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Abstract— In learning problems, avoiding to overfit the train-
ing data is of fundamental importance in order to achieve good
predictive capabilities. Regularization networks have shown to
be an effective tool to find reliable models, however their tuning
is all but straightforward. In this paper, we consider learning
problems that can be formulated as random convex minimiza-
tion programs, and leverage on recent results established within
the Wait & Judge theory for scenario optimization. Our main
result is that, within this framework, generalization is deeply
connected to the number of so-called support points found in
optimization. By suitably selecting the regularization parameter,
one can adjust the support points set and thereby can tune
the trade-off between performance and generalization of the
solution on the ground of a rigorous and quantitative theory.

I. INTRODUCTION

Regularization was first introduced in [14] to numerically

solve integral equations. After that, there has been a huge

amount of work in statistics and machine learning dealing

with regularization in a wide spectrum of problems, see, e.g.,

[9], [6], [10]. In the automatic control community, the interest

in regularization has been recently renewed for linear system

identification prompted by the novel perspective discussed

in [12] and its follow-up works (see, e.g. [11], [5]). In

these papers, the main idea is to see the identification of

the impulse response of a system as an infinite-dimensional

learning problem, instead of considering finite-dimensional

parameterizations. In this way, a-priori information like sta-

bility can be taken into account and the contributions of bias

and variance can be properly balanced.
From a Bayesian perspective, estimation aims at an opti-

mal balance between empirical evidence, i.e., the data, and

prior knowledge about the system, expressed in probabilistic

terms. As compared to an estimation problem without prior,

prior knowledge acts as a regularization term on the estimate.

When one releases the assumption that a complete probabilis-

tic description of prior knowledge is available, the tuning of

regularization as a penalty term on the data-fitting becomes

a non-trivial problem and this important topic has attracted

a good deal of research. The conundrum is that there is

no clear relationship between the parameter r weighting the

regularization term and the ability of the solution to describe

new situations. Therefore, cross-validation and extensive

simulations are usually needed to properly set the value of r.

However, such tools are affected by several drawbacks, [15],

and, importantly, they need more data, which are expensive

or not available in many application domains.
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In this paper, we propose a change of perspective to

provide a mathematical interpretation of the relationship

between regularization and generalization. Specifically, we

consider learning problems that can be formulated as random

convex programs and, by using the most recent results of

scenario optimization, i.e., the Wait & Judge scenario theory

of [4], we show that generalization is deeply connected to the

number of so-called support points (i.e., those points whose

removal yields a change of the solution), while, in turn,

the number of support points is regulated by the selection

of the regularization parameter r. This result establishes a

precise link between r and the generalization properties of

the solution and delivers a fundamental insight to perform a

suitable trade-off between generalization and performance.

We should remark here that regularized convex programs

have already been considered from a scenario perspective

in [2]. However, in that paper, the focus was on min-max

optimization with a L1-penalty term to enforce sparsity

of the solution. Based on the classical result in scenario

optimization that the probability of violation is related to

the number of optimization variables, [1], [3], it is shown in

[2] that, by suitably selecting the regularization weight which

induces sparsity, the generalization properties of the model

can be kept under control. Hence, it is crucial in this theory

that the L1-penalty shrinks the number of non-zero variables,

thus effectively reducing the size of the optimization vector.

Notice that such an approach cannot be used in more general

regularization frameworks, like L2 regularization that we

shall concentrate on here, since regularization generally does

not change the number of the optimization variables in this

context, [13].

The key idea to assess the impact of regularization on

generalization via the Wait & Judge scenario approach of [4]

comes from the fact that such a theory allows us to compute

the number of support points a-posteriori. Hence, a range of

values for r can be tested and the generalization properties

for each value of r can be evaluated based on the found

number of support points. Other recent uses of scenario

optimization for problem robustification can be found in [7],

[8], but, to the best knowledge of the authors, this is the first

time that scenario optimization is employed to solve inverse

problems with L2-regularization.

The remainder of the paper is as follows. In Section II,

the problem is motivated and mathematically formulated.

Sections III and IV present the main theoretical results,

including an algorithm to set the value of r. A numerical

example illustrates the approach in Section V. The paper is

ended by some concluding remarks.
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II. PROBLEM STATEMENT

Consider the learning problem

min
θ∈Θ⊆Rd

J(θ) (LP)

subject to g(θ, δ(i)) ≤ 0, i = 1, . . . , N,

where θ is the optimization vector containing the model

parameters, Θ ⊆ R
d is a convex set, J(θ) is a convex

function of θ representing the data-fitting loss and g(θ, δ(i))
is a convex constraint making the solution minimizing J con-

sistent with the observed data δ(i), i = 1, . . . , N . Such data

are assumed to be independent and identically distributed

(i.i.d.) and drawn from an unknown probability PΔ over a

set Δ. Notice that (LP) can be solved using standard convex

optimization tools.

The aim of this paper is to discuss the effect - in terms of

performance and generalization to the unseen data in Δ - of

adding to (LP) a regularization term as follows:

min
θ∈Θ⊆R

J(θ) + r ‖Aθ − b‖2 (rLP)

subject to g(θ, δ(i)) ≤ 0, i = 1, . . . , N,

where A is a p× d matrix, b is a d-dimensional vector and

r is the tunable regularization parameter.

Remark 1 (Prior Model): Commonly, the regularization

term in (rLP) reads

r
∥∥θ − θ̄

∥∥
2

(that is, A is the identity matrix of dimension d and b = θ̄),

where θ̄ is a prior on the model parameters coming from

preliminary knowledge about the system. For small r, the

solution θ∗rN of (rLP) is allowed to be far from θ̄ to better

fit the data. Conversely, high r yields higher fitting error in

favor of models in the neighborhood of the prior. �

The objective of this paper is to provide a methodology to

suitably select r in (rLP) such that the corresponding solution

θ∗rN satisfies certain user-defined requirements in terms of

both performance and generalization. In fact, each solution

θ∗rN for a fixed value of r is assessed based on the attained

value of the cost J(θ∗rN ) (performance) and the capability of

the solution to satisfy the constraint g(θ, δ) ≤ 0 for instances

of δ other than the observed sample δ(1), . . . , δ(N). The

latter can be more rigorously quantified by the probability
of incorrect description V (θ∗rN ), where V (θ) for any given

feasible point θ ∈ Θ is defined as follows:

V (θ) = P {δ ∈ Δ : g(θ, δ) > 0} . (1)

The different solutions θ∗rN for varied values of the

regularization parameter r attain a different pair of J(θ∗rN )
and V (θ∗rN ) and typically the two indexes have an opposite

trend. In particular, the following Theorem can be stated.

Theorem 1: J(θ∗rN ) is monotonically non-decreasing with

the regularization parameter r.

r

Loss function

Probability of

Incorrect Description

Fig. 1. Trade-off plot to set the regularization parameter r.

Proof: Take r1 and r2 as two values of the regulariza-

tion parameter such that r1 ≤ r2. Given that θ∗r1N and θ∗r2N
are the minimizers of the corresponding problems (rLP) with

r1 and r2 as regularization parameters, it holds that

J(θ∗r1N )+r1
∥∥Aθ∗r1N − b

∥∥
2
≤ J(θ∗r2N )+r1

∥∥Aθ∗r2N − b
∥∥
2
,

J(θ∗r2N )+r2
∥∥Aθ∗r2N − b

∥∥
2
≤ J(θ∗r1N )+r2

∥∥Aθ∗r1N − b
∥∥
2
.

Then,

J(θ∗r1N )−J(θ∗r2N ) ≤ r1
(∥∥Aθ∗r2N − b

∥∥
2
− ∥∥Aθ∗r1N − b

∥∥
2

)
,

but also

J(θ∗r1N )−J(θ∗r2N ) ≥ r2
(∥∥Aθ∗r2N − b

∥∥
2
− ∥∥Aθ∗r1N − b

∥∥
2

)
.

The term
∥∥Aθ∗r2N − b

∥∥
2
− ∥∥Aθ∗r1N − b

∥∥
2

cannot be posi-

tive, as otherwise the two above inequalities would yield

a contradiction. Hence, it must be negative, leading to

J(θ∗r1N ) − J(θ∗r2N ) ≤ 0. It follows that, for r1 ≤ r2,

J(θ∗r1N ) ≤ J(θ∗r2N ), which concludes the proof.

From the above result, it follows that, as already observed

in Remark 1, the smaller r the better the performance

J(θ∗rN ), while it is an intuitive fact that the smaller r, the

more the solution can be adapted to the seen observations and

the worst the probability of incorrect description V (θ∗rN ).
In order to properly select the regularization parameter r,

J(θ∗rN ) and V (θ∗rN ) should be computed for a grid of values

for r and then plotted each against the other so as to obtain a

diagram like the one in the illustrative Figure 1. This diagram

evidently gives the user all the relevant information to choose

the most suitable value of the regularization parameter r for

the problem at hand and the main result of this paper is that

of offering an effective tool to construct such a diagram.
To this aim, however, a fundamental observation has to be

made. Although J(θ∗rN ) is revealed once the optimization

problem is solved and hence is readily available to the

user, on the other hand, V (θ∗rN ) is a quantity which is not

directly accessible since it depends on the probability with

which observations take value. This probability is unknown

to the user, who has just partial information of it through

the observations δ(1), . . . , δ(N). The key problem this paper

addresses is the evaluation of V (θ∗rN ) from the sole available

information represented by δ(1), . . . , δ(N).
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III. ASSESSMENT OF THE PROBABILITY OF INCORRECT

DESCRIPTION

The following assumption is made throughout this section.

Assumption 1 (Existence and uniqueness): For any N
and dataset δ(i), i = 1, . . . , N , the problem (rLP) admits a

solution, and such a solution is unique. �

A. A first naive attempt

It has to be noted that the probability of incorrect

description V (θ∗rN ) is a random variable because it depends

on the observations δ(1), . . . , δ(N). On the other hand, the

distribution of V (θ∗rN ) tends to be supported in intervals of

the type [0, ε) as specified by the following theorem taken

from [3].

Theorem 2: Fix β ∈ (0, 1) and let ε be such that

d−1∑
i=0

(
N

i

)
εi(1− ε)N−i = β.

Then, it holds that

P
N {V (θ∗rN ) > ε} ≤ β. (2)

Proof: See [3].

By selecting β as a number very close to 0, say e.g. 10−7,

the theorem says that V (θ∗rN ) will be smaller than ε with very

high confidence. This suggests that the probabilistic upper

bound ε can be used as a safe estimate of V (θ∗rN ).
The problem with this assessment of V (θ∗rN ) is that it is

typically not able to discern between different regularization

levels. Indeed, as ε is determined as a function of β, d,

N , which are the same to all problems (rLP), the same

bound, adapted to the worst generalization level, is obtained

irrespective of the regularization parameter r.

The main issue here is that this bound can be loose and

therefore little informative for the problem at hand.

B. A Wait & Judge perspective

To introduce the new perspective that will make it

possible to obtain tight evaluations of V (θ∗N ), we need to

introduce the following definition.

Definition 1: Consider (rLP) for a given r. An observation

δ(i) is said to be a support point for (rLP) if its removal

changes the solution to (rLP).1 �

In a sense, support points are those points that actively

concur in the determination of θ∗rN , and they can be easily

found by applying the definition and solving N optimiza-

tion problems in succession, where one point at a time is

removed. The number of support points for a solution θ∗rN
is denoted by s∗rN .

1In other words, δ(i) is a support point if the solution to a problem like
(rLP), where the constraint corresponding to δ(i) is removed, is not equal
to θ∗rN .

It can be observed that the choice of r affects s∗rN in a

way that resembles how r affects V (θ∗rN ). In fact, increasing

r in (rLP) tends to yield a shrinkage of the number of

support points s∗rN . At the limit (see again Theorem 1),

when r → ∞, the regularization term obtains more and

more importance to the detriment of the other element of the

problem, and it is then clear that few δ(i)’s will be of support

as the solution is mainly dictated by the regularization term

irrespective of the δ(i)’s2. On the other hand, when r → 0,

problem (rLP) tends to (LP) where there is no regularization,

and the solution is free to adapt as much as possible to the

observations. In this case, s∗rN will coincide with the usually

big number of δ(i)’s determining the solution θ∗N of the non-

regularized problem (LP).

The intuition that a good evaluation of V (θ∗N ) can be

obtained based on the assessment of s∗rN is put on a solid

ground by the recently introduced Wait & Judge Scenario

approach of [4], where bounds to the probability of incorrect

description adapted to s∗rN are computed.

The main idea of [4] to be used here is based on the

following assumption.

Assumption 2 (Non-degeneracy): For any N and with

probability 1 with respect to the dataset δ(i), i = 1, . . . , N ,

the solution to problem (rLP) corresponds to the solution

obtained if the sole support points are in place. �

This assumption is mild and normally follows if, e.g.,

data points take value according to a distribution with no-

concentrated mass. See [4] for further discussion.

The result of [4] is as follows:

Theorem 3 (Wait & Judge Scenario Optimization):
Given a confidence level β ∈ (0, 1), it holds that

P
N {V (θ∗rN , δ) > ε(s∗rN )} ≤ β, (3)

where θ∗rN is the minimizer of (rLP), s∗rN is the number

of support points of (rLP), ε(s) = 1 − t(s) and t(s) is the

unique solution in (0, 1) of the polynomial equation

β

N + 1

N∑
m=s

(
m
s

)
tm−s −

(
N
s

)
tN−s = 0.

Proof: See [4].

As before, Theorem 3 says that the probability of incorrect

description is below a given upper bound with very high

confidence, and by selecting β to be very small, one can

safely use the upper bound as an estimate of the probability

of incorrect description. However, differently from before,

the upper bound ε(s∗rN ) is revealed only a posteriori, as it

depends on the actually seen number of support points and,

as such, is representative of the situation at hand: different

2To observe this fact, take a simple example of (rLP) with the simple
regularization term of Remark 1. At limit, for r → ∞, the solution θ∗rN
tends to θ̄, provided this is a feasible value. Such a solution represents some
prior knowledge on θ and, since it is independent of the measurements, the
corresponding number of support points is zero.
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values for the regularization parameter r lead to different

solutions θ∗rN and different probabilities of incorrect descrip-

tion V (θ∗rN ); correspondingly, different numbers of support

points s∗rN and different evaluations of the probability of

incorrect description as given by ε(s∗rN ) will be made. We

should remark here that it has been shown in [4] that these

evaluations are indeed tight.

IV. TUNING OF THE REGULARIZATION

A. The algorithm

The results reported in Section III suggest the following

algorithm, from now on referred to as Regularized random

convex program (RRCP), to compute the tradeoff diagram

discussed in Section II and to secure a desired level of

performance and generalization through r.

Regularized random convex program (RRCP)
(inputs: N , β, A, b, d, J(·), rmax, M )

1) [r-sampling] Select M grid points r(k), k = 1, . . . ,M ,

of r within the interval Ir = [0, rmax].

2) [Optimization] Compute the solution θ
∗(k)
rN of (rLP)

corresponding to each r(k) and yielding the cost Jk =

J(θ
∗(k)
rN ); then, compute the number of support con-

straints s
∗(k)
rN corresponding to each θ

∗(k)
rN .

3) [Assessment] Assess the generalization level εk =

ε(s
∗(k)
rN ) of each solution θ

∗(k)
rN , k = 1, . . . ,M via

Theorem 3. Such a generalization level corresponds

to an upper bound on the probability of incorrect

description V (θ
∗(k)
rN ).

4) [Selection] Select the solution corresponding to the

desired couple (Jk, εk).

B. An additional theoretical analysis

If the solution θ∗rN is selected via the above algorithm,

it should be noticed that several solutions (corresponding

to M values of r) are evaluated before the choice is made.

It follows that the confidence with which the probability

of incorrect description of the chosen solution is below

the computed threshold is slightly smaller than 1 − β.

The reason is that we have to secure that all the solutions

corresponding to various grid points r(k), k = 1, . . . ,M ,

have simultaneously a probability of incorrect description

smaller than εk. The following simple result formalizes this

observation.

Theorem 4 (Confidence level of RRCP): Referring to the

RRCP Algorithm, under the same assumptions of Theorem

3, it holds that

P
N

{
∃k : V (θ

∗(k)
rN , δ) > εk

}
≤Mβ. (4)

Proof:

P
N

{
∃k : V (θ

∗(k)
rN , δ) > εk

}

≤
M∑
κ=1

P
N

{
V (θ

∗(κ)
rN , δ) > εk

}
≤Mβ, (5)

where the last inequality follows because (3) holds for each

k thanks to Theorem 3.

As a consequence of Theorem 4, the level of confidence,

which was previously equal to 1 − β, is now decreased to

1−Mβ. However, it has to be remarked that, from a practical

point of view, this is not an issue, since M cannot be high

due to computational issues and β is usually very small.

For instance, if β = 10−7, for M = 100 evaluations of r,

the level of confidence for the bound to the probability of

incorrect description would be 0.99999, which is still very

close to 1.

V. A SIMULATION EXAMPLE

In this section, we consider a learning example to numer-

ically show the effectiveness of the proposed approach. We

should remark that the proposed method can be applied to

a regularized optimization problem of any dimension (e.g.,

any size of inputs and outputs, any number of data, etc.).

However, a simple scalar learning problem is presented here

to facilitate the visualization of the results.

A bi-variate phenomenon takes place in the x-y space,

where the range for the x variable is [0, 1]. The goal is to find

a curve that upper bounds the variability of y as a function

of x. To this end, we have at our disposal N = 1000 samples

(xi, yi), i = 1, . . . , 1000. Moreover, an a-priori guess on the

upper bound curve is also available. We set as objective to

be minimized the area behind the upper bound curve while

all seen points (xi, yi) remains below this curve.

Formally, we consider the model class

fθ(x) = b+

(d−1)/2∑
j=1

(
ρ(j) sin(2πjx) + η(j) cos(2πjx)

)

for the curve, where d is an odd number to adequately divide

the degrees of freedom in sinusoids and co-sinusoids. In this

example, we take d = 299. Hence, the set of optimization

variables is

θ =
[
b ρ(1)η(1) . . . ρ(149) η(149)

]T
and the regularized estimation problem is written as

min
θ∈Rd

∫ 1

0

fθ(x)dx+ r
∥∥θ − θ̄

∥∥
2

(6)

subject to yi ≤ fθ(xi), i = 1, . . . , 1000, (7)

where θ̄ denotes a prior estimate of θ given by a rough

preliminary knowledge of the curve shape (e.g., obtained

via previous experimental identification). Specifically, in the

simulation, the domain for (x, y) is upper bounded by

a damped oscillating function and θ̄ has been taken as
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Fig. 2. Model output for r = 10.
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Fig. 3. Model output for r = 4.

an approximation to the real bound with an approximated

frequency and damping factor and overestimated in hight.

To run the RRCP algorithm for the problem at hand in (6),

we took M = 20 values of r from 0.5 to 10 with step

size 0.5. Thus, with β = 10−6 we can apply the result of

Theorem 4 to obtain a (satisfactory) level of confidence of

1−Mβ = 0.99998.

The models for 5 different values of r are given in Figures

2-6. While low values of r, e.g. r = 0.5, lead to an evident

overfitting, a large weight on the regularization term, e.g.

r = 10 disregards the information content of the data and

makes the model too close to the prior choice.

To perform a choice of the best trade-off on a rigorous

basis, we apply the scenario theory. Figures 7 and 8 display

the loss function and the probability of incorrect description

for the considered r. Based on these graphs, the choice was

made to take the solution given by r = 2.5. For this value,

the loss function becomes around 8% of the worst case, while

the probability of incorrect description is 7.15%, which we

assume is acceptable for the application at hand. The number
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Fig. 4. Model output for r = 2.5.
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Fig. 5. Model output for r = 1.5.
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Fig. 6. Model output for r = 0.5.
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shown.
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Fig. 8. Trade-off between loss function and probability of incorrect
description. The solution corresponding to r = 2.5 turns out to be a good
balance between the two performance indexes.

of support points for this choice was 32.

VI. CONCLUSIONS

In this paper, we used the Wait & Judge scenario theory

of [4] to mathematically analyze learning problems to which

a regularization term is added. The analysis showed that

the regularization parameter r affects the number of support

points, thus changing the probability of incorrect description

of unseen data. Thanks to this link between the number of

support points and the probability of incorrect description,

we then provided an algorithm to select the value of r that

is most suited for a given application, in terms of the trade-

off between generalization and data-fitting.

Future research will be devoted to the optimal selection of

the M values of r, as well as the application of the proposed

approach to different learning problems.
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