(\=n0, \=n) it holds that \| S0(\theta )\| > \| Si(\theta )\| ,
i= 1, . . . ,m - 1, for every \theta /\in B\epsilon (\theta 

\ast ), and this implies the theorem statement.
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A.2.3. Proofs of Lemmas A.4 and A.5. Preliminarily, we state some asymp-
totic results that are useful throughout. In all the lemmas stated in this proof, the
assumptions of Theorem 5.5 are left implicit.

Lemma A.6. W.p.1 it holds that
1.a limn\rightarrow \infty 

1
n

\sum n
t=1Nt = 0,

1.b limn\rightarrow \infty 
1
n

\sum n
t=1NtNt - k = \delta k \cdot 

\bigl( 
limn\rightarrow \infty 

1
n

\sum n
t=1\BbbE [N2

t ]
\bigr) 
<\infty , where \delta k = 0 for

every k \not = 0 and \delta 0 = 1,
1.c limn\rightarrow \infty 

1
n

\sum n
t=1NtUt - k = 0 for every k,

1.d limn\rightarrow \infty 
1
n

\sum n
t=1NtYt - k = 0 for every k\geq 1.

For every k \in \BbbZ , there exist cY,k <\infty and cY U,k <\infty such that, w.p.1,
2.a limn\rightarrow \infty 

1
n

\sum n
t=1 YtYt - k = cY,k for every k,

2.b limn\rightarrow \infty 
1
n

\sum n
t=1 YtUt - k = cY U,k for every k.

W.p.1 it holds that
3.a limsupn\rightarrow \infty 

1
n

\sum n
i=1 Y

4
t <\infty ,

3.b limsupn\rightarrow \infty 
1
n

\sum n
t=1 \| \varphi t\| 4 <\infty ,

3.c sup\theta \in \Theta c
(limsupn\rightarrow \infty 

1
n

\sum n
t=1

\^N4
t (\theta ))<\infty ,

3.d sup\theta \in \Theta c

\bigl( 
limsupn\rightarrow \infty 

1
n

\sum n
t=1 \| \=\varphi i,t(\theta )\| 4

\bigr) 
\leq C <\infty , where C depends on \{ Nt\} 

but not on \{ \alpha i,t\} .
For every \theta \in \Theta c and k \in \BbbZ , there exist c \=Y ,k(\theta ) < \infty and c \=Y U,k(\theta ) < \infty such that,
w.p.1,

4.a limn\rightarrow \infty 
1
n

\sum n
t=1

\=Yi,t(\theta ) \=Yi,t - k(\theta ) = c \=Y ,k(\theta ) for every k and every i = 1, . . . ,
m - 1,

4.b limn\rightarrow \infty 
1
n

\sum n
t=1

\=Yi,t(\theta )Ut - k = c \=Y U,k(\theta ) for every k and every i= 1, . . . ,m - 1.

Proof. [1.a, 1.b, 1.c] We prove 1.b, since 1.a is easier.
For every k \not = 0, \BbbE [NtNt - k] = 0. Moreover, by applying twice the Cauchy--Schwarz

inequality (once to \BbbE [\cdot ] and once to
\sum n

t=1 \cdot ), we get limsupn\rightarrow \infty 
\sum n

t=1
\BbbE [(NtNt - k)

2]
t2 \leq 

limsupn\rightarrow \infty 
\sum n

t=1

\sqrt{} 
\BbbE [N4

t ]
t2

\sqrt{} 
\BbbE [N4

t - k]

t2 \leq limsupn\rightarrow \infty 

\sqrt{} \sum n
t=1

\BbbE [N4
t ]

t2

\sqrt{} \sum n
t=1

\BbbE [N4
t - k]

t2 < \infty 
by Assumption 5.3, (5.2), and the result follows from the Kolmogorov's strong law of
large numbers (Theorem B.1 in Appendix B). The case k = 0 and 1.c can be proven
similarly.

[1.d] By using the expression Yt - k =
\sum \infty 

\tau =0 h\tau Nt - k - \tau +
\sum \infty 

\tau =1 g\tau Ut - k - \tau , we write
1
n

\sum n
t=1NtYt - k = 1

n

\sum n
t=1Nt(

\sum n
\tau =0 h\tau Nt - k - \tau +

\sum n
\tau =1 g\tau Ut - k - \tau ) =

\sum n
\tau =0 h\tau (

1
n

\sum n
t=1

NtNt - k - \tau ) +
\sum n

\tau =1 g\tau (
1
n

\sum n
t=1NtUt - k - \tau ). We focus on the first term; the second

one can be dealt with similarly. Using the fact that Nt = 0 for all t \leq 0, the
Cauchy--Schwarz inequality yields sup\tau =1,2,...

1
n | 
\sum n

t=1NtNt - k - \tau | \leq 1
n

\sum n
t=1N

2
t . De-

fine C = limn\rightarrow \infty 
1
n

\sum n
t=1N

2
t . Fix \epsilon > 0. By stability, it is possible to choose M such

that for each n \geq M ,
\sum \infty 

\tau =M+1 | h\tau | < \epsilon 
2C . Thus, | 

\sum n
\tau =0 h\tau (

1
n

\sum n
t=1NtNt - k - \tau )| \leq 

| 
\sum M

\tau =0 h\tau (
1
n

\sum n
t=1NtNt - k - \tau )| + \epsilon 

2 , which can be made < \epsilon by taking n large enough,
because max\tau =1,...,M | 1n (

\sum n
t=1NtNt - k - \tau )| is the max over a set of finite (M) terms

that all go to zero in virtue of 1.b.
[2.a, 2.b] The proof of 2.a is similar to 2.b, so we focus on 2.a. Consider k \geq 0,

otherwise replace t with t\prime = t - k, and use the same argument. Rewrite 1
n

\sum n
t=1 YtYt - k

as (it is intended that g\tau = 0 for \tau \leq 0)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1

n

n\sum 
t=1

\Biggl( 
n\sum 

\tau =0

(h\tau Nt - \tau + g\tau Ut - \tau )

\Biggr) \Biggl( 
n\sum 

\ell =0

(h\ell Nt - k - \ell + g\ell Ut - k - \ell )

\Biggr) 

=

n\sum 
\tau =0

n\sum 
\ell =0

h\tau h\ell 

\Biggl( 
1

n

n\sum 
t=1

Nt - \tau Nt - k - \ell 

\Biggr) 
+

n\sum 
\tau =0

n\sum 
\ell =0

h\tau g\ell 

\Biggl( 
1

n

n\sum 
t=1

Nt - \tau Ut - k - \ell 

\Biggr) 

+

n\sum 
\tau =0

n\sum 
\ell =0

g\tau h\ell 

\Biggl( 
1

n

n\sum 
t=1

Ut - \tau Nt - k - \ell 

\Biggr) 
+

n\sum 
\tau =0

n\sum 
\ell =0

g\tau g\ell 

\Biggl( 
1

n

n\sum 
t=1

Ut - \tau Ut - k - \ell 

\Biggr) 
.

All of these terms can be dealt with similarly, so we focus on the first one.
\sum n

\tau =0

\sum n
\ell =0

h\tau h\ell (
1
n

\sum n
t=1Nt - \tau Nt - k - \ell ), for M <n, can be rewritten as

M\sum 
\tau =0

M\sum 
\ell =0

h\tau h\ell 

\Biggl( 
1

n

n\sum 
t=1

Nt - \tau Nt - k - \ell 

\Biggr) 
+

n\sum 
\tau =M+1

M\sum 
\ell =0

h\tau h\ell 

\Biggl( 
1

n

n\sum 
t=1

Nt - \tau Nt - k - \ell 

\Biggr) 

+

M\sum 
\tau =0

n\sum 
\ell =M+1

h\tau h\ell 

\Biggl( 
1

n

n\sum 
t=1

Nt - \tau Nt - k - \ell 

\Biggr) 
+

n\sum 
\tau =M+1

n\sum 
\ell =M+1

h\tau h\ell 

\Biggl( 
1

n

n\sum 
t=1

Nt - \tau Nt - k - \ell 

\Biggr) 
.

By virtue of sup\tau ,\ell =0,...,n | 1n
\sum n

t=1Nt - \tau Nt - k - \ell | \leq 1
n

\sum n
t=1N

2
t , which converges to a

constant as n grows to \infty , and by virtue of the stability of the system, the limit
as n \rightarrow \infty of all the terms except for the first one can be made arbitrarily close
to zero if M is chosen large enough. We are left to deal with the truncated sum
limn\rightarrow \infty 

\sum M
\tau =0

\sum M
\ell =0 h\tau h\ell (

1
n

\sum n
t=1Nt - \tau Nt - k - \ell ), which is Cauchy in M because of the

stability of the system, and therefore can be made arbitrarily close to limn\rightarrow \infty 
\sum n

\tau =0\sum n
\ell =0 h\tau h\ell (

1
n

\sum n
t=1Nt - \tau Nt - k - \ell ). More precisely, its argument can be further decom-

posed as

\sum 
\tau =0,...,M - k

h\tau hk+\tau 

\Biggl( 
1

n

n\sum 
t=1

N2
t - \tau 

\Biggr) 
+

\sum 
\tau =0,...,M ;\ell =0,...,M ;\ell \not =k+\tau 

h\tau h\ell 

\Biggl( 
1

n

n\sum 
t=1

Nt - \tau Nt - k - \ell 

\Biggr) 
.

The limit for n \rightarrow \infty of the second term goes to zero because of Lemma A.6 (1.b)
applied to a finite number of choices of \tau and \ell , while limn\rightarrow \infty 

\sum 
\tau =0,...,M - k h\tau hk+\tau 

( 1n
\sum n

t=1N
2
t - \tau ) = c0

\sum 
\tau =0,...,M - k h\tau hk+\tau does not depend on the specific \{ Nt\} .

[3.a, 3.b, 3.c, 3.d] The sequence \{ Yt\} can be written as the sum of two convolu-
tions, i.e., \{ Yt\} = (\{ Nt\} \ast \{ ht(\theta 

\ast )\} ) + (\{ Ut\} \ast \{ gt(\theta \ast )\} ), where the t\prime th sample of the
first convolution is (\{ Nt\} \ast \{ ht(\theta 

\ast )\} )t\prime =
\sum \infty 

\tau =0Nt\prime  - \tau h\tau (\theta 
\ast ), and the t\prime th sample of the

second convolution is (\{ Ut\} \ast \{ gt(\theta \ast )\} )t\prime =
\sum \infty 

\tau =1Ut\prime  - \tau g\tau (\theta 
\ast ). Let 1 (P ) denote the

indicator function that is equal to 1 when proposition P is true and is 0 otherwise.
For every t and k, define Nt| k \triangleq Nt \cdot 1 (t\leq k), and, similarly, Ut| k \triangleq Ut \cdot 1 (t\leq k),

Yt| k \triangleq Yt \cdot 1 (t\leq k). Clearly, for every fixed n,

\| \{ Yt| n\} \| 4 = \| (\{ Nt| n\} \ast \{ ht(\theta 
\ast )\} ) + (\{ Ut| n\} \ast \{ gt(\theta \ast )\} )\| 4(A.9)

\leq \| (\{ Nt| n\} \ast \{ ht(\theta 
\ast )\} )\| 4 + \| (\{ Ut| n\} \ast \{ gt(\theta \ast )\} )\| 4.

Using Young's convolution inequality for sequences (see, e.g., [7, p. 315])

\| (\{ Nt| n\} \ast \{ ht(\theta 
\ast )\} )\| 4 \leq \| \{ Nt| n\} \| 4 \cdot \| \{ ht(\theta 

\ast )\} \| 1

\leq 

\Biggl( 
n\sum 

t=1

N4
t

\Biggr) 1/4

\cdot 

\Biggl( \infty \sum 
t=0

| ht(\theta 
\ast )| 

\Biggr) 
,
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and similarly for the input term. Due to the stability assumption, \| \{ ht(\theta 
\ast )\} \| 1 \leq C \prime <

\infty and \| \{ gt(\theta \ast )\} \| 1 \leq C \prime \prime <\infty . Hence, we get

1

n

n\sum 
t=1

Y 4
t \leq 8C \prime 4 1

n

n\sum 
t=1

N4
t + 8C \prime \prime 4 1

n

n\sum 
t=1

U4
t ,(A.10)

and, from (5.4) and (5.3), we conclude that limsupn\rightarrow \infty 
1
n

\sum n
t=1 Y

4
t <\infty w.p.1.

Inequality

limsup
n\rightarrow \infty 

1

n

n\sum 
t=1

\| \varphi t\| 42 <\infty (A.11)

immediately follows from

\| \varphi t\| 2 \leq 
na\sum 
k=1

| Yt - k| +
nb\sum 
k=1

| Ut - k| .(A.12)

Moreover, | \^Nt(\theta )| = | Nt + \varphi T
t (\theta 

\ast  - \theta )| \leq | Nt| + \| \varphi t\| 2 \cdot \| \theta \ast  - \theta \| 2 \leq | Nt| + \| \varphi t\| 2 \cdot 
sup\theta \in \Theta c

\| \theta \ast  - \theta \| 2. Here, sup\theta \in \Theta c
\| \theta \ast  - \theta \| 2 is finite because \Theta c is compact and we can

conclude that

sup
\theta \in \Theta c

\Biggl( 
limsup
n\rightarrow \infty 

1

n

n\sum 
t=1

\^N4
t (\theta )

\Biggr) 
<\infty .(A.13)

The same reasoning that led to (A.10) and (A.11) can be applied to \{ \=Yt(\theta )\} =
(\{ \alpha i,t

\^Nt(\theta )\} \ast \{ ht(\theta )\} ) + (\{ Ut\} \ast \{ gt(\theta )\} ), and, noting that sup\theta \in \Theta c

\sum \infty 
t=1 | ht(\theta )| \leq 

K \prime <\infty and sup\theta \in \Theta c

\sum \infty 
t=1 | gt(\theta )| \leq K \prime \prime <\infty by Assumption 5.2, we immediately get

sup
\theta \in \Theta c

\Biggl( 
limsup
n\rightarrow \infty 

1

n

n\sum 
t=1

\| \=\varphi i,t(\theta )\| 42

\Biggr) 
<\infty ,(A.14)

where the finite bound does not depend on the sequence \{ \alpha i,t\} .
[4.a, 4.b] Writing \=Yi,t(\theta ) =

\sum n
\tau =0 h\tau (\theta )\alpha i,t

\^Nt - \tau (\theta ) +
\sum n

\tau =1 g\tau (\theta )Ut - \tau =
\sum n

\tau =0

(h\tau (\theta )\alpha i,tNt - \tau ) +
\sum n

\tau =0 h\tau (\theta )\alpha i,t\varphi 
T
t - \tau (\theta 

\ast  - \theta ) +
\sum n

\tau =1 g\tau (\theta )Ut - \tau , where
\sum n

\tau =0(h\tau (\theta )
\alpha i,t\varphi 

T
t - \tau (\theta 

\ast  - \theta )) =
\sum n

\tau =0 h\tau (\theta )\alpha i,t(
\sum na

\ell =1 Yt - \tau  - \ell (a
\ast 
\ell  - a\ell ) +

\sum nb

\ell \prime =1Ut - \tau  - \ell \prime (b
\ast 
\ell \prime  - b\ell \prime )),

we observe that, modulo the presence of random signs, most of the terms involved
in this sum are the same as those encountered in the proofs of results 2.a and 2.b,
and they can be dealt with similarly. The term

\sum n
\tau =0 h\tau (\theta )\alpha i,t

\sum na

\ell =1 Yt - \tau  - \ell (a
\ast 
\ell  - a\ell )

requires some extra care as it gives rise to cross-terms of the kind (a\ast \ell  - a\ell )
2
\sum n

\tau =0

\sum n
\lambda =0

h\tau (\theta )h\lambda (\theta )
1
n

\sum n
t=1\alpha i,t - \tau  - \ell Yt - \tau  - \ell \alpha i,t - k - \lambda  - \ell Yt - k - \lambda  - \ell . These terms can be dealt with

by conditioning on a fixed sequence \{ Nt\} ; in fact, conditionally on \{ Nt\} , the sequence
\{ \alpha i,t - \tau  - \ell Yt - \tau  - \ell \alpha i,t - k - \lambda  - \ell Yt - k - \lambda  - \ell \} \infty t=1 is independent so that Kolmogorov's strong
law of large numbers (Theorem B.1 in Appendix B) applies. In this way, we can
conclude that, when \tau \not = k + \lambda , 1

n

\sum n
t=1\alpha i,t - \tau  - \ell Yt - \tau  - \ell \alpha i,t - k - \ell Yt - k - \ell goes to zero

w.p.1, while the case \tau = k+ \lambda reduces to 2.a.

The following lemma ensures that there is some continuity (on average) in the
behavior of \=Yi,1(\theta ), . . . , \=Yi,n(\theta ) as \theta varies in \Theta c.

Lemma A.7. For every \epsilon > 0 there exists a \delta > 0 such that

limsup
n\rightarrow \infty 

sup
\theta 1,\theta 2\in \Theta c;\theta 1\in B\delta (\theta 2)

1

n

n\sum 
t=1

| \=Yt(\theta 1) - \=Yt(\theta 2)| 2 < \epsilon w.p.1.
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Proof. The proof follows along the same lines as the proof of Lemma A.6, 3.a, 3.b,
3.c, by writing, for each n (and i), \{ \=Yi,t| n(\theta 1) - \=Yi,t| n(\theta 2)\} = \{ \=Yi,t| n(\theta 1)\}  - \{ \=Yi,t| n(\theta 2)\} =
\{ \alpha i,t

\^Nt| n(\theta 1)\} \ast \{ ht(\theta 1)\}  - \{ \alpha i,t
\^Nt| n(\theta 2)\} \ast \{ ht(\theta 2)\} + \{ Ut| n\} \ast \{ gt(\theta 1)  - gt(\theta 2)\} =

\{ \alpha i,tNt| n + \alpha i,t\varphi 
T
t| n(\theta 

\ast  - \theta 2 + [\theta 2  - \theta 1])\} \ast \{ ht(\theta 1)\} + \{ \alpha i,tNt| n + \alpha i,t\varphi 
T
t| n(\theta 

\ast  - \theta 2)\} \ast 
\{ ht(\theta 2)\} +\{ Ut| n\} \ast \{ gt(\theta 1) - gt(\theta 2)\} . Using the notation \Delta \theta \triangleq \theta 1 - \theta 2, \Delta f \triangleq f(\theta 1) - f(\theta 2)
for a generic function f , we can write

\| \{ \Delta \=Yi,t| n\} \| 2 \leq \| \{ \alpha i,tNt| n\} \ast \{ \Delta ht\} \| 2 + \| \{ \alpha i,t\varphi 
T
t| n(\theta 

\ast  - \theta 2)\} \ast \{ \Delta ht\} \| 2
+ \| \{ \alpha i,t\varphi 

T
t| n\Delta \theta \} \ast \{ ht(\theta 1)\} \| 2 + \| \{ Ut| n\} \ast \Delta gt\| 2

\leq (Young's inequality)

\leq \| \{ Nt| n\} \| 2 \cdot \| \{ \Delta ht\} \| 1 + (\| \theta \ast  - \theta 2\| 2 \cdot \| \{ \| \varphi t| n\| 2\} \| 2) \cdot \| \{ \Delta ht\} \| 1
+ \| \Delta \theta \| 2 \cdot \| \{ \| \varphi t| n\| 2\} \| 2 \cdot \| \{ ht(\theta 1)\} \| 1 + \| \{ Ut| n\} \| 2 \cdot \| \{ \Delta gt\} \| 1,(A.15)

which is a finite quantity in view of Assumption 5.2. Denoting sup\theta 1,\theta 2\in \Theta c;\theta 1\in B\delta (\theta 2)

for short as sup\| \Delta \theta \| <\delta , we have sup\| \Delta \theta \| <\delta \| \Delta ht\| 1 \leq 2
\sum \infty 

t=0 sup\theta \in \Theta c
| ht(\theta )| <\infty and

sup\| \Delta \theta \| <\delta \| \Delta gt\| 1 \leq 2
\sum \infty 

t=1 sup\theta \in \Theta c
| gt(\theta )| < \infty . From (A.15), using (5.4) and (5.3),

Assumption 5.2, and Lemma A.6 (3.b), it follows that w.p.1 there are (possibly real-
ization dependent) constants C1, C2, C3, C4 such that

limsup
n\rightarrow \infty 

sup
\| \Delta \theta \| <\delta 

\sqrt{} 
1

n
\| \{ \Delta \=Yi,t| n\} \| 2

\leq C1 sup
\| \Delta \theta \| <\delta 

\| \{ \Delta ht\} \| 1 +C2 sup
\| \Delta \theta \| <\delta 

\| \{ \Delta ht\} \| 1 + \delta \cdot C3 +C4 sup
\| \Delta \theta \| <\delta 

\| \{ \Delta gt\} \| 1 <\infty .

Moreover, sup\| \Delta \theta \| <\delta \| \{ \Delta ht\} \| 1 can be made arbitrarily small for \delta small enough
because sup\| \Delta \theta \| <\delta \| \{ \Delta ht\} \| 1 \leq 

\sum \infty 
t=0 sup\| \Delta \theta \| <\delta | \Delta ht| and the following proposition

holds.

Proposition A.8.
\sum \infty 

t=0 sup\| \Delta \theta \| <\delta \prime | \Delta ht| can be made arbitrarily small for a
positive \delta \prime small enough.

Proof. First, write

\infty \sum 
t=0

sup
\| \Delta \theta \| <\delta \prime 

| \Delta ht| =
M - 1\sum 
t=0

sup
\| \Delta \theta \| <\delta \prime 

| \Delta ht| +
\infty \sum 

t=M

sup
\| \Delta \theta \| <\delta \prime 

| \Delta ht| 

\leq 
M - 1\sum 
t=0

sup
\| \Delta \theta \| <\delta \prime 

| \Delta ht| + 2

\infty \sum 
t=M

sup
\theta \in \Theta c

| ht(\theta )| ,

and note that for any \epsilon \prime we can choose an M > 0 large enough, such that

\infty \sum 
t=M

sup
\theta \in \Theta c

| ht(\theta )| <
\epsilon \prime 

4
.

Now we prove that there exists \delta \prime > 0 such that
\sum M - 1

t=0 sup\| \Delta \theta \| <\delta \prime | \Delta ht| < \epsilon \prime 

2 . By As-

sumption 5.2, the tth coefficient ht(\theta ) of the Laurent series
\sum \infty 

t=0 ht(\theta )z
 - t = 1

A(\theta ;z - 1)

can be written as ht(\theta ) = 1
2\pi 

\int \pi 

 - \pi 
1

A(\theta ;e - \iota \omega )e
\iota \omega td\omega (\iota denotes the imaginary unit);

see, e.g., [52]. This implies that | ht(\theta 1)  - ht(\theta 2)| \leq 1
2\pi 

\int \pi 

 - \pi 
| A(\theta 1 - \theta 2;e

 - \iota \omega ) - 1
A(\theta 1;e - \iota \omega )A(\theta 2;e - \iota \omega ) | d\omega \leq 

1
2\pi K

2
\int \pi 

 - \pi 
| A(\theta 1  - \theta 2;e

 - \iota \omega ) - 1| d\omega , where K \triangleq sup\theta \in \Theta c,\omega \in [ - \pi ,\pi ]
1

| A(\theta ;e - \iota \omega )| . Note that

K is finite by Assumption 5.2; in fact, by Assumption 5.2 there exists a finite K \prime such
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1922 A. CAR\`E, E. WEYER, B. CS. CS\'AJI, AND M. C. CAMPI

that for all \theta and \omega it holds that K \prime >
\sum \infty 

t=0 | ht(\theta )| \geq | 
\sum \infty 

t=0 ht(\theta )e
\iota \omega t| = | 1

A(\theta ;e - \iota \omega ) | .
Since | A(\theta  - \theta \prime ;e - \iota \omega ) - 1| = | (a1 - a\prime 1)e

 - \iota \omega +(a2 - a\prime 2)e
 - \iota 2\omega + \cdot \cdot \cdot +(ana

 - a\prime na
)e - \iota na\omega | \leq 

na\| \theta  - \theta \prime \| 1 \leq n
3
2
a \| \theta  - \theta \prime \| 2, the result follows by choosing \delta \prime <n

 - 3
2

a
\pi \epsilon \prime 

M \cdot K2 .

The same argument holds for sup\| \Delta \theta \| <\delta \| \Delta gt\| 1, and from this the theorem state-
ment follows.

Proof of Lemma A.4. The limit \=R\ast = limn\rightarrow \infty 
1
n

\sum n
t=1\varphi t\varphi 

T
t exists and is finite by

Lemma A.6 (2.a, 2.b). The persistent excitation condition on \{ Ut\} (Assumption 5.4),
together with the fact that polynomials A(\theta \ast ;z - 1) and B(\theta \ast ;z - 1) are of known orders
(Assumption 2.1) and coprime (Assumption 5.1), entails that \=R\ast is positive definite;
see, e.g., [65, Lemma 10.3], and [42].

From Lemma A.6, 4.a and 4.b, it follows that for each \theta the limit matrix \=R(\theta )
exists and is independent of i and of the realizations of \{ Nt\} and \{ \alpha i,t\} . When
\theta = \theta \ast , the perturbed output generated by (3.2) is statistically equivalent to the
original output, so that \=R(\theta \ast ) = \=R\ast .

Let \theta 0 be an arbitrary element of \Theta c; we use the notation \Delta f to denote the
difference f(\theta ) - f(\theta 0). We first show that

\forall \epsilon > 0 \exists \delta > 0 s.t. limsup
n\rightarrow \infty 

sup
\theta ,\theta 0:\theta \in B\delta (\theta 0)

\| \Delta Ri,n\| < \epsilon ,(A.16)

where the domain \Theta c is implicitly assumed, and it will be omitted in what follows. To
prove (A.16), we focus on the matrix \Delta Ri,n entry by entry and we study the limiting
behavior of entries of the kind \Delta rn, where rn(\theta )\triangleq 1

n

\sum n
t=1

\=Yi,t - \ell (\theta ) \=Yi,t - \tau (\theta ), for some
\ell , \tau between 1 and na, while other entries in \Delta Ri,n that involve Ut can be dealt with
similarly. Write | rn(\theta ) - rn(\theta 0)| =\bigm| \bigm| \bigm| \bigm| \bigm| 1n

n\sum 
t=1

\=Yi,t - \ell (\theta 0)\Delta \=Yi,t - \tau +
1

n

n\sum 
t=1

\Delta \=Yi,t - \ell 
\=Yi,t - \tau (\theta 0) +

1

n

n\sum 
t=1

\Delta \=Yi,t - \ell \Delta \=Yi,t - \tau 

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\sqrt{}    1

n

n\sum 
t=1

\=Y 2
i,t - \ell (\theta 0)

\sqrt{}    1

n

n\sum 
t=1

\Delta \=Y 2
i,t - \tau +

\sqrt{}    1

n

n\sum 
t=1

\Delta \=Y 2
i,t - \ell 

\sqrt{}    1

n

n\sum 
t=1

\=Y 2
i,t - \tau (\theta 0)

+

\sqrt{}    1

n

n\sum 
t=1

\Delta \=Y 2
i,t - \ell 

\sqrt{}    1

n

n\sum 
t=1

\Delta \=Y 2
i,t - \tau .

By taking the sup\theta ,\theta 0:\theta \in B\delta (\theta 0)
on both sides, it is immediate from Lemma A.6, 4.a,

and Lemma A.7 that sup\theta ,\theta 0:\theta \in B\delta (\theta 0)
| rn(\theta ) - rn(\theta 0)| can be made arbitrarily small for

every n large enough by choosing \delta small enough and (A.16) is established. Since

sup
\theta ,\theta 0:\theta \in B\delta (\theta 0)

\| \Delta \=R\| = sup
\theta ,\theta 0:\theta \in B\delta (\theta 0)

limsup
n\rightarrow \infty 

\| \Delta Ri,n\| 

\leq limsup
n\rightarrow \infty 

sup
\theta ,\theta 0:\theta \in B\delta (\theta 0)

\| \Delta Ri,n\| ,

(A.16) entails uniform continuity of \=R(\theta ) over \Theta c, and therefore there exists a fi-
nite \rho 2 > 0 such that \=R(\theta ) \prec \rho 2I for all \theta \in \Theta c. As for the uniform conver-
gence of Ri,n(\theta ) to \=R(\theta ), we can find a \delta > 0 and a finite number M\delta of \delta -balls

B\delta (\theta 
(1)
0 ), . . . ,B\delta (\theta 

(M\delta )
0 ) that cover \Theta c and are such that, for all n large enough, it holds

true that (i) maxj=1,...,M\delta 
sup

\theta \in B\delta (\theta 
(j)
0 )

\| Ri,n(\theta ) - Ri,n(\theta 
(j)
0 )\| < \epsilon 

3M\delta 
(in view of (A.16)),

(ii) maxj=1,...,M\delta 
\| Ri,n(\theta 

(j)
0 ) - \=R(\theta 

(j)
0 )\| < \epsilon 

3M\delta 
(in view of pointwise convergence at the
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ball centers), and (iii) maxj=1,...,M\delta 
sup

\theta \in B\delta (\theta 
(j)
0 )

\| \=R(\theta 
(j)
0 ) - \=R(\theta )\| < \epsilon 

3M\delta 
(in view of

uniform continuity of \=R(\theta )). Then, for any n large enough, sup\theta \| Ri,n(\theta ) - \=R(\theta )\| \leq \sum M\delta 

j=1 sup\theta \in B\delta (\theta 
(j)
0 )

\| Ri,n(\theta )  - \=R(\theta )\| \leq 
\sum M\delta 

j=1 sup\theta \in B\delta (\theta 
(j)
0 )

(\| Ri,n(\theta )  - Ri,n(\theta 
(j)
0 )\| +

\| Ri,n(\theta 
(j)
0 ) - \=R(\theta 

(j)
0 )\| + \| \=R(\theta 

(j)
0 ) - \=R(\theta )\| )\leq 

\sum M\delta 

j=1(
\epsilon 

3M\delta 
+ \epsilon 

3M\delta 
+ \epsilon 

3M\delta 
) = \epsilon .

To see that \=R(\theta ) \succ I\rho 1 for all \theta \in \Theta c, recall that \{ \=Yi,t(\theta )\} = (\{ \alpha i,t
\^Nt(\theta )\} \ast 

\{ ht(\theta )\} ) + (\{ Ut\} \ast \{ gt(\theta )\} ), where \{ Ut\} is persistently exciting of order na + nb (As-
sumption 5.4). Any realization of \{ \alpha i,t

\^Nt(\theta )\} (in a set of probability 1) is ``uncor-
related"" with \{ Ut\} in the sense that limn\rightarrow \infty 

1
n

\sum n
t=1\alpha i,t

\^Nt(\theta )Ut - \tau = 0 for every \tau ;

moreover, \{ \alpha i,t
\^Nt(\theta )\} is persistently exciting of every order in the sense of [42] for

every \theta \not = \theta \ast .8 Applying standard results on identifiability (e.g., Lemma 10.2 in [65])
it follows immediately that \=R(\theta ) is invertible for every \theta \in \Theta c\setminus \{ \theta \ast \} . We knew already
that \=R(\theta \ast ) = \=R\ast \succ 0 so that, by continuity of \=R(\theta ), we can conclude that \=R(\theta )\succ I\rho 1
over the whole \Theta c for some \rho 1 > 0.

Proof of Lemma A.5. The first statement follows from Lemma A.6 (1.c, 1.d). As
for the second statement, we first prove pointwise convergence, i.e., we prove that for
all \theta \in \Theta c,

lim
n\rightarrow \infty 

1

n

n\sum 
t=1

\alpha i,t
\^Nt(\theta ) \=\varphi i,t(\theta ) = 0 w.p.1.

We work conditioning on a sequence \{ Nt\} , i.e., we fix a realization of the noise, which
we recall is independent of the sign-sequences \{ \alpha i,t\} , i = 1, . . . ,m  - 1. Therefore,
in what follows, all the probabilities and expected values are with respect to the
random sign-sequences \{ \alpha i,t\} , i = 1, . . . ,m - 1, only. Since the result that we prove
holds conditionally on any realization \{ Nt\} in a set of probability 1, then it holds
unconditionally w.p.1. For a fixed \theta \in \Theta (and i), define\left\{   zi,t(\theta ) = zi,t - 1(\theta ) +

1

t
\alpha i,t

\^Nt(\theta ) \=\varphi i,t(\theta ),

zi,0 = 0.

We aim at showing that each component of zi,n(\theta ) is a martingale with bounded
variance. From this, convergence of 1

n

\sum n
t=1\alpha i,t

\^Nt(\theta ) \=\varphi i,t(\theta ) to zero as n\rightarrow \infty will be
easily proved.

Clearly, \BbbE [| zi,t| ] < \infty for all t. Denote by \scrA t the \sigma -algebra generated by the
sequence \{ \alpha i,t\} until time t, i.e., by \alpha i,1, . . . , \alpha i,t. Since \BbbE [zi,t+1| \scrA t] = zt, the se-

quence \{ z(j)i,t \} formed by the jth component of the vector zi,t is a martingale. More-

over, \BbbE [z(j)i,t z
(j)
i,t - 1| \scrA t - 1] = (z

(j)
i,t - 1)

2+\BbbE [\alpha i,t| \scrA t - 1] \cdot 1t (Nt+\varphi T
t (\theta 

\ast  - \theta )) \=\varphi i,t(\theta )
(j)z

(j)
i,t - 1 =

(z
(j)
i,t - 1)

2, from which the useful identity

\BbbE [(z(j)i,t  - z
(j)
i,t - 1)

2| \scrA t - 1] =\BbbE [(z(j)i,t )
2  - (z

(j)
i,t - 1)

2| \scrA t - 1](A.17)

follows. Thus,

\BbbE [(z(j)i,t )
2] =

t\sum 
k=1

\Bigl( 
\BbbE [(z(j)i,k )

2] - \BbbE [(z(j)i,k - 1)
2]
\Bigr) 

(A.18)

8Proving these claims is easy if we fix a realization of \{ Nt\} , and only the signs are left random;
then it is just a matter of checking that the conditions for the Kolmogorov's strong law of large
numbers (Theorem B.1) are met by the conditionally independent sequences \{ \alpha t

\^Nt(\theta )\alpha t - j
\^Nt - j(\theta )\} 

and \{ \alpha t
\^Nt(\theta )Ut\} .
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=

t\sum 
k=1

\BbbE [[\BbbE [(z(j)i,k )
2  - (z

(j)
i,k - 1)

2| \scrA k - 1]](A.19)

=

t\sum 
k=1

\BbbE [(z(j)i,k  - z
(j)
i,k - 1)

2] (by (A.17))(A.20)

=

t\sum 
k=1

1

k2
\^N2
k (\theta )\BbbE [ \=\varphi 

(j)
i,k(\theta )

2](A.21)

\leq 
t\sum 

k=1

1

k
\^N2
k (\theta )

1

k
\BbbE 
\bigl[ 
\| \=\varphi i,k(\theta )\| 2

\bigr] 
(A.22)

\leq 

\sqrt{}    t\sum 
k=1

1

k2
\^N4
k (\theta )

\sqrt{}    t\sum 
k=1

1

k2
\BbbE [\| \=\varphi i,k(\theta )\| 2]2 (Cauchy - Schwarz)(A.23)

\leq 

\sqrt{}    t\sum 
k=1

1

k2
\^N4
k (\theta )

\sqrt{}    \BbbE 

\Biggl[ 
t\sum 

k=1

1

k2
\| \=\varphi i,k(\theta )\| 4

\Biggr] 
(Jensen's inequality),(A.24)

and, keeping in mind that the expected value is only w.r.t. \{ \alpha i,t\} , this is bounded

by virtue of Lemma A.6 (3.c, 3.d). Thus, we have proved that \{ z(j)i,t \} is a martingale

with bounded variance uniformly w.r.t. t, therefore supt\BbbE [| z
(j)
i,t | ] < \infty , and we can

apply Doob's theorem (Theorem B.2 in Appendix B) to conclude that limt\rightarrow \infty zi,t
is, w.p.1, a limit vector with finite-valued components. Finally, by Kronecker's

lemma (Lemma B.3 in Appendix B), limt\rightarrow \infty zi,t =
\sum \infty 

t=1
\alpha i,t

\^Nt(\theta ) \=\varphi i,t(\theta )
t < \infty implies

limn\rightarrow \infty 
1
n

\sum n
t=1\alpha i,t

\^Nt(\theta ) \=\varphi i,t(\theta ) = 0. As for uniform convergence, using Lemmas A.7
and A.6, one can easily show that there exists a positive \delta such that, for n large
enough, the values \{ | 1n

\sum n
t=0\alpha i,t

\^Nt(\theta ) \=\varphi i,t(\theta )| : \theta \in B\delta (\theta 
\prime )\} are \epsilon -close to each other,

no matter what \theta \prime is. Since \Theta c is compact, a finite number \delta -balls cover the whole set
\Theta c and therefore | 1n

\sum n
t=0\alpha i,t

\^Nt(\theta ) \=\varphi i,t(\theta )| can be made arbitrarily small uniformly on
the whole \Theta c for n large enough.

Appendix B. Useful results.

Theorem B.1 (Kolmogorov's strong law of large numbers [64]). Let \xi 1, \xi 2, . . .
be a sequence of independent random variables with finite second moments, and let
Sn =

\sum n
t=1 \xi t. Assume that

\infty \sum 
t=1

\BbbE [(\xi t  - \BbbE [\xi t])2]
t2

<\infty ,

then

lim
n\rightarrow \infty 

Sn  - \BbbE [Sn]

n
= 0 w.p.1.

The following theorem [57, Chapter VII, section 4, Theorem 1] is fundamental in
the study of convergence of the (sub)martingale and can be thought of as a stochastic
analogue of the monotone convergence theorem for real sequences.

Theorem B.2 (Doob). Let (\xi n,\scrF n) be a submartingale (i.e., \BbbE [\xi n+1| \scrF n] \geq \xi n
w.p.1) with supn\BbbE [| \xi n| ] < \infty . Then, w.p.1, the limit limn\rightarrow \infty \xi n = \xi \infty exists and
\BbbE [| \xi \infty | ]<\infty .
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Lemma B.3 (Kronecker [57]). Let b1, b2, . . . be a sequence of positive increasing
numbers such that limn\rightarrow \infty bn = \infty , and let c1, c2, . . . be a sequence of numbers such
that

\sum \infty 
n=1 cn converges. Then, limn\rightarrow \infty 

1
bn

\sum n
j=1 bjcj = 0. In particular, if bn = n,

cn = dn

n , and
\sum \infty 

n=1
dn

n converges, then limn\rightarrow \infty 
1
n

\sum n
j=1 dj = 0.
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