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Abstract: In this paper we consider the problem of constructing confidence sets for the
parameters of ARMAX models. Based on subsampling techniques and building on earlier
exact finite sample results due to Hartigan, we compute the exact probability that the
true parameters belong to certain regions in the parameter space. By intersecting these
regions, a confidence set containing the true parameters with guaranteed probability is
obtained. All results hold rigorously true for any finite number of data points and no
asymptotic theory is involved. Moreover, prior knowledge on the uncertainty affecting
the data is reduced to a minimum. A simulation example is provided showing that the
method delivers practically useful confidence sets with guaranteed probabilities.
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non-asymptotic theory, ARMAX models.

1. INTRODUCTION

It is widely recognised that a model is of limited use
if no certification of its quality is delivered together
with the model itself. In principle, a model can be
used as if it were the true system provided that it
is so accurate that the system-model discrepancy is
negligible. However, this is seldom the case, and the
model accuracy should be taken into account when
the model is used in practice. For the evaluation of
model quality one will only have a finite amount of
data available. Thus, a sound uncertainty evaluation

1 This research has been supported by MIUR under the project
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2 This research has been supported by the Cooperative Research
Centre for Sensor Signal and Information Processing (CSSIP) under
the Cooperative Research Centre scheme funded by The Common-
wealth Government

method must provide results valid when the number
of data is finite, and, possibly, small.

Quite often, uncertainty evaluations are based on the
asymptotic theory of system identification (e.g. Ljung
(1999) or S̈oderstr̈om and Stoica (1988)). It is com-
mon experience of theorists and practitioners that this
theory - though applied heuristically with a finite num-
ber of data points - in many situations delivers sensi-
ble results. On the other hand, the correctness of the
results is not guaranteed, and contributions (Garatti et.
al. (2004)) have appeared that show that the asymp-
totic theory may as well fail to be reliable in certain sit-
uations. Moreover, when the available data is scarce,
using asymptotic results makes no sense.

Our earlier finite sample results (e.g. Campi and
Weyer (2002) and Weyer and Campi (2002)) were
data independent, in the sense that they were uniform
with respect to the considered class of data generat-
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ing systems, and they could essentially be evaluated
without any data. Because of the uniformity, it was
realised that the results could be quite conservative for
the particular system at hand. In this paper we extend
the method in Campi and Weyer (2003) for generating
guaranteed non-asymptotic confidence regions for the
parameters of ARMA models to ARMAX models.
The approach uses data generated by the actual system
at hand, and hence avoids the problems due to unifor-
mity. Finite sample results using a data based approach
has also been developed in Campi et al. (2002), and
of course many popular techniques such as bootstrap
are data based (e.g. Tjärnstr̈om and Ljung (2002)).
However, few rigorous finite sample results exists for
bootstrap methods.

The methodology developed in this paper does not
deliver a nominal model. Instead, it delivers a set of
possible models to which the true system belongs with
a guaranteed probability. In this respect the methodo-
logy has a lot in common with set membership iden-
tification, see e.g. Milanese and Vicino (1991), Bai
et al. (1996), Giarre’ et al. (1997). However, unlike
the typical setting in set membership identification we
do not need to assume that the disturbances are de-
terministic or bounded. Loosely speaking, one could
view the developed methodology as a stochastic set
membership approach to system identification, where
the setting we consider is the standard stochastic set-
ting for system identification from e.g. Ljung (1999)
or Söderstr̈om and Stoica (1988), but where the out-
comes are more in line with the outcomes from set
membership identification.

The mathematical approach of this paper is inspired
by the work of Hartigan (Hartigan (1969)) in the sta-
tistical literature. In Hartigan (1969), Hartigan consid-
ered the problem of estimating a constant from noisy
measurements and introduced the idea that sample
estimates based on a certain group theoretical property
exhibit special distribution characteristics, valid for
a finite number of measurements. The present paper
departs from the original work of Hartigan in that
we consider more general random sequences (and this
allows us to deal withdynamicalsystems).

In the next section we give a simple preview example
illustrating the main idea. In section 3 we consider
ARMAX models and give the algorithm for the con-
struction of the confidence region and the theoretical
results giving the probability that the true parameters
belong to the constructed region. Due to space limita-
tions, we have left out the proofs of the theorems, but
they are available from the authors on request.

2. A PREVIEW EXAMPLE

In this section, a preview example is given that il-
lustrates the type of results developed. Consider the
system

yt + a0yt−1 = wt, (1)
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Fig. 1. Data for the preview example

wherea0 = 0.2 and{wt} is an independent sequence
of random variables uniformly distributed between−1
and1. 1025 data points were generated according to
(1). The first 200 data points are shown in Figure 1.
Our goal is to form a confidence region fora0 from
the available data set.

Rewrite the system as a model with generic parameter
a:

yt + ayt−1 = wt.

The predictor and prediction error associated with the
model are

ŷt(a) = −ayt−1, εt(a) = yt − ŷt(a) = yt + ayt−1.

Next we compute the prediction errorsεt(a) for t =
1, . . . , 1024 and calculate

ft−1(a) = εt−1(a)εt(a), t = 2, . . . , 1024.

Using theft−1(a)’s, we want to form empirical es-
timates of the correlationE[εt−1(a)εt(a)]. Such es-
timates, however, need to be constructed very care-
fully. First, we generate a setG of subsets ofI =
{1, . . . , 1023} which is a group with respect to the
symmetric difference, i.e.(Ii ∪ Ij)− (Ii ∩ Ij) ∈ G, if
Ii, Ij ∈ G. The generated group is taken from Gordon
(1974), and it has 1024 elements and apart from the
empty set, each set inG has 512 elements. The sets
in G are denotedI1, . . . , I1024. The incident matrix
for a group is a matrix whose(i, j) element is 1 if
j ∈ Ii and zero otherwise. An incident matrix̄R for
the1023 nonempty sets are generated as follows. Let
R(1) = [1], and recursively compute (l = 2, 3, . . .)

R(2l − 1) =




R(2l−1 − 1) R(2l−1 − 1) 0
R(2l−1 − 1) J −R(2l−1 − 1) e

0 eT 1




whereJ ande are, respectively, a matrix and a vector
of all ones. Then,̄R = R(1023).

The estimates of the correlationE[εt−1(a)εt(a)] (in
fact a re-scaled version as no normalization is present)
are then given by

gi(a) =
∑

k∈Ii

fk(a), i = 1, . . . , 1024

(gi(a) = 0 if Ii = ∅). A few gi(a) functions are
plotted in Figure 2.
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Fig. 2.gi(a) functions for the preview example

Now, the idea is that for the truea0, εt(a0) = wt

is white noise and it is very unlikely that all the
gi(a0) functions but a few will be less than zero or
greater than zero. Grounded on this idea, we discard
the rightmost and leftmost regions where only 25
functions out of the calculated 1024 are less than
zero or greater than zero. The resulting interval [0.12,
0.2425], is the confidence region fora0. It is a rigorous
fact (stated in Theorem 3.1) that this confidence region
has probability1 − 25 ∗ 2/1024 = 0.9512 > 95% to
contain the true parameter valuea0.

A verification of the theoretical confidence result was
performed by running the same simulation5000 times.
The empirical frequency ofa0 being in the confidence
interval was 0.9490, in good agreement with the theo-
retical result.

3. CONFIDENCE REGIONS FOR ARMAX
SYSTEMS

3.1 Data generating system

The ARMAX system that generates the data is given
by

A0(z−1)yt = B0(z−1)ut + C0(z−1)wt,

where

A0(z−1) = 1 + a0
1z
−1 + · · ·+ a0

nz−n, (2)

B0(z−1) = b0
1z
−1 + · · ·+ b0

mz−m, (3)

C0(z−1) = 1 + c0
1z
−1 + · · ·+ c0

pz
−p. (4)

It is assumed that the polynomials have no common
factors, and thatA0(z−1) andC0(z−1) are stable.z−1

is the backward shift operator (z−1u(t) = u(t − 1)).
{wt} is a zero-mean independent sequence (noise). No
a-priori knowledge of the noise level is assumed. The
system operates in open loop, that is{wt} and{ut}
are independent. ({ut} can as well be a deterministic
signal.)

3.2 Model structure

The model class isA(z−1, θ)yt = B(z−1, θ)ut +
C(z−1, θ)wt, θ ∈ Θ, where A(z−1, θ), B(z−1, θ)
andC(z−1, θ) are the same as in (2)-(4) except that
a0

i , b
0
i and c0

i are substituted byai, bi and ci, θ =
[a1, . . . , an, b1, . . . , bm, c1, . . . cp]T andC(z−1, θ) is
stable for anyθ ∈ Θ.

3.3 Construction of the confidence set

We start with presenting a procedure for generating
certain setΘε

r andΘu
s , which by Theorem 3.1 below

are exact confidence sets for the true parameterθ0.
The final confidence set is obtained by intersecting the
Θε

r andΘu
s sets.

Procedure for the construction ofΘε
r and Θu

s

(1) Compute

εt(θ) = yt−ŷt(θ) =
A(z−1, θ)
C(z−1, θ)

yt−B(z−1, θ)
C(z−1, θ)

ut

wheret = 1, 2, . . . , H.
(2) Forr = 1, . . . , p andt = 1+ r, . . . , N + r = H,

compute

f ε
t−r,r(θ) = εt−r(θ)εt(θ).

(3) For s = 1, . . . , n + m andt = 1 + s, . . . , N +
s = H, compute

fu
t−s,s(θ) = ut−sεt(θ).

(4) Let I = {1, . . . , N} and consider a collection
G of subsetsIi ⊆ I, i = 1, . . . ,M , forming a
group under the symmetric difference operation
(i.e. (Ii ∪ Ij) − (Ii ∩ Ij) ∈ G, if Ii, Ij ∈ G).
HereM is the number of elements in the group.
For i = 1, . . . , M compute

gε
i,r(θ) =

∑

k∈Ii

f ε
k,r(θ), r = 1, . . . , p,

gu
i,s(θ) =

∑

k∈Ii

fu
k,s(θ), s = 1, . . . , n + m.

(5) Select an integerq in the interval[1, (M +1)/2).
For r = 1, . . . , p, find the regionsΘε

r such
that at leastq of thegε

i,r(θ) functions are bigger
than zero and at leastq are smaller than zero.
Similarly for s = 1, . . . , n + m, find the regions
Θu

s such that at leastq of the gu
i,s(θ) functions

are bigger than zero and at leastq are smaller
than zero.

Remark 3.1. In the procedure, the groupG can
be freely selected. Thus, ifI = {1, 2, 3, 4}, a suitable
group isG = {{1, 2}, {3, 4}, ∅, {1, 2, 3, 4}}; another
one is G = {{1}, {2, 3, 4}, ∅, {1, 2, 3, 4}}; yet an-
other one isG = all subsets ofI. While the theory
presented holds for any choice, the quality of the result
in the uncertainty region assessment is affected by
the choice made. Moreover, the feasible choices are

843



limited by computational considerations. For example,
the set of all subsets cannot normally be chosen as it
is a truly large set.

The intuitive idea behind this algorithm is that, for
θ = θ0, the functionsgε

i,r(θ) and gu
i,s(θ) assume

positive or negative value at random (ε(t, θ0) is white
noise), so that it is unlikely that almost all of them are
positive or that almost all of them are negative. Since
point 5 in the construction ofΘε

r discards regions
where allgε

i,r(θ)’s but a small fraction (q should be
taken to be small compared toM , see Theorem 3.1
below) are of the same sign, we expect thatθ0 ∈ Θε

r

with high probability. Similarly for the construction of
Θu

s . This is put on solid mathematical grounds in the
next theorem.

THEOREM 3.1. Assume that variableswt ad-
mit a density (so thatPr{wt = c} = 0, for any real
c) and that they are symmetrically distributed around
zero. Then, the setsΘε

r andΘu
s constructed above is

such that:

Pr{θ0 ∈ Θε
r}= 1− 2q/M, r = 1, . . . , p,

Pr{θ0 ∈ Θu
s}= 1− 2q/M, s = 1, . . . , n + m.

Remark 3.2. When the{wt} process is indepen-
dent and identically but not symmetrically distributed,
we can obtain symmetrically distributed data by con-
sidering the difference between two subsequent data
points. The noise assumption is mild enough to ac-
commodate a number of situations. In particular, one
can describe possible outliers by allowing the noise to
take on large values with small probability.

Theorem 3.1 quantifies the probability thatθ0 belongs
to the regionsΘε

r andΘu
s . It holds for any finiteN

and introduces no conservativeness at all, since such
a probability isexactlyequal to1 − q/2M . A good
evaluation method must have two properties: the pro-
vided region must have guaranteed probability (and
this is what Theorem 3.1 delivers); the region must
be restricted, and, in particular, it should concentrate
aroundθ0 as the number of data points increases. We
next provide a result that shows that the second prop-
erty is fulfilled, provided that the input{ut} is white.
After the theorem, we discuss this condition and see
how it can be relaxed.

THEOREM 3.2. Let εt(θ) = A(z−1,θ)
C(z−1,θ)yt −

B(z−1,θ)
C(z−1,θ)ut be the prediction error associated with the
ARMAX model class. If {ut} is white with spec-
tral densityΦu(ω) = λ2

u > 0, then θ = θ0 =
[a0

1 · · · a0
n b0

1 · · · b0
m c0

1 · · · c0
p]

T is the unique so-
lution to the set of equations:

E[ut−sεt(θ)] = 0, s = 1, . . . , n + m, (5)

E[εt−r(θ)εt(θ)] = 0, r = 1, . . . , p. (6)

Theorem 3.2 says that if we simultaneously impose
the n + p + m correlation conditions above, then
the only solution is the trueθ0. As N → ∞, the
functionsgε

i,r(θ) → E[εt−r(θ)εt(θ)] andgu
i,s(θ) →

E[ut−s(θ)εt(θ)] , provided that the number of ele-
ments in each setIi also tends to infinity. (It is easy
to construct groups with this property. Construction of
good groups has been considered in Gordon (1974).)
This means that each of the regionsΘε

r andΘu
s gets

smaller and the intersection of them gives an uncer-
tainty region shrinking around the true parameterθ0.
This leads to the following result

THEOREM 3.3. Let Θε = ∩p
r=1Θ

ε
r andΘu =

∩n+m
s=1 Θu

s . Furthermore, let

Θ̂ = Θε ∩Θu.

Under the assumptions of Theorem 3.1, the setΘ̂ is
such that:

Pr{θ0 ∈ Θ̂} ≥ 1− 2(n + m + p)q/M. (7)

The inequality in (7) is due to that the sets{θ0 /∈ Θε
r},

r = 1, . . . , p and{θ0 /∈ Θu
s}, s = 1, . . . , n + m may

be overlapping.

Interestingly enough, the conclusion of Theorem 3.2
does not hold true for coloured input sequences, as
shown in Campi and Garrati (2003) and demonstrated
by the simulation example in section 4. Assuming that
{ut} is white is often unrealistic and we next discuss
how to remove this assumption.

Suppose that{ut} is prefiltered by a filterL(z−1)
before it used in point 3 in the construction ofΘu

s ,
that is point 3 is substituted by

3’. For s = 1, . . . , n + m and t = 1 + s, . . . , N +
s = H, compute

fu
t−s,s(θ) = (L(z−1)ut−s)εt(θ).

Then, Theorem 3.1 (and 3.3) remains valid. In fact, we
can also allow the filterL(z−1) to be dependent on
the input signal, that is, it can be constructed from the
input signal without affecting the validity of Theorem
3.1. Moreover if the filterL(z−1) is appropriately
chosen,θ0 is the unique solution to the correlation
equations, as stated in the next theorem.

THEOREM 3.4. Assumeut = Q(z−1)νt with
{νt} a white wide-sense stationary sequence of ran-
dom variables with spectral densityΦν(ω) = λ2

ν > 0
and Q(z−1) is a rational and stable transfer func-
tion. LetL(z−1) = Q(z−1)−1Q(z)−1, thenθ0 is the
unique solution to the set of equations

E[(L(z−1)ut−s)εt(θ)] = 0, s = 1, . . . , n + m(8)

E[εt−r(θ)εt(θ)] = 0, r = 1, . . . , p. (9)

The fact that the filterL(z−1) is unstable should
not be too much of a concern since all operations
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are performed in batch so thatL(z−1)ut−s can be
computed as a solution having a causal as well as an
anti-causal component.

Also note that an imprecise estimation ofQ(z−1) does
not affect the validity of Theorem 3.1, so that the
obtained region does have the guaranteed probabil-
ity of containing the trueθ0. The issue here is the
shape of the region, which, if uniqueness is missing,
may comprise spurious portions around the solutions
of equations (8) and (9) that do not correspond to
θ0, see section 4 for an example. In that example
it is also shown that the spurious regions disappear
even if the applied filter is only an approximation of
Q(z−1)−1Q(z)−1.

4. SIMULATIONS

We illustrate the method on an ARMAX system with
a non-white input signal. In this example there exists
parameter values other than the true one which make
the expected value of the correlations zero. However,
it is demonstrated that the simple filtering procedure
discussed above removes the parameter values not
corresponding to the true ones from the confidence set.

The true data generating system is given by

yt = b0ut−1+wt+c0
1wt−1+c0

2wt−2+c0
3wt−3, (10)

whereut = et + h0et−1, and b0 = 1, h0 = 0.8,
c0
1 = 2.1, c0

2 = 1.46, c0
3 = 0.336, i.e. C0(z−1) has

zeros atp0
1 = −0.6, p0

2 = −0.7 andp0
3 = −0.8. {et}

and {wt} are mutually independent white Gaussian
noise sequences, both with variance 1. We consider
a full order model, and the prediction error is given by

εt(θ) =
1

C(z−1, θ)
yt − bz−1

C(z−1, θ)
ut,

where θ = [b c1 c2 c3]T and C(z−1) = 1 +
c1z

−1 +c2z
−2 +c3z

−3. Following Campi and Garatti
(2003) it can be shown that there are two param-
eter values in addition to the true parameter which
makeE[ut−1εt(θ)] andE[εt−r(θ)εt(θ)], r = 1, 2, 3,
zero, and a numerical search reveals that they are
θ1 = [0.9074 2.05 1.3974 0.3179]T and θ2 =
[1.0926 2.05 1.3974 0.3179]T in addition to the true
parametersθ0 = [1 2.1 1.46 0.336]T .

Next we generated 8191+3 data points (N = 8191)
according to (10), and calculated the variables

fu
t−1,1(θ) = ut−1εt(θ), t =2, . . . , N + 1

f ε
t−r,r(θ) = εt−r(θ)εt(θ), r =1, 2, 3,

t =1 + r, . . . , N + r

on a plane in the parameter space containingθ0, θ1 and
θ2.

The group we used containedM = 8192 sets, and the
incident matrix was generated in the same way as in

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
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90 % confindece set

Fig. 3. 90% confidence region. Non-white input sig-
nal.? - true parameter,¦ - θ1 andθ2

the preview example in section 2. Heren = 0, m = 1
andp = 3, and in order to create a 90% confidence set
we excluded the regions in the parameter space where
0 belonged to the 102 largest or smallest values of any
of the functions

gu
i,1(θ) =

∑

k∈Ii

fu
k,1(θ), i = 1, . . . , M

gε
i,r(θ) =

∑

k∈Ii

f ε
k,r(θ), r = 1, . . . , 3, i = 1, . . . , M.

The obtained confidence set has probability at least
1−4∗2∗102/8192 = 0.9004, and in Figure 3 we dis-
played the set in a plane containing the true parameter
θ0 and the two parametersθ1 andθ2 which also give
zero expected value of the correlations. The parameter
values in the plane are given byθ0 + x(θ1 − θ0) +
y(θ2 − θ0) wherex andy are the shown coordinates.
Hence(0, 0) corresponds to the true parameter,(1, 0)
to θ1 and(0, 1) to θ2. The obtained confidence set is
the blank “boomerang shaped” region, and it contains
all three parametersθ0, θ1 andθ2.

Next we generated the filtered input sequence

ufi
t =

(
1

1 + 0.9z−1

)
·
(

1
1 + 0.9z

)
ut

where 1
1+0.9z−1 is an approximate inverse for1 +

h0z−1. (The filtering was done in a forward and a
backward pass thus avoiding stability problems.)ut

was replaced byufi
t in the calculations offu

t−1,t(θ),
and the new 90% confidence set is shown in Figure 4.
In agreement with the theory,θ1 andθ2 no longer be-
longs to the confidence set which is now concentrated
around the true parametersθ0 (the(0, 0) point).

The filter could also have been estimated from the
observed input data. Assuming the model

ut = vt + h1vt−1

wherevt is an unobserved zero mean iid sequence, an
estimate ofh1 can be obtained using a prediction error
method. For the input data in this example we obtained
ĥ1 = 0.7988. Then using the filtered variable

ufi
t =

(
1

1 + ĥ1z−1

)
·
(

1
1 + ĥ1z

)
ut
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in the algorithm, we obtain the 90% confidence region
shown in Figure 5.

This example shows that for non-white input signals
there may be other parameters than the true one which
give zero expected value of the correlations, but we
can still obtain a confidence set concentrating around
the true parameter value by filtering the input se-
quence. Detailed knowledge of the spectrum of the
input signal is not necessary as an approximate filter
can produce the desired result as shown in Figures 4
and 5.

5. CONCLUSIONS

In this paper we have derived an algorithm for con-
struction of confidence regions for ARMAX models.
The algorithm is based on computing empirical cor-
relation functions using subsamples and discarding
regions in the parameter space where only a small
fraction of the empirical functions are greater/smaller
than zero. Building on finite sample results from Har-
tigan (1969) we derived bounds, valid for a finite
number of data points, on the probability that the true
model parameters belong to the constructed region.
The developed methodology is grounded on a solid
theoretical basis, giving guaranteed probabilities for
the true parameter to belong to the constructed set for
any finite number of data points, and, as illustrated by

the simulation examples, it produces practically useful
confidence sets.
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[12] Söderstr̈om, T. and P. Stoica (1988).System Iden-
tification.Prentice Hall.

[13] Tjärnstr̈om F., and L. Ljung (2002). ”Using the
bootstrap to estimate the variance in the case
of undermodelling”IEEE Transactions on Auto-
matic Control. Vol. 47, no. 2, pp. 395-398.

[14] Weyer E. and M.C. Campi (2002). “Non-
asymptotic confidence ellipsoids for the least
squares estimate.”Automatica, Vol. 38., no. 9, pp.
1539-1547.

846


