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b Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy

A R T I C L E I N F O

Article history:

Received 7 October 2008

Accepted 18 July 2009

Available online 21 October 2009

Keywords:

Systems and control design

Robust convex optimization

Probabilistic methods

Randomized algorithms

A B S T R A C T

The ‘scenario approach’ is an innovative technology that has been introduced to solve convex

optimization problems with an infinite number of constraints, a class of problems which often occurs

when dealing with uncertainty. This technology relies on random sampling of constraints, and provides a

powerful means for solving a variety of design problems in systems and control. The objective of this

paper is to illustrate the scenario approach at a tutorial level, focusing mainly on algorithmic aspects. Its

versatility and virtues will be pointed out through a number of examples in model reduction, robust and

optimal control.
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1. Introduction

Many problems in systems and control can be formulated as
optimization problems (Boyd, El Ghaoui, Feron, & Balakrishnan,
1994; Goodwin, Seron, & De Doná, 2005). Here, we focus on
optimization problems of convex type (Boyd & Vandenberghe,
2004). Convexity is appealing since ‘convex’ – as opposed to ‘non-
convex’ – means ‘solvable’ in many cases. This observation has
much influenced the systems and control community in recent
years, as witnessed by an increasing interest in convex LMIs (Linear
Matrix Inequalities) reformulations of a number of classical
problems (Apkarian & Tuan, 2000; Apkarian, Tuan, & Bernussou,
2001; Boyd et al., 1994; Gahinet, 1996; Scherer, 2005, 2006;
Vandenberghe & Boyd, 1996), a process also fostered by the
development of ever more effective convex optimization solvers
(Boyd & Vandenberghe, 2004; Grant, Boyd, & Ye, 2006, 2007).

In practical problems, an often-encountered feature is that the
environment is uncertain, i.e. some elements and/or variables are
not known with precision. A common approach to counteract
uncertainty is to robustify the design by considering a min-max

optimization problem of the type

min
j

max
d2D

‘dðjÞ; (1)
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where ‘dðjÞ (here assumed to be convex in j) represents the cost
incurred when the design parameter value is j and the uncertainty
parameter is d. In this min-max approach, one tries to achieve the
best performance which is guaranteed for all possible uncertainty
instances in D.

The min-max problem (1) is just a special case of a robust
convex optimization program (Ben-Tal & Nemirovski, 1998, 1999;
El Ghaoui & Lebret, 1997, 1998), where a linear objective is
minimized subject to a number of convex constraints, one for each
instance of the uncertainty:

RCP : min
g 2Rd

cTg

subject to : f dðgÞ � 0; 8 d2D;
(2)

where f dðgÞ are convex functions in the d-dimensional optimiza-
tion variable g for every d within the uncertainty set D. Precisely,
problem (1) can be re-written in form (2) as follows:

min
h;j

h

subject to : ‘dðjÞ � h; 8 d2D;
(3)

where g ¼ ðh; jÞ, cTg ¼ h, and f dðgÞ ¼ ‘dðjÞ � h in this case. Note
that, given a j, the slack variable h represents an upper bound to
the cost ‘dðjÞ achieved by parameter j when d ranges over the
uncertainty set D. By solving (3) we seek that j̄ that corresponds to
the smallest upper bound h̄.

More often than not, the uncertainty set D is a continuous set
containing an infinite number of instances. Problems with a finite
number of optimization variables and an infinite number of
constraints are called semi-infinite optimization problems in the
mathematical programming literature (Boyd & Vandenberghe,
2004). Reportedly, these problems are difficult to solve and are
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even NP-hard in many cases (Ben-Tal & Nemirovski, 1998, 2002;
Blondel & Tsitsiklis, 2000; Braatz, Young, Doyle, & Morari, 1994;
Nemirovski, 1993; Stengel & Ray, 1991; Tempo, Calafiore, &
Dabbene, 2005; Vidyasagar, 2001). In other words, though convex is

easy, robust convex is difficult.
In Calafiore and Campi (2005, 2006), an innovative technology

called ‘scenario approach’ has been introduced to deal with semi-
infinite convex programming at a very general level. The main
thrust of this technology is that solvability can be obtained through
random sampling of constraints provided that a probabilistic
relaxation of the worst-case robust paradigm of (2) is accepted.
Such probabilistic relaxation consists in being content with
robustness against the large majority of the situations rather than
against all situations. The good news is that in the scenario
approach such large majority is under the control of the designer
and can be made arbitrarily close to the set of all situations.

Random sampling has been used in a variety of fields besides
optimization, and is e.g. at the basis of the truly vast literature on
Monte-Carlo methods (Fishman, 1999; Hammersley & Hands-
comb, 1964; Robert & Casella, 2004; Shapiro, Dentcheva, &
Ruszczynski, 2009). Along the scenario approach, random sam-
pling has been brought into robust convex optimization resulting
into a mathematically sound and practically useful algorithmic
approach.

When dealing with problems in systems and control, the
scenario approach permits to tackle situations where more
standard approaches fail due to computational difficulties, and
opens up new resolution avenues that get around traditional
stumbling blocks in the design of devices incorporating robustness
features.

The objective of the present paper is to introduce and illustrate
at a tutorial level the scenario approach. The presentation will be
user-oriented, with the main focus on algorithmic aspects, and will
primarily consist of a number of examples in different contexts of
systems and control to show the versatility of the approach.

1.1. Structure of the paper

After describing in Section 2 the scenario approach along with
the concept of probabilistic relaxation of the RCP solution, we
move to illustrating some possible applications of the approach to
systems and control in Section 3. In particular, problems from
robust control, optimal control with constraints, and model
reduction are respectively treated in Sections 3.1–3.3. Some final
conclusions are drawn in Section 4.

2. The scenario approach

The scenario approach presumes a probabilistic description of
uncertainty, that is uncertainty is characterized through a set D
describing the set of admissible situations, and a probability
distribution Pr over D. Depending on the problem at hand, Pr can
have different interpretations. Sometimes it is a measure of the
likelihood with which situations occur, other times it simply
describes the relative importance we attribute to different
uncertainty instances. A probabilistic description of uncertainty
is gaining increasing popularity within the control community as
witnessed by many contributions such as Alamo, Tempo, and
Camacho (2007, 2008), Barmish and Lagoa (1997), Calafiore and
Campi (2006), Calafiore, Dabbene, and Tempo (2000), Fujisaki,
Dabbene, and Tempo (2003), Khargonekar and Tikku (1996),
Kanev, De Schutter, and Verhaegen (2003), Lagoa (2003), Lagoa,
Shcherbakov, and Barmish (1998), Oishi and Kimura (2003), Polyak
and Tempo (2001), Ray and Stengel (1993), Stengel and Ray (1991),
Tempo, Bai, and Dabbene (1997, 2005) and Vidyasagar (1997,
2001).
The scenario approach goes as follows. Since we are unable to
deal with the wealth of constraints f dðgÞ � 0, 8 d2D, we
concentrate attention on just a few of them by extracting at
random N instances or ‘scenarios’ of the uncertainty parameter d
according to probability Pr. Only the constraints corresponding to
the extracted d’s are considered in the scenario optimization:

SCENARIO OPTIMIZATION

Extract N independent identically distributed samples

dð1Þ; . . . ; dðNÞ according to probability Pr and solve the scenario

convex program:

SCPN : min
g 2Rd

cTg

subject to : f
dðiÞ ðgÞ � 0; i ¼ 1; . . . ;N:

Contrary to the RCP in (2), SCPN is a standard convex finite (i.e. with
a finite number of constraints) optimization problem and,
consequently, a solution can be found at low computational cost
via available solvers, provided that N is not too large. That is
sampling has led us back to an easily solvable program.

Though totally disregarding all constraints but N of them may
appear naive, the scenario approach stands on a very solid
mathematical footing.

Since SCPN is less constrained than RCP, its optimal solution g�N
is certainly super-optimal for RCP, that is cTg�N � cT ḡ , ḡ being the
optimal RCP solution. On the other hand, an obvious question to
ask is: what is the degree of robustness of g�N , being this latter
based on a finite number of constraints only? Precisely, what can
we claim regarding the satisfaction or violation of all the other
constraints, those we have not taken into consideration while
optimizing? The following theorem, which is at the core of the
scenario approach, shows that g�N actually satisfies all unseen
constraints except a user-chosen fraction that tends rapidly to zero
as N increases.

Theorem 1. Select a ‘violation parameter’ e2 ð0;1Þ and a ‘confidence

parameter’ b2 ð0;1Þ.
If

N� 2

e
ln

1

b
þ d

� �
(4)

(recall that d is the number of optimization variables), then, with

probability no smaller than 1� b;g�N satisfies all constrains in D but

at most an e-fraction, i.e. Prðd : f dðg�NÞC0Þ � e. $

Formula (4) provides an explicit expression for N as a function
of e and b and can be derived from the results in Campi and Garatti
(2008). Precisely, in Campi and Garatti (2008) the more general
result is proven that Theorem 1 holds if N is chosen so as to satisfy
condition

Xd�1

i¼0

N
i

� �
eið1� eÞN�i � b: (5)

Eq. (4) is obtained from this result by making explicit (5) with
respect to N, as done in Calafiore (2008).

Formula (5) is tight since the inequality in (5) becomes an
equality for a whole class of problems, those called fully-supported
in Campi and Garatti (2008).

Let us read through Theorem 1 in some detail. If we neglect the
parts associated with b, then, the theorem simply says that the
solution g�N is robust against uncertainty in D up to a desired level
e. Moreover, e can be made small at will by suitably choosing N.
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This means that, in the scenario approach, although the require-
ment to be robust against all situations is renounced, the right to
decide which level of robustness is satisfactory is retained.

As for the probability 1� b, one should note that g�N is a
random quantity because it depends on the randomly extracted
constraints corresponding to dð1Þ; . . . ; dðNÞ. It may happen that the
extracted constraints are not representative enough of the other
unseen constraints (one can even stumble on an extraction as bad
as selecting N times the same constraint!). In this case no
generalization can be expected, and the portion of unseen
constraints violated by g�N will be larger than e. Parameter b
controls the probability that this happens and the final result that
g�N violates at most an e-fraction of constraints holds with
probability 1� b.

In theory, b plays an important role and selecting b ¼ 0 yields
N ¼ 1. For any practical purpose, however, b has very marginal
importance since it appears in (4) under the sign of logarithm: we
can select b to be such a small number as 10�10 or even 10�20, in
practice zero, and still N does not grow significantly.

To allow for a more immediate understanding, a pictorial
representation of Theorem 1 is given in Fig. 1.

In the figure, the N samples dð1Þ; . . . ; dðNÞ extracted from D are
represented as a single multi-extraction ðdð1Þ; . . . ; dðNÞÞ from D

N
. In

D
N

a ‘bad set’ exists: if we extract a multi-sample in the bad set, no
conclusions are drawn. But this has a very tiny probability to occur,
10�10 or 10�20. In all other cases, the multi-sample maps into a
finite convex optimization problem that we can easily solve. The
corresponding solution automatically satisfies all the other unseen
constraints except for a small fraction e. Thus, the scenario
approach is a viable method to robustify any nominal design up to
a level e.

Theorem 1 is a generalization theorem in that it shows that the
solution g�N obtained by looking at a finite number of constraints
generalizes to cope with unseen constraints. Generalization always
calls for some structure linking seen situations to unseen ones, and
it is worth noticing that the only structure required in Theorem 1 is
convexity. As a consequence, Theorem 1 applies to all convex
problems (e.g. linear, quadratic or semi-definite involving LMIs)
with no limitations and it can be used in the more diverse fields of
systems and control theory.
Fig. 1. A pictorial representation of Theorem 1.
3. Application to systems and control problems

The aim of this section is to show the versatility of the scenario
approach by introducing some paradigms in systems and control
where applying the scenario approach opens up new routes in
problem solvability. For a more effective presentation and to help
readability, the introduction of such paradigms is made through
simple – yet not simplistic – examples.

3.1. Paradigm 1: robust control

Consider the following ARMA (Auto-Regressive Moving-Aver-
age) system

ytþ1 ¼ ayt þ but þ c1wt þ c2wt�1; (6)

where ut and yt are input and output, and wt is a WNð0;1Þ (white
noise with zero mean and unitary variance) disturbance; a, b, c1,
and c2 are real parameters, with jaj<1 (stability condition) and
b 6¼0 (controllability condition), whose value is not precisely
known.

We assume that wt is measurable, and the objective is to design
a feed-forward compensator with structure

ut ¼ k1wt þ k2wt�1

that minimizes the asymptotic variance of yt (see Fig. 2).
If the system parameters a, b, c1, and c2 were known, an optimal

compensator would be easily found. Indeed, substituting ut ¼
k1wt þ k2wt�1 in (6) gives

ytþ1 ¼ ayt þ ðc1 þ bk1Þwt þ ðc2 þ bk2Þwt�1;

from which the expression for the asymptotic variance of yt is
computed as

E½y2
t � ¼

ðc1 þ bk1Þ2 þ ðc2 þ bk2Þ2 þ 2aðc1 þ bk1Þðc2 þ bk2Þ
1� a2

:

Hence, the values of k1 and k2 minimizing E½y2
t � are seen to be

k1 ¼ �
c1

b
and k2 ¼ �

c2

b
; (7)

resulting in E½y2
t � ¼ 0.

On the other hand, the system parameter values are not always
available in practical situations. More realistically, the parameters
are only partially known, and they take value in a given uncertainty
set D. In our example, this means that the compensator parameters
k1 and k2 have to be designed according to some robust philosophy,
e.g. the min-max approach:

min
k1 ;k2

max
a;b;c1 ;c2 2D

E½y2
t � ¼min

k1 ;k2

max
a;b;c1 ;c2 2D

‘ða;b;c1 ;c2Þðk1; k2Þ; (8)

where

‘ða;b;c1 ;c2Þðk1; k2Þ ¼
ðc1 þ bk1Þ2 þ ðc2 þ bk2Þ2 þ 2aðc1 þ bk1Þðc2 þ bk2Þ

1� a2
Fig. 2. The feed-forward compensation scheme.
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�
1; k

�
2Þ as a function of u1 and u2.
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(compare with (1)). For any value of a; b; c1; c2 with jaj<1 and
b 6¼0, function ‘ða;b;c1;c2Þðk1; k2Þ is convex in k1; k2 (actually, it is a
paraboloid).

The problem with solving (8) is that the uncertainty set D where
the system parameters a; b; c1; c2 range depends on the particular
problem at hand and can be complicated. In general, problem (8)
cannot be solved analytically, and even standard numerical
methods may fail to provide a solution.

In this case, the scenario approach represents a viable way to
find an approximate solution to (8) with guaranteed performance.

As an example, suppose that the uncertainty set D is
parameterized by ðu1; u2Þ 2 ½�1=3;1=3�2 as follows:

D ¼ fa; b; c1; c2 : a ¼ 0:45þ 0:5 � ð1� e�8�103ðu2
1þu2

2ÞÞ;
b ¼ 1þ u2

2;

c1 ¼ 0:2þ ðu2 þ sin ðu2Þ þ 0:1Þ � sin ð2pu2Þ;
c2 ¼ 0:5þ u2

1cos ðu2Þ; ðu1; u2Þ 2 ½�1=3;1=3�2g:

The nominal values for u1 and u2 are unom
1 ¼ 0 and unom

2 ¼ 0
corresponding to anom ¼ 0:45, bnom ¼ 1, cnom

1 ¼ 0:2, and cnom
2 ¼ 0:5.

According to the scenario approach with e ¼ 0:01 and
b ¼ 10�10, we extracted N ¼ 5206 values of a, b, c1 and c2 from
D (say aðiÞ, bðiÞ, cðiÞ1 and cðiÞ2 , i ¼ 1; . . . ;5206) by uniformly sampling N

values for u1 and u2 from ½�1=3;1=3�2.
The resulting scenario optimization problem with 5206

constraints is:

min
k1 ;k2 ;h

h

subject to : ‘ðaðiÞ ;bðiÞ ;cðiÞ
1
;c
ðiÞ
2
Þðk1; k2Þ � h; i ¼ 1; . . . ;5206:

This problem has a linear objective and quadratic constraints, and
was easily solved by the CVX solver for Matlab (Grant et al., 2006,
2007). We obtained k�1 ¼ �0:50, k�2 ¼ �0:53 and h� ¼ 1:16.

According to Theorem 1, with probability 1� b ¼ 1� 10�10 (in
practice with probability 1) the compensator ut ¼ k�1wt þ k�2wt�1

guarantees E½y2
t � ¼ ‘ða;b;c1 ;c2Þðk

�
1; k

�
2Þ � h� ¼ 1:16 for all plants in the

uncertainty set D but a small fraction of size at most e ¼ 0:01.
Evidence of this robustness property can be found in Fig. 3,

where we plotted ‘ða;b;c1 ;c2Þðk
�
1; k

�
2Þ as a function of the re-

parametrization u1, u2 of a, b, c1, and c2. The flat surface is at
the value h� ¼ 1:16.

We also compared the robust compensator k�1; k
�
2 with the

nominal one knom
1 ¼ �0:2, knom

2 ¼ �0:5 (i.e. the optimal compen-
sator as in (7) for the nominal system anom ¼ 0:45, bnom ¼ 1,
cnom

1 ¼ 0:2, cnom
2 ¼ 0:5).

Fig. 4 depicts the output obtained when both compensators
k�1; k

�
2 and knom

1 ; knom
2 were applied to the nominal system.

Not surprisingly, the performance of compensator k�1; k
�
2 applied

to the nominal system is worse than that of compensator
knom

1 ; knom
2 , being the latter optimal in this case. Yet, noise rejection

remains quite good for k�1; k
�
2.

When we consider other plants in the uncertainty set, the
performance of the nominal compensator gets worse than the safe-
guard level h� attained by the robust compensator k�1; k

�
2.
Fig. 4. Output of the nominal system with robust compensator k
This is e.g. the case of Fig. 5 where the system obtained by
setting u1 ¼ �0:21, u2 ¼ �0:32 was considered. This shows the
robustness features of the scenario design.

The applicability of the scenario methodology to robust control
goes far beyond the simple noise rejection problem here
considered, and, indeed, scenario design can be applied to many
other paradigms in robust control such as robust stabilization,
robust H2 design, LPV control, robust pole assignment, etc. See
Calafiore and Campi (2006) for a sample of application examples.

3.2. Paradigm 2: control with saturation constraints

Consider a discrete time linear system with scalar input ut and
scalar output yt , described by the following equation:

yt ¼ GðzÞut þ dt;

where GðzÞ is a known stable transfer function and dt is an additive
stochastic disturbance.

Denote by D the set of possible realizations of the disturbance
dt . Our objective is to design a feedback controller

ut ¼ CðzÞyt;

such that the disturbance is optimally attenuated for every
realization in D, while avoiding saturation of the control input
due to actuator limitations.

The effect of the disturbance dt is quantified through the finite-
horizon 2-norm

PM
t¼1 y2

t of the closed-loop system output and the
goal is choosing CðzÞ which minimizes the worst-case disturbance
effect

max
dt 2D

XM
t¼1

y2
t ; (9)

while maintaining the control input ut within a saturation limit
usat:

jut j � usat; t ¼ 1;2; . . . ;M; 8dt 2D: (10)
�
1; k

�
2 (left), and with nominal compensator knom

1 ; knom
2 (right).



Fig. 5. Output of the system a ¼ 0:33, b ¼ 1:04, c1 ¼ 0:60, and c2 ¼ 0:10 with robust compensator k�1; k
�
2 (left), and with nominal compensator knom

1 ; knom
2 (right).
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Note that here uncertainty is not on the parameters of the plant
and, indeed, GðzÞ in this application is known; what is uncertain is
the disturbance realization and the design has to be made so that
attenuation is achieved robustly with respect to the disturbance
realization.

This constrained optimization problem is now re-formulated as
a robust convex optimization program by adopting the following
Internal Model Control (IMC) parametrization (see Morari &
Zafiriou, 1989)

CðzÞ ¼ QðzÞ
1þ GðzÞQðzÞ

of the closed-loop stabilizing controllers, where GðzÞ is the system
transfer function and QðzÞ is a free-to-choose stable transfer
function (see Fig. 6). The IMC parametrization of the controller is
particularly convenient since the transfer functions from dt to ut

and from dt to yt are affine in QðzÞ:

ut ¼ QðzÞdt (11)

yt ¼ ½1þ GðzÞQðzÞ�dt: (12)

Consequently, if QðzÞ is linearly parameterized, e.g. it is the multi-
lagged structure

QðzÞ ¼ q0 þ q1z�1 þ q2z�2 þ � � � þ qkz�k; (13)

the cost (9) and the constraints (10) are convex in
q :¼ ½q0 q1 . . . qk�

T 2Rkþ1.
The control design problem can now be precisely formulated as

the following robust convex optimization program:

min
q;h2Rkþ2

h (14)
Fig. 6. The IMC parameterization.
subject to :
XM
t¼1

y2
t � h; 8dt 2D; (15)

jutj � usat; t ¼ 1;2; . . . ;M; 8 dt 2D; (16)

where the slack variable h represents an upper bound to the output
2-norm

PM
t¼1 y2

t for any realization of dt (see (15)). Such an upper
bound is minimized in (14) under the additional constraint (16)
that ut does not exceed the saturation limits.

The constraints (15) and (16) can be made more explicit as a
function of q. For example, when QðzÞ is given by (13), problem
(14)–(16) is equivalent to

min
q;h2Rkþ2

h

subject to : qT Aqþ Bqþ C � h; 8dt 2D
jfT

t qj � usat; t ¼ 1;2; . . . ;M; 8dt 2D;

where A, B, C, and ft are suitable matrices that depend on dt .
Indeed, by (11), (12), and the parametrization of QðzÞ in (13), the
input and the output of the controlled system can be expressed as

ut ¼ fT
t q

yt ¼ cT
t qþ dt;

where ft and ct are vectors containing delayed and filtered
versions of the disturbance dt:

ft ¼

dt

dt�1

..

.

dt�k

2
6664

3
7775 and ct ¼

GðzÞdt

GðzÞdt�1

..

.

GðzÞdt�k

2
6664

3
7775: (17)

Then,
PM

t¼1 y2
t can be expressed as

PM
t¼1 y2

t ¼ qT Aqþ Bqþ C, where

A ¼
XM
t¼1

ctc
T
t ; B ¼ 2

XM
t¼1

dtc
T
t ; C ¼

XM
t¼1

d2
t (18)

are matrices that depend on dt .
The implementation of the scenario optimization in this control

set-up requires to randomly extract a certain number N of

disturbance realizations dð1Þt ; . . . ; dðNÞt and to compute ft and ct in

(17) for the extracted dðiÞt by simulating on a computer the output

of system GðzÞ fed by dðiÞt (for this reason we refer to this approach

as ‘by simulation’). This leads to the following scenario optimiza-
tion program:

min
q;h2Rkþ2

h

subject to : qT AðiÞqþ BðiÞqþ CðiÞ � h; i ¼ 1; . . . ;N;

jfðiÞt

T
qj � usat; t ¼ 1;2; . . . ;M; i ¼ 1; . . . ;N;

(19)

where fðiÞt and AðiÞ, BðiÞ, CðiÞ are as in (17) and (18) with dt ¼ dðiÞt .
Before presenting numerical results, it is perhaps of interest to

remark the fact that in the scenario approach the uncertain
element d is totally general and can e.g. be the plant parameters as



Fig. 7. Pole-zero map and Bode plot of the sensitivity function for usat ¼2.
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in the previous section or a disturbance realization as in the
present context.

We next present numerical results when GðzÞ ¼ 1=ðz� 0:8Þ, and
the stochastic disturbance dt is sinusoidal with frequency ðp=8Þ,
i.e.

dt ¼ a1 sin
p
8

t
� �

þ a2 cos
p
8

t
� �

;

where a1 and a2 are independent random variables uniformly
distributed in ½�1=

ffiffiffi
2
p

;1=
ffiffiffi
2
p
�.

As for the IMC parametrization QðzÞ in (13), we choose k ¼ 1
and QðzÞ ¼ q0 þ q1z�1.

A control design problem (14)–(16) is considered with M ¼ 300,
and for three different values of the saturation limit usat: 2, 0.8, and
0.2.

In the scenario approach, we let e ¼ 0:05 and b ¼ 10�10.
Correspondingly, N given by (4) is N ¼ 1042. Let ðq�;h�Þ be the
solution to (19) with N ¼ 1042. Then, with probability no smaller
than 1�10�10, the designed controller with parameter q� guarantees
the upper bound h� on the output 2-norm

P300
t¼1 y2

t over all
disturbance realizations, except for a fraction of them whose
probability is smaller than or equal to 0.05. At the same time, the
control input ut is guaranteed not to exceed the saturation limit usat

except for the same fraction of disturbance realizations.
Fig. 8. Pole-zero map and Bode plot of t
Figs. 7–9 represent the pole-zero maps and the Bode plots of the
transfer function FðzÞ ¼ 1þ GðzÞQðzÞ between the disturbance dt

and the controlled output yt (sensitivity function), for decreasing
values of usat (2, 0.8, 0.2).

When the saturation bound is large (usat ¼ 2), the outcome
of the design is a controller that efficiently attenuates
the sinusoidal disturbance at frequency ðp=8Þ by placing a pair
of zeros approximately in e�ip=8 in the sensitivity transfer
function. As usat decreases, the control effort required to
neutralize the sinusoidal disturbance exceeds the saturation
constraint, and a design with damped zeros is automatically
chosen.

The values of the cost max
d
ðiÞ
t
;i¼1;2;...;N

P300
t¼1 y2

t ¼ h� for usat ¼ 2,
0.8, and 0.2, are respectively equal to 0.75, 3.61, and 90.94. As

expected, h� increases as usat decreases, since the saturation
constraint on ut becomes progressively more stringent.

Note that, when the saturation bound is equal to 2, the scenario
solution coincides with the solution that one would naturally
conceive without taking into account the saturation constraint.
However, when the saturation constraint becomes more stringent,
the design is more tricky.

Before closing this section, it is perhaps worth noticing that the
paradigm of disturbance rejection with limitations on the control
action here developed can be easily extended to more general
he sensitivity function for usat ¼0.8.



Fig. 9. Pole-zero map and Bode plot of the sensitivity function for usat ¼0.2.
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control settings including reference tracking with constraints of
different kinds.

3.3. Paradigm 3: model reduction

In many application contexts, a model of the system under
consideration is available for simulation purposes (simulator). In
most cases this simulator is derived from first principles and with
the ideal objective of resembling the system behavior in all
operating conditions, which may result in a complex nonlinear
model of high dimension and, possibly, described through PDEs.

Due to its intrinsic complexity, using the simulation model in
design problems is difficult, if not impossible. A typical way around
this problem is to first derive a simpler low-dimensional model
that best fits the system behavior in the operating conditions of
interest, and then perform the design based on this model. The
performance of the so-obtained design can be eventually verified
on the simulator prior to implementation.

The term ‘model reduction’ refers to the vast area of systems
theory that studies the problem of deriving a ‘reduced’ model of a
system. Normally, the model reduction problem is tackled by
examining the structure of the system and by trying to simplify
such a structure so as to also preserve some relevant character-
istics of the initial system.

An alternative way to go consists in running a set of experiments
and in measuring the system response to some input signals of
interest. A reduced model of predefined structure is then tuned so as
to resemble the observed system behavior. When a simulator of the
system is available, this approach to model reduction becomes
particularly attractive since one can run a number of experiments on
the simulator rather than on the real system. An important point we
want to make here is that the scenario approach allows to assess how
many experiments are needed to obtain a reduced model with
guaranteed performance, and that this number does not depend on
the system complexity but only on the complexity of the model to be
tuned, see also Bittanti, Campi, and Prandini (2007, 2009) for more
comments on this point.

More formally, given a simulator S and a class of models
parameterized by u2Rk, suppose that the accuracy of modelMu in
reproducing the output of S when fed by the input signal ut is
quantified by a cost function Jut

ðuÞ. For example, Jut
ðuÞ can be taken

as the 2-norm of the error signal S½ut� �Mu½ut� between the output
S½ut � of the simulator and the output Mu½ut� of the model with
parameter u: Jut

ðuÞ ¼ kS½ut� �Mu½ut�k2. Then, the worst-case
accuracy achieved by Mu over the set U of input signals ut of
interest is given by
max
ut 2U

Jut
ðuÞ

and the best model isMu� , where u� is obtained by solving the min-
max optimization problem:

min
u

max
ut 2U

Jut
ðuÞ: (20)

As discussed in Section 1, the min-max problem (20) can be
rewritten as the robust optimization problem:

min
u;h2Rkþ1

h

subject to : Jut
ðuÞ � h; 8ut 2U;

(21)

with ut representing the uncertainty parameter taking value in the
possibly infinite uncertainty set U.

If the cost Jut
ðuÞ is convex as a function of u (this is e.g.

the case when Mu is linearly parameterized in u), then the
scenario approach can be applied to (21). This involves
extracting N input signals uðiÞt , i ¼ 1;2; . . . ;N, from U, and running
N experiments where in each experiment the simulator S is
fed by input uðiÞt , and output S½uðiÞt � is measured. If N is chosen so
as to satisfy (4) with d ¼ kþ 1 for some given e and b, the
obtained scenario solution ðu�;h�Þ is such that the reduced
model Mu� has guaranteed accuracy h� over all input signals
ut 2U except at most an e-fraction, and this holds with
probability at least 1� b. If the achieved accuracy level h� is
unsatisfactory, this is a sign that the reduced model class is too
restricted and one can move to consider a more complex
reduced model class.

It is important to note that the number N of experiments is
determined independently of how complex the simulator is, and
that this number depends only on the complexity of the reduced
model to be designed, through the size k of its parametrization u.
This approach to model reduction actually does not require any
knowledge on the structure of the simulator, since the simulator is
only used to generate data.

4. Conclusions

In this paper, we provided an overview on the so-called
scenario approach with specific focus on systems and control
applications. The approach basically consists of the following
main steps:

	 reformulation of the problem as a robust (with infinite
constraints) convex optimization problem;
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	 randomization over constraints and resolution (by means of
standard numerical methods) of the so-obtained finite optimiza-
tion problem;
	 evaluation of the constraint satisfaction level of the obtained

solution through Theorem 1.

The versatility of the scenario approach was illustrated through
simple examples of systems and control design.

More details both on theoretical aspects and applications can be
found in the technical literature.

In particular, the theory of the scenario approach has been
developed in the last four years in Calafiore and Campi (2005,
2006) and Campi and Garatti (2008), while it has also been
extended to design with robustness modulation in Campi and
Garatti (2007).

As for applications, robust control is treated in Calafiore and
Campi (2003b, 2004, 2006), with reference among others to robust
stabilization, robust H2 design, LPV (Linear Parameter Varying)
control, and robust pole assignment. The main references for
control by simulation are Prandini and Campi (2007, 2009), while
model reduction is a new application framework currently
underway, here presented for the first time.

It is perhaps worth mentioning that another setting in the
systems and control area where the scenario approach proved
powerful (and which was not illustrated in this paper since it
would have led us too far afield) is the identification of interval
predictor models, i.e. models returning a prediction interval
instead of a single prediction value. The main references are
Calafiore and Campi (2003a), Campi, Calafiore, and Garatti (2009)
and Garatti and Campi (2009).
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