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Abstract 

Over the last two decades, the certainty equivalence 

principle has been the fundamental paradigm in the 

design of adaptive control laws. It, is well known, how- 

ever, that for general control criterions the performance 
achieved through its use is strictly suboptimal. 

In this paper we introduce a new general philosophy - 
still based on the certainty equivalence idea - so as to 
ensure optimality in adaptive control problems under 
general conditions. Rather than focusing on a partic- 
ular control scheme, we present the method in a gen- 

eral control setting. Specific control algorithms to cope 

with different situations can be derived from this gen- 

eral method. 

Keywords Adaptive control; stochastic systems; 

certainty equivalence principle; long-term average cost; 

optimality. 

1 Introduction 

An adaptive control problem is a control problem in 
which some parameter describing the system is known 
with uncertainty. During the operation of the con- 
trol system, the controller collects information on the 
system behavior, therefore reducing the level of uncer- 
tainty regarding the value of the parameter. In turn, 
as the level of uncertainty is reduced, the controller is 
tuned more accurately on the system parameter so as 

to obtain a better control result. In this procedure it 
is essential that the controller chooses the control ac- 
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tions so ss to minimize the performance index, as well 
as probe the system so that uncertainty is reduced to 
better select future control actions. 

In this paper we consider adaptive long-term average 

optimal control problems and introduce a general phi- 

losophy for their solution. In adaptive control, due to 
the uncertainty affecting the true value of the system 
parameter, the control law cannot be expected to be 
optimal in finite time. When the cost criterion is of 
the long-term average type, however, the control per- 
formance in finite time does not affect the asymptotic 
value of the control cost. Hence, even in an adaptive 
context, there is a hope to achieve optimality, i.e. to 

drive the long-term average cost to the value which 

would have been obtained under complete knowledge 

of the system. When this happens, we say that the 
adaptive control law meets the ideal objective. 

The most common solution methods to adaptive con- 

trol problems rely on the so-called certainty equivalence 
principle, [l], [2]. The unknown parameter is estimated 

via some reliable estimation method and the estimate 
is used as if it were the true value of the unknown pa- 

rameter. 

Certainty equivalent adaptive control schemes have 
been studied by many authors. In [3] it is proven that 
a certainty equivalent controller based on the stochas- 
tic approximation algorithm achieves the ideal objec- 
tive for minimum output variance costs. This result 
has been extended to least squares - minimum output 

variance adaptive control in [4]. A complete analy- 
sis of a minimum output variance self-tuning regulator 

equipped with the extended least squares algorithm can 
be found in [5]. Again, the main result is that this 

adaptive scheme achieves the ideal objective. 

The fact that the ideal objective is met in the situa- 
tions described in the above mentioned papers is due 
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to the special properties of the minimum output vari- 

ance cost criterion. On the other hand, it is well known 

that the certainty equivalence principle suffers from a 

general identifiability problem, namely the parameter 

estimate can converge with positive probability to a 
false value, e.g. [6], [7], [8], [9]. When a cost crite- 
rion other than the output variance is considered, this 
identifiability problem leads to a strictly suboptimal 

performance. See e.g. [lo], [ll], [12], and [13] for a 

discussion on this problem in different contexts. 

This paper goes beyond the straightforward certainty 

equivalence principle. We show that the ideal objective 
can be pursued in a general control setting through a 
control-directed estimation approach aiming at falsi- 

fying parameters with an associated progressively in- 
creasing optimal cost (Bet On the Best (BOB) philoso- 

phy, see Section 3). We prove that a careful use of this 
approach leads to optimality under general conditions. 

The theory developed in this paper is not devoted to 

a particular control scheme. Instead, the proposed ap- 

proach is intended to be a basic inspirational paradigm. 

Based on it, many ad-hoc control techniques for specific 
situations can be designed. 

The paper is organized as follows. In Section 2 we 
present our general control setting and the relevant no- 
tations. The BOB-principle is introduced in Section 3 

and better formalized in Section 4. Section 5 is devoted 

to the application of the BOB-principle to a scalar LQG 

control problem. 

2 A general adaptive control setting 

An adaptive control problem can be described in terms 

of four sets U, 0, X, and Y, a function c(., +) : U x 

y -+ R and two conditional probabilities Pz~~z,,,,~ and 

P YlZ,4 

u the set of control inputs 

0 the set of unknown system parameters 

X the set of states 

Y the set of outputs 

cc., .) the cost function 
P sslz,u,8 := PT-{x~+~ 5 x’ 1 xt = x, ut = u, 0) the 

probability that the state at time 
t + 1 is less than or equal to z’ given 

xt = z, ut = u, and the parameter 

19 E 0 (here, we assume that X is a set 

with an order relation). 

P YlS,%~ :=Pr{yt~yIzt=z,~k=~,e}the 
probability that the output at 
time t is less than or equal to y given 
xt = x, ut = u, and the parameter 
0 E 0 (here we also assume that Y 
has an order relation). 

The adaptive control process takes place as follows. At 
time t the adaptive controller has access to:the obser- 

vations ot = {ui, ug, . . . , ut-1, yi, yz, . . . , yt}. Based on 
this, it selects the control input ut E U. As a conse- 
quence of this control action, the state transits from 
xt to zt+i according to the probability distribution 

P +lls,u,o, a new output yt+i generated according to the 
probability distribution Py15,u,g becomes available and 
the cost c(ut, yt) is paid. Then, the observation set is 

updated to ot+i = ot U {ut, yt+i} and the controller 
selects the subsequent control input. 

The control objective is to minimize the long-term av- 

erage cost criterion 

lim sup 1 N-tco N 2 4% Yt). 
t=1 

In doing so, however, the controller has to take care of 
the problem posed by the fact that the system param- 

eter 9 is not known in advance and, therefore, infor- 
mation regarding its value must be accrued through 
time via the observations ut and yt (adaptive con- 
trol problem). A control law is a sequence of func- 
tions It : Ut-l x yt -+ U, and Zt(ot) is the corre- 

sponding control input after we have observed ot = 

{WJZ, *.*,w-lryl,Y2,~~*, yt }. The set of admissible 
control laws is denoted by C. Moreover, the optimal 

control law for the system with parameter 0 is denoted 

by {li,t} (we assume that L is large enough such that 
{ l;f,t} E L, VB E 0). The corresponding optimal long- 

term average cost is J$. 

3 The “Bet On the Best” (BOB) principle 

The most common approach to adaptive control is to 
resort to the so-called certainty equivalence principle. 
The unknown parameter is estimated via some estima- 
tion method and the estimate is used in the control 
law as if it were the true value of the unknown param- 
eter. Unfortunately, the certainty equivalence principle 
may lead to an estimability problem which results in 
a strictly suboptimal performance. Here, we present a 

very simple example which clarifies what can go wrong 

with the use of this principle. This example will be 
used as a start for the subsequent discussion. 

Example 1 Consider the system 

xt+l = a”xt + bout + wt+l, 

TP-01 3:00

0-7803-4187-2

Proc. of the 36th IEEE CDC San Diego, Ca. Dec., 1997

0000

 



where {wt} is an i.i.d. N(0, 1) noise process and state 

zt is accessible: yt = zt. Vector [ a0 b” ] is un- 
known but we know that it belongs to a compact set 
@={[a b]: b = 8a/5 - 3/5,a E [O,l]}. Our 
objective is to minimize the long-term average cost 
lim ~up~~~ l/N CL, [qxf + ~$1, where q = 25/24. 

In order to determine an estimate of [ a0 b“ ] the 

standard least squares algorithm is used. This amounts 

to selecting at time t the vector [ ufs bfS ] which 

minimizes the index ~~~~(zk+1 - UXk - bUk)2. Once 
estimate [ a, Ls bfs ] has been determined, according to 
the certainty equivalence principle the optimal control 

law for parameter [ @, bfs ] is applied. 

Suppose now that at a certain instant point t the least 

squares estimate is [ ufs bkS ] = [ 1 1 1, Since 

the corresponding optimal control law is given by ut = 

-5/8 xt, the squared error at time t + 1 turns out 

to be (zt+i - uxt - bzLt)2 = (xt+l - uxt - (8u/5 - 
3/5)(-5/8 xt))2 = (xt+l - 3/8 xt)2, V[ a b ] E 0. The 
important feature of this last expression is that it is 
independent of parameter [ a b ] E 0. Hence, the 
term added at time t + 1 to the least squares index 
does not influence the location of its minimizer and 
the least squares estimate remains unchanged at time 

JX tfl: [ut”,“l bt;s,] = [ut bfS ] = [ 1 1 1. As 

the same rationale can be repeated in the subsequent 

instant points, we can conclude that the estimate sticks 

at[l 11. 

Now, the important fact is that the least squares es- 

timates can in fact take value [ 1 1 ] with positive 
probability, even when the true parameter is different 

from [ 1 1 1. Moreover, the optimal cost for the true 
parameter may be strictly lower than the incurred cost 
obtained by applying the optimal control law for pa- 

rameter [ 1 1 1. To see that this is the case, suppose 

that [ u” b” ] = [ 0 - 315 ] and assume that the 

system is initialized with 11 = 1 and ur = 0. Then, at 
time t = 2 the least squares estimate minimizes the cost 

(x2-u)~ = (w2-a) 2. Thus, [ uks his ] = [ 1 1 ] when- 

ever wz > 1, which happens with positive probability. 
In addition, it is easily seen that the cost associated 
with the optimal control law for parameter [ 1 1 ] is 
5/3 whereas the optimal cost for the true parameter 

[ a0 b” ] = [ 0 - 315 ] is 25124. 0 

A careful analysis of the example above reveals where 
the trouble comes from in a straightforward use of the 
certainty equivalence principle. When the suboptimal 
control ut = -518 xt is selected based on the current 
estimate [ at Ls bfs ] = [ 1 11, the resulting observation 
is yt+l = zt+l = 3/8 zt + wt+i. This observation is 
in perfect agreement with the one which would have 
been obtained if [ a, Ls bfs ] = [ 1 1 ] were the true 

parameter. Therefore, there is no reason for having 

doubts as to the correctness of the estimate [ u$” bfS ] 
and thus this estimate is kept unchanged at the next 

time point. 

This is just a single example of a general estimabil- 
ity problem arising in adaptive control problems. This 
general estimability problem can be described as fol- 

lows: 

l applying to the true system a control which is 

optimal for the estimated system may result in 
observations which concur with those that would 
have been obtained if the estimated system were 

the true system; 

if the estimation method drives the estimate to a value 

such that the above happens, then 

9 there is no clue that the system is incorrectly es- 

timated and, consequently, the estimate remains 
unchanged; 

however, 

l the adopted control law is optimal for the esti- 

mated system, while it may be strictly subopti- 

ma1 for the true system. 

A way out of this pernicious mechanism is to employ a 

more fine grained estimation method based on the op- 
timal long-term average cost for the different systems 
with parameters 0 E 0. Developing this idea will lead 
us to the formulation of the “Bet On the Best princi- 

ple”. 

We start by observing the following elementary fact: 

a suppose you apply to the true system a control 
law which is optimal for another system. If the 
long-term average cost you pay is different from 
the optimal cost for this second system, then this 
system is falsified by the observations and it can 
be dropped from the set of possible true systems. 

Suppose now that at a certain instant point, you select 

among the systems which are still unfalsified the one 

with lower optimal cost. Then, 

l if you pay a cost different from the expected one, 
you can falsify this system. In the opposite, you 
cannot falsify it, but then you are paying a cost 
which is minimal over the set of possible true sys- 
tems. Indeed, this implies that you are actually 
paying the optimal cost for the true system. 
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These considerations can be summarized as follows: se- 
lecting a control law which is optimal for the best un- 
falsified system (i.e. the system with lower optimal 

cost among those that are as far unfalsified by the ob- 

servations) may lead to an estimability problem only 

when you are achieving optimality. This is in contrast 

with what happens with the straightforward certainty 

equivalence principle, where an estimability problem 

may arise and, yet, the incurred cost may be strictly 

suboptimal. 

The above observations suggest that a very natural way 

to overcome the estimability problem posed by the cer- 

tainty equivalence principle is simply to iteratively se- 

lect among the unfalsified systems the one with min- 

imal optimal cost and then apply the optimal control 

law for it. Doing so will lead either to falsifying it or 

to getting optimality. In this way, we arrive to the 

following principle of general validity: 

The “Bet On the Best” (BOB) principle 

Consider an adaptive control problem with long-term 

average cost criterion. At the generic instant point t, 
do the following: 

determine the set of unfalsified systems; 

select the system in the unfalsified set with lower 
optimal cost; 

apply the decision which is optimal for the se- 
lected system. 0 

Putting the BOB-principle into practice 

In this section we better formalize the concept of un- 
falsified system and point out the properties of the un- 
falsified set such that applying the BOB-principle leads 
to optimality. 

Let Ut denote the unfalsified set at time t. Clearly, 
this set will depend on the observations ot = 

(7wJ2,. ..,w-l,Yl,Y2,..., yt} available at time t, and 

so it is in fact a stochastic set. Moreover, we note that 
set Ut depends through ‘1~1,212,. . . , ut-1 on the control 
law lk applied from time k = 1 to time k = t - 1. Once 
the control law {It} has been fixed, the processes {ut} 
and {yt} are completely determined and so is the se- 
quence of unfalsified sets {Ut }. A (stochastic) sequence 
of parameters {et}, 0t E 0, t = 1,2,. . ., is said to be 
feasible if Bt E Ut u.s.,tlt. 

In view of the discussion in Section 3, the unfalsified set 

sequence {Ut} is expected to satisfy the two conditions 
described below. 

i) Consider a (stochastic) sequence of parameters (8,) 
and suppose that the optimal control law {E;3;,,} 

for the system with parameter t9t is admissible. 

Select the control action to be optimal for et: 

‘Ilt = l;;t,,(4. If 

l$nl~P ; 2 C(Ut, Yt) > ‘iyIP $2 &q, 
t=1 t=1 

with positive probability, then {et} is not feasible. 

Condition i) says that a sequence of parameters {et} 
has to be falsified at some instant point whenever the 
long-term average cost paid by applying the optimal 
control law for it is strictly larger than the expected 
average cost. 

ii) For any control law {it} E f we have 

8" E ut nk>& U.S. 

Condition ii) simply says that the falsification proce- 

dure must not be overselective so as to also falsify the 
true System (note that considering Ut nk,t uk rather 
than the straightforward Ut allows for transient phe- 
nomena due to stochastic fluctuations). 

The following theorem points out the effectiveness of 

the BOB-principle when conditions i) and ii) are met. 

Theorem 1 Define 0y := argminOeUtJ,, and as- 
sume that {Z&,i-,t} is admissible. Under conditions i) 

and ii), the BOB-procedure defined by points 1 through 
3 in the BOB-principle achieves the ideal objective, i.e. 

l~ls;p $5 C(2Lt, yt) = J& U.S., ‘de0 E 0. 
t=1 

Proof: Condition ii) implies that 0” E Ut a.s.,Vt 2 
i?, where 5 is a suitable instant point. From this, 
infvEut &* 5 J& u.s.,Vt > E. Since, according to 

the BOB-procedure, at each instant point t we se- 
lect in Z..& the parameter Opn with lower optimal 

cost J&i”, we have lim supN-,m l/N CF=, J’$G I 

lim supi+a, l/N C& J& = &$. Finally, recalling 
that {ori”} is feasible, in view of condition i) we ob- 

tain 
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N 

li,mrn;p f C C(ut, yt) 5 
t=1 

Theorem 1 formalizes the conditions under which the 
BOB-principle leads to optimality. As it has been ar- 
gued in Section 3, the observations falsify a given sys- 
tem when the incurred cost obtained by applying the 

optimal control law for it is larger than the optimal cost 

for this system. From this we see that condition i) is a 
natural condition which should be generally satisfied. 

Similarly, condition ii) is very natural since it only re- 
quires that the falsification procedure is not overselec- 
tive. In conclusion, Theorem 1 delivers a very natural 
formalization of the BOB-principle introduced in the 
previous section. Clearly, different formalization are 

also possible. 

Once the general BOB-philosophy has been translated 

into a precise mathematical statement such as the one 

in Theorem 1, the problem becomes merely technical 

in the need of satisfying the corresponding mathemat- 
ical conditions. Obviously, this matter can only be 

discussed with regard to the particular application at 
hand. In the next section, a very simple example of 
application of the BOB principle is given, namely the 
study of a scalar LQG control scheme. 

5 Adaptive LQG control - scalar case 

5.1 Problem position 
In this section the BOB-principle is applied to an adap- 
tive LQG control problem under the assumption that 
the system state is scalar and noiselessly accessible. All 
the proofs are omitted. 

Set U = R, X = R and assume that the state evolution 
is governed by the equation 

xt+l = a’xt + bout + wt+l, (1) 

where {wt} is a noise process described as an i.i.d. 
Gaussian sequence with zero mean and unitary vari- 
ance. The true parameter 0’ = [ a0 b” ] is unknown 
and belongs to a known compact set 0 C R2 such that 
b # O,V[ a b ] E 0 (controllability condition). The 
system state is observed without noise, i.e. yt = xt. 
Finally, the long-term cost criterion is given by 

1imm;p ; &qx: + uf], 
t=1 

q > 0. (2) 

In the case in which the true parameter 8” is known, 
it is a standard matter to compute the optimal control 

law that minimizes criterion (2). For future use, we 

name J&, ,bO) the corresponding optimal cost. 

In the adaptive case where 8” is not known, we set the 

following 

Adaptive control problem 

Find a control law {It} such that, with the posi- 

tion ut = h(Q), we achieve the ideal objective, 

i.e. lim supN+oo l/NC~,[qzf + $1 = J’&o,bOl a.s., 

V[ u” b” ] E 0. Cl 

5.2 Solving the adaptive control problem via 
the BOB-principle 
To attack the adaptive control problem with the BOB- 
principle we need to find a suitable falsification crite- 

rion The resulting unfalsified sets should satisfy con- 

ditions i) and ii) in Theorem 1. 

A broad hint on how to select the unfalsified sets so 

as to satisfy condition ii) in Theorem 1 is provided by 

Lemma 1 below. 

Name [ at” bfs ] the least squares estimate of [ u” b” 1: 

t-1 

[ afS bfS] := argminl, blER~ c (zk+i - uxk - buk)2, 
k=l 

and define $k := [ zk uk 1, and vt := ciL\ @&. 

Lemma 1 Fix any control law {It} and choose a func- 

tion pt such that log CLii xi = o(pt). Define the un- 
falsified set sequence through equation 

%:={[a b]EO: ([u b]-[u;S b;‘])& (3) 

(1 a b I- [ a? btL” DT I pt} . 

Then, 

[ a0 b” ] E Ut flk>t uk a.s. 

Lemma 1 delivers a lower bound for pt, the fulfillment 

of which implies that condition ii) is satisfied. The next 
lemma gives an upper bound for pt such that condition 
i) in Theorem 1 is also satisfied. 
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Lemma 2 Choose a function pt such that pt = 
o(log2 CLzir z”,) and set ut = K(at,bt)zt, where 
[ at bt ] belongs almost surely to set l/t defined through 
equation (3) and K(at , bt) denotes the optimal gain as- 
sociated with parameter [ at bt 1. Then 

6 Conclusions 

limmztp ; &VI + u:] 5 liI$Ml&p $5 J&,bt) as. 
t=1 kl 

Cl 

Basically, condition pt = o(log2 Cizi z”,) requires that 

region Ut is not too spread around the least squares 
estimate. 

By selecting the unfalsified set at time t as Ut in defini- 
tion (3) with the bounds on pt as suggested by Lemma 
1 and 2, the BOB-principle immediately leads to the 

following 

Adaptive control method 

At time t, do the following: 

1. determine Ut as in definition (3) with pt = 

log’ c;=; z;, r E (1,2); 

2. compute [ ayin byin] as the minimizer of ,7&) 

in Ut: 

[ a? KY := ws min[, blEUt J$,bj ; 

3. compute ut by applying the optimal control law 
for [ ayin bTi”]: 

ut = K(ay”, bFi”)zt. 

0 

In view of Lemma 1 and 2, the effectiveness of this 
adaptive control method is a consequence of Theorem 
1. This leads to the following 

Theorem 2 With the control law chosen according 
to the adaptive control method, we achieve the ideal 
objective, i.e. lim supN+oo l/N C,“=, [Q$ + u:] = 

J~o,bol a.s., V[ a” b” ] E 0. 

In this paper, we have presented a broad solution 

method to achieve optimality in adaptive control prob- 

lems. It is our belief that other researchers will be able 

to solve many specific problems by resorting to this 

general approach. 
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