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Abstract— This paper deals with the sampled scenarios
approach to robust convex programming. It has been shown
in previous works that by randomly sampling a sufficient
number of constraints among the (possibly) infinite constraints
of a robust convex program, one obtains a standard convex
optimization problem whose solution is ‘approximately feasi-
ble’, in a probabilistic sense, for the original robust convex
program. This is a generalization property in the learning
theoretic sense, since the satisfaction of a certain number of
‘training’ constraints entails the satisfaction of other ‘unseen’
constraints. In this paper we provide a new efficient bound on
the generalization rate of sampled convex programs, and show
an example of application to a robust control design problem.

Keywords: Uncertain convex optimization, Robust control,
Randomized algorithms, Probabilistic robustness.

I. INTRODUCTION

Robust convex programming [3], [18] deals with opti-
mization problems subject to a family of convex constraints
that are parameterized by uncertainty terms. Solving a
robust convex program (RCP) amounts to determining an
optimal solution that is feasible for all possible constraints
in the parameterized family. In more precise terms, a RCP
may be formalized as

RCP : minθ∈Θ cT θ subject to: (1)

f (θ ,δ ) ≤ 0, ∀δ ∈ ∆,

where θ is the optimization variable, δ is the uncertainty
parameter, Θ ⊆ R

nθ is a convex and closed set, and ∆ ⊆
R

nδ . Further, it is assumed that f (θ ,δ ) : Θ×∆ → (−∞,∞]
is continuous and convex in θ , for any fixed value of
δ ∈ ∆. Notice that no assumption is instead made on the
dependence of f (θ ,δ ) on δ .

The constraints are here expressed by the condi-
tion f (θ ,δ ) ≤ 0, where f is a scalar-valued function.
Considering scalar-valued constraint functions is without
loss of generality, since multiple constraints f1(θ ,δ ) ≤
0, . . . , fn f (θ ,δ )≤ 0 can be reduced to a single scalar-valued
constraint by the position f (θ ,δ ) .= maxi=1,...,n f fi(θ ,δ ).

We remark that, despite convexity, robust convex pro-
grams are in general NP-hard, see [3], [5], [18]. This is one
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of the motivations that led us to consider probabilistic re-
laxations of the problem, see [7] for an in-depth discussion.

Important special cases of robust convex programs
are robust linear programs, [4], for which f (θ ,δ ) =
maxi=1,...,n f fi(θ ,δ ), where each fi(θ ,δ ) is affine in θ ,
and robust semidefinite programs, [1], [5], [18], for which
f (θ ,δ ) = λmax[F(θ ,δ )], where

F(θ ,δ ) = F0(δ )+
nθ

∑
i=1

θiFi(δ ), Fi(δ ) = FT
i (δ ),

and λmax[·] denotes the largest eigenvalue.
The RCP paradigm has found to date applications in

many engineering endeavours, such as truss topology design
[2], robust antenna array design, portfolio optimization [19],
and robust estimation [17]. However, we shall here be
mainly concerned with control systems, where RCPs arise
naturally in the context of analysis and synthesis based
on parameter-dependent Lyapunov functions, see e.g. [1],
[10], [11], [12], as well as in various problems of robust
filtering [15], [25] and set-membership state reachability
and filtering [8], [16].

In [6], [7], a probabilistic approach has been proposed to
approximately solve problem (1). This approach is based on
sampling at random a finite number N of constraints in the
family { f (θ ,δ ) ≤ 0, δ ∈ ∆} and solving the corresponding
standard convex problem. In particular, we explicitly define
the scenario counterpart of RCP as

RCPN : minθ∈Θ cT θ subject to: (2)

f (θ ,δ (i)) ≤ 0, i = 1, . . . ,N,

where δ (1), . . . , δ (N) are N independent identically dis-
tributed (iid) samples, drawn according to some given
probability measure denoted as ‘Prob’. A scenario design is
given by an optimal solution θ̂N of RCPN . Notice that θ̂N is
a random variable that depends on the random extractions
δ (1), . . . ,δ (N).

A. Properties of RCPN

Let us first specify more precisely our probabilistic setup.
We assume that the support ∆ for δ is endowed with a σ -
algebra D and that Prob is defined over D . Moreover, we
assume that {δ ∈ ∆ : f (θ ,δ ) ≤ 0} ∈ D , ∀θ ∈ Θ. We have
the following definition.

Definition 1 (violation probability): Let θ ∈ Θ be given.
The probability of violation of θ is defined as

V (θ) .= Prob{δ ∈ ∆ : f (θ ,δ ) > 0}. �
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For example, if a uniform (with respect to Lebesgue
measure) probability distribution is assumed, then V (θ)
measures the volume of ‘bad’ parameters δ such that the
constraint f (θ ,δ )≤ 0 is violated. Clearly, a solution θ with
small associated V (θ) is feasible for most of the problem
instances, i.e. it is approximately feasible for the robust
problem.

Definition 2 (ε-level solution): Let ε ∈ (0,1). We say
that θ ∈ Θ is an ε-level robustly feasible (or, more simply,
an ε-level) solution, if V (θ) ≤ ε . �
Our goal is to devise an algorithm that returns a ε-level
solution, where ε is any fixed small level. It was shown
in [7] that the solution returned by RCPN has indeed this
characteristic, as summarized in the following theorem.

Theorem 1 (Corollary 1 of [7]): Assume that, for any
extraction of δ (1), . . . , δ (N), the scenario problem RCPN

attains a unique optimal solution θ̂N .
Fix two real numbers ε ∈ (0,1) (level parameter) and

β ∈ (0,1) (confidence parameter) and let

N ≥ Nlin(ε,β ) .=
⌊

nθ
εβ

⌋
(3)

(�� denotes integer rounding towards zero). Then, with
probability no smaller than 1− β , θ̂N is ε-level robustly
feasible. �
The inequality (3) provides the minimum number of sam-
pled constraints that are needed in order to attain the
desired probabilistic levels of robustness in the solution.
The function Nlin(ε,β ) gives therefore a bound on the
generalization rate of the scenario approach, which relates
to the ability of the scenario solution of being feasible (with
high probability) also with respect to constraints that were
not explicitly taken into account in the solution of RCPN

(unseen scenarios). In formula (3), the suffix ‘lin’ underlines
the fact that N grows linearly with respect to β−1.

B. Objective of this paper

In this paper we show that a better bound than (3) in fact
holds for scenario convex problems. The new bound (Theo-
rem 2 below) has both theoretical and practical importance.
From the theoretical side, it shows that generalization is
achieved with a number of samples that grows essentially
as O( nθ

ε ln 1
β ). This implies that a much lower number of

constraints is needed with respect to (3), which is important
in practice when solving RCPN numerically.

C. Related works

The idea of pursuing robustness in a probabilistic sense is
not new, but its use for robust control synthesis is relatively
recent. We direct the reader to the recent monograph [23]
for an historical perspective on the topic and for a thorough
survey of currently available randomized algorithms for
approximately solving probabilistically constrained design
problems in control.

However, the randomized approach that we propose in
this paper is distinctively different from those discussed in

[23] and in other related works such as [9], [14], [20], [21],
[22]. These latter references propose sequential stochas-
tic algorithms for determining an approximately feasible
design, based on random gradient descent or ellipsoidal
iterations. For space reasons, we shall not discuss further
here these methods, but direct the reader to [23] and to the
introduction in [6].

II. MAIN RESULT

We start with a simplifying assumption that is made in
order to avoid mathematical cluttering.

Assumption 1: For all possible extractions δ (1), . . . , δ (N),
the optimization problem (2) is either unfeasible, or, if
feasible, it attains a unique optimal solution. �
This assumption could actually be removed (i.e. we may
allow for non-existence or non-uniqueness of the optimal
solution) without harming the result, at the expense of
complications in the proofs.

We now state the main result of this paper.
Theorem 2: Let Assumption 1 be satisfied. Fix two real

numbers ε ∈ (0,1) (level parameter) and β ∈ (0,1) (confi-
dence parameter). If

N ≥ Ngen(ε,β ) .= (4)⌈
infν∈(0,1)

1
1−ν

(
1
ε ln 1

β +nθ + nθ
ε ln 1

νε + 1
ε ln (nθ /e)nθ

nθ !

)⌉

(	
 denotes the smallest integer greater or equal than the
argument) then, with probability no smaller than 1 − β ,
either the scenario problem RCPN is unfeasible, and hence
also RCP is unfeasible; or, RCPN is feasible, and then its
optimal solution θ̂N is ε-level robustly feasible. �

A proof for Theorem 2 is presented in Section III. In
the theorem, probability 1 − β refers to the probability
ProbN (= Prob×·· ·×Prob, N times) of extracting a ‘bad’
multisample, i.e. a multisample δ (1), . . . ,δ (N) such that θ̂N

does not meet the ε-level feasibility property. In other
words, Theorem 2 states that if N (specified by (4)) random
scenarios are drawn, the optimal solution of RCPN is ε-level
feasible according to Definition 2, with high probability
1−β . Bound (4) can be simplified and made explicit, as
stated in the following corollary.

Corollary 1: The results in Theorem 2 hold for

N ≥ Nlog(ε,β ) .=
⌈

2
ε

ln
1
β

+2nθ +
2nθ
ε

ln
2
ε

⌉
. (5)

�
Proof: Observe that (nθ /e)nθ ≤ nθ !, and hence the last term
in (4) is non-positive and can be dropped, leading to

Ngen(ε,β ) ≤
⌈

1
1−ν

(
1
ε

ln
1
β

+nθ +
nθ
ε

ln
1

νε

)⌉
, (6)

where ν can be freely selected in (0,1). The state-
ment of the corollary is then obtained by selecting ν =
1/2 in (6). We also note that further optimizing (6)
with respect to ν always leads to a ν ≤ 1/2, with a
corresponding improvement by at most of a factor 2.
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ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001

β = 0.01
Nlin = 104

Nlog = 712
Ngen = 533

Nlin = 105

Nlog = 11538
Ngen = 7940

Nlin = 106

Nlog = 161249
Ngen = 105142

Nlin = 107

Nlog = 2072821
Ngen = 1303039

β = 0.001
Nlin = 105

Nlog = 758
Ngen = 562

Nlin = 106

Nlog = 11999
Ngen = 8203

Nlin = 107

Nlog = 165854
Ngen = 107683

Nlin = 108

Nlog = 2118873
Ngen = 1327959

β = 0.0001
Nlin = 106

Nlog = 804
Ngen = 589

Nlin = 107

Nlog = 12459
Ngen = 8465

Nlin = 108

Nlog = 170459
Ngen = 110219

Nlin = 109

Nlog = 2164925
Ngen = 1352842

β = 0.00001
Nlin = 107

Nlog = 850
Ngen = 617

Nlin = 108

Nlog = 12920
Ngen = 8725

Nlin = 109

Nlog = 175064
Ngen = 112748

Nlin = 1010

Nlog = 2210977
Ngen = 1377687

TABLE I

COMPARISON OF SAMPLE-SIZE BOUNDS, FOR nθ = 10.

Remark 1 (sample complexity): Notice that bound (5) —
and hence (4), which is tighter — substantially improves
upon (3) in that dependence on 1/β is now logarithmic.
Table I shows a comparison of the these bounds for several
values of ε and β . �

Remark 2 (the role of convexity): Theorem 2 says that
if we extract a finite number N of constraints, then the
solution of the randomized problem, if feasible, satisfies
most of the other unseen constraints. As we mentioned,
this is a generalization property: the explicit satisfaction of
some ‘training’ scenarios generalizes automatically to the
satisfaction of other unseen scenarios. It is interesting to
note that generalization calls for some kind of structure,
and the only structure used here is convexity. So, convexity
in the scenario approach is fundamental in two different
respects: on the computational side, it allows for an efficient
solution of the ensuing optimization problem, and on the
theoretical side it allows for generalization. �

Remark 3 (VC-dimension): Bound (5) depends on the
problem structure through nθ , the number of optimization
variables, only. It is not difficult to conceive situations where
the class of sets {δ ∈ ∆ : f (θ ,δ ) > 0}⊆ ∆, parameterized in
θ , has infinite VC-dimension (see e.g. [24] for a definition),
even for small nθ . Then, estimating Prob{δ ∈ ∆ : f (θ ,δ ) >
0} = V (θ) uniformly with respect to θ is impossible and
the VC-theory is of no use. Theorem 2 says that, if attention
is restricted to θ̂N , then estimating V (θ̂N) becomes possible
at a low computational cost. �

III. PRELIMINARIES AND PROOF OF THEOREM 2

A. Preliminiaries

We first state a key instrumental result. Consider the
convex optimization program

P : minx∈Rn cT x subject to:

x ∈
⋂

i∈{1,...,m}
Xi,

where Xi, i = 1, . . . ,m, are closed convex sets, and define
the convex programs Pk, k = 1, . . . ,m, obtained from P
by removing the k-th constraint:

Pk : minx∈Rn cT x subject to:

x ∈
⋂

i∈{1,...,m}\k

Xi.

Let x∗ be any optimal solution of P (assuming it exists),
and let x∗k be any optimal solution of Pk (again, assuming
it exists). We have the following definition.

Definition 3 (support constraint): The k-th constraint
Xk is a support constraint for P if problem Pk has an
optimal solution x∗k such that cT x∗k < cT x∗. �
The following theorem holds.

Theorem 3 (Theorem 2 in [7]): The number of support
constraints for problem P is at most n. �

B. Proof of Theorem 2

The fact that, if RCPN is unfeasible, then RCP is unfeasi-
ble too is trivially true, since RCP exhibits more constraints
than RCPN . Thus, we have to prove that, with probability
1−β , either RCPN is unfeasible or, if feasible, its solution
is ε-level robustly feasible. This part of the proof is inspired
by a similar derivation given in a different context in [13].

For clarity of exposition, we first assume that problem
RCPN is feasible for any selection of δ (1), . . . , δ (N). The
case where infeasibility can occur is obtained as an easy
extension as indicated at the end of the proof.

Given N scenarios δ (1), . . . ,δ (N), select a subset I =
{i1, . . . , inθ } of nθ indices from {1, . . . ,N} and let θ̂I be
the optimal solution of the program

minθ∈Θ cT θ subject to:

f (θ ,δ (i j)) ≤ 0, j = 1, . . . ,nθ .

Based on θ̂I we next introduce a subset ∆N
I of the set ∆N

defined as

∆N
I

.= {(δ (1), . . . ,δ (N)) : θ̂I = θ̂N} (7)
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(θ̂N is the optimal solution with all N constraints
δ (1), . . . ,δ (N) in place).

Let now I range over the collection I of all possible

choices of nθ indices from {1, . . . ,N} (I contains

(
N
nθ

)

sets). We want to prove that

∆N =
⋃

I∈I

∆N
I . (8)

To show (8), take any (δ (1), . . . ,δ (N))∈ ∆N . From the set of
constraint δ (1), . . . ,δ (N) eliminate a constraint which is not
a support constraint (this is possible in view of Theorem 3,
since N > nθ ). The resulting optimization problem with
N − 1 constraints admits the same optimal solution θ̂N as
the original problem with N constraints. Consider now the
set of the remaining N − 1 constraints and, among these,
remove a constraint which is not a support constraint for the
problem with N−1 constraints. Again, the optimal solution
does not change. If we keep going this way until we are
left with nθ constraints, in the end we still have θ̂N as
optimal solution, showing that (δ (1), . . . ,δ (N)) ∈ ∆N

I , where
I is the set containing the nθ constraints remaining at the
end of the process. Since this is true for any choice of
(δ (1), . . . ,δ (N)) ∈ ∆N , (8) is proven.

Next, let

B
.= {(δ (1), . . . ,δ (N)) : V (θ̂N) > ε}

and
BI

.= {(δ (1), . . . ,δ (N)) : V (θ̂I) > ε}
We now have:

B = B∩∆N

= B∩ (∪I∈I ∆N
I ) (apply (8))

= ∪I∈I (B∩∆N
I )

= ∪I∈I (BI ∩∆N
I ). (because of (7)) (9)

A bound for ProbN(B) is now obtained by bounding
Prob(BI ∩∆N

I ) and then summing over I ∈ I .
Fix any I, e.g. I = {1, . . . ,nθ} to be more explicit. The set

BI = B{1,...,nθ } is in fact a cylinder with base in the cartesian
product of the first nθ constraint domains (this follows
from the fact that condition V (θ̂{1,...,nθ }) > ε only involves
the first nθ constraints). Fix (δ̄ (1), . . . , δ̄ (nθ )) ∈ base of
the cylinder. For a point (δ̄ (1), . . . , δ̄ (nθ ),δ (nθ +1), . . . ,δ (N))
to be in B{1,...,nθ } ∩∆N

{1,...,nθ }, constraints δ (nθ +1), . . . ,δ (N)

must be satisfied by θ̂{1,...,nθ }, for, otherwise, we would
not have θ̂{1,...,nθ } = θ̂N , as it is required in ∆N

{1,...,nθ }. But,

V (θ̂{1,...,nθ }) > ε in B{1,...,nθ }. Thus, by the fact that the
extractions are independent, we conclude that

ProbN−nθ {(δ (nθ +1), . . . ,δ (N)) :

(δ̄ (1), . . . , δ̄ (nθ ),δ (nθ +1), . . . ,δ (N)) ∈ B{1,...,nθ } ∩∆N
{1,...,nθ }}

< (1− ε)N−nθ .

The probability on the left hand side is nothing but the
conditional probability that (δ (1), . . . ,δ (N)) ∈ B{1,...,nθ } ∩

∆N
{1,...,nθ } given δ (1) = δ̄ (1), . . . ,δ (nθ ) = δ̄ (nθ ). Integrating

over the base of the cylinder B{1,...,nθ }, we then obtain

ProbN(B{1,...,nθ } ∩∆N
{1,...,nθ })

< (1− ε)N−nθ ·Probnθ (base of B{1,...,nθ })
≤ (1− ε)N−nθ .

From (9), we finally arrive to the desired bound for
ProbN(B)

ProbN(B) ≤ ∑
I∈I

ProbN(BI ∩∆I) <

(
N
nθ

)
(1− ε)N−nθ .

(10)
The last part of the proof is nothing but algebraic manipula-
tions on bound (10) to show that, if N is chosen according
to (4), then (

N
nθ

)
(1− ε)N−nθ ≤ β , (11)

so concluding the proof. These manipulations are reported
next.
Any of the following inequality implies the next in a top-
down fashion, where the first one is (4):

N ≥
1

1−ν

(
1
ε ln 1

β +nθ + nθ
ε ln 1

νε + 1
ε ln

(( nθ
e

)nθ 1
nθ !

))
;

(1−ν)N ≥
1
ε ln 1

β +nθ + nθ
ε ln 1

νε + 1
ε ln

(( nθ
e

)nθ 1
nθ !

)
;

(1−ν)N ≥
1
ε ln 1

β +nθ + nθ
ε

(
ln nθ

νε −1
)− 1

ε ln(nθ !);
N ≥

1
ε ln 1

β +nθ + nθ
ε

(
ln nθ

νε −1+ νNε
nθ

)
− 1

ε ln(nθ !);

N ≥ 1
ε

ln
1
β

+nθ +
nθ
ε

lnN − 1
ε

ln(nθ !) (12)

where the last implication can be justified by observing that
lnx ≥ 1− 1

x , for x > 0, and applying this inequality with
x = nθ

γNε . Proceeding from (12), the next inequalities in the
chain are

lnβ ≥ −εN + εnθ +nθ lnN − ln(nθ !)

β ≥ Nnθ

nθ !
e−ε(N−nθ )

β ≥ N(N −1) · · · · · (N −nθ +1)
nθ !

(1− ε)N−nθ ,

where, in the last implication, we have used the fact that
e−ε(N−nθ ) ≥ (1− ε)N−nθ , as it follows by taking logarithm
of the two sides and further noting that −ε ≥ ln(1− ε).
Finally, we have

β ≥
(

N
nθ

)
(1− ε)N−nθ ,

which is (11).
So far, we have assumed that RCPN is feasible for any

selection of δ (1), . . . ,δ (N). Relax now this assumption and
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call F ⊆ ∆N the set where RCPN is indeed feasible. The
same derivation can then be worked out in the domain F ,
instead of ∆N , leading to the conclusion that (10) holds with
B

.=
{

(δ (1), . . . ,δ (N)) ∈ F : V (θ̂N) > ε
}

, which concludes
the proof.

IV. EXAMPLE: ROBUST STATE-FEEDBACK

STABILIZATION

Given the uncertain system

ẋ = A(δ )x+Bu

we wish to design a control u = Kx such that the closed-loop
is quadratically stable, for all δ in the allowable uncertainty
set ∆. This design specification is satisfied if and only
if there exist P � 0 (means P is symmetric and positive-
definite) and Y such that

A(δ )P+PAT (δ )+BY +Y T B ≺ 0, ∀δ ∈ ∆.

Due to homogeneity in these conditions, we can reformulate
the problem in minimization form as the RCP

min
P,Y,ν

ν subject to

−I � A(δ )P+PAT (δ )+BY +Y T B � νI, ∀δ ∈ ∆
I � P �−νI.

If optimal ν is negative, then the original design conditions
are satisfied, and the controller is retrieved as K = Y P−1.

We here consider a simple numerical example, with

A(δ ) =
[

ρ2δ2 1+ρ1δ1

−(1+ρ1δ1)2 2(0.1+ρ2δ2)(1+ρ1δ1)

]

B =
[

10
15

]

ρ1 = 1, ρ2 = 0.5, with |δ1| ≤ 1, |δ2| ≤ 1. The scenario
counterpart of the problem is

min ν subject to

−I � A(δ (i))P+PAT (δ (i))+BY +Y T B � νI, i = 1, . . . ,N

I � P �−νI,

where δ (1), . . . ,δ (N) are iid uncertainty samples.
In this example we have nθ = 3 + 2 + 1 = 6 design

variables (the free entries of symmetric P, plus the two
entries of Y , and ν). Setting ε = 0.01 and β = 0.001, bound
(4) requires at least N = 5170 uncertainty samples. We then
selected the uniform probability measure over ∆, and solved
numerically (by means of LMILab toolbox in Matlab) one
instance of the scenario problem. This yielded the optimal
solution α = −3.1065×10−5 and

P =
[

0.0000516 0.0000401
0.0000401 0.2885159

]
,

Y =
[ −0.0123178 −0.0183152

]
and hence the controller

K = Y P−1 = [−238.70813 −0.0302966].

This controller was then tested a-posteriori with a Monte
Carlo analysis. The a-posteriori estimated probability of
P,Y violating the original design LMIs was 1.15 × 10−5

(estimated using 6×106 uniform samples). This means in
practice that the computed P is a Lyapunov matrix for all
but a very small fraction of the closed-loop plants.

V. CONCLUSIONS

Efficient and exact solution methodologies for robust
convex problems are known only for certain simple depen-
dencies of the constraints on the uncertainty (e.g. affine,
polynomial or rational). In all other cases, the scenario
approach offers a viable route to find a ‘solution’ to the
design problem.

Even when solving RCP is possible, resorting to the
scenario approach can be advantageous because it alleviates
the conservativeness inherent in RCP. In fact, solving RCP
gives a 100% deterministic guarantee that the constraints
are satisfied. On the other hand, accepting a small risk of
constraint violation can result in a (sometimes significant)
performance improvement for all plants whose constraints
are satisfied. In this connection, ε can be seen as a ‘tuning-
knob’ that permits to trade probability of unfeasibility for
performance.

The sample complexity of scenario optimization has been
drastically reduced by the new bound derived in this paper,
thus hopefully increasing the appeal of this technique for
application to practical engineering design problems.
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