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Abstract— In this paper we consider the problem of con-
structing confidence regions for the parameters of nonlinear
dynamical systems. The proposed method makes use of higher
order statistics and extends a previous algorithm in [3]. The
obtained confidence regions are valid for any finite number of
data samples and they are nonconservative, in the sense that
they contain the true parameter value with an exact probability.
The usefulness of the proposed approach is illustrated in
simulation examples. The results presented here are preliminary
results from an ongoing research on finite sample properties in
nonlinear system identification.

I. INTRODUCTION

Asymptotic theory of system identification is widely used
for the construction of confidence regions for system param-
eters even in cases where only finitely many samples are
available. However, it has recently been shown (see [1], [5],
[6]) that the results obtained using asymptotic theory may be
unreliable in the finite sample case. Thus, there is a need for
techniques that delivers confidence regions with guaranteed
probability when there are only a finite number of data points
available.

The LSCR (Leave-out Sign dominant Correlation Regions)
method for construction of non-asymptotic confidence re-
gions was developed in [3]. LSCR can be used to find
confidence regions for the parameters of linear models under
general noise assumption. LSCR has two important features;
the probability is guaranteed for any finite number of data
points, and the confidence regions concentrate around the
true parameter when the number of samples increases. In
[3] second order statistics are used for identification of
linear systems. In this paper we consider the more general
problem of nonlinear system identification. It is well known
(see for example [10] for a general discussion, or [13] for
the particular case of bilinear systems) that second order
statistics are not sufficient in this case. Here we show that
it is possible to extend the LSCR framework to higher order
statistics, and hence consider finite sample properties of
nonlinear system identification.

In this paper we focus on parametric systems without
an exogenous variable. We regard a system as an input-
output relation between an inaccessible white noise wt and
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the output yt. Below we demonstrate some of the diffi-
culties arising when second order statistics is used for the
identification of nonlinear systems, and we also show how
these difficulties can be overcome by the use of higher
order statistics. In Section II the procedure for construction
of confidence regions with guaranteed probability based on
higher order statistics is introduced, and in the following
section the proposed technique is applied to a simple bilinear
system.

A. A nonlinear system example

LSCR is based on empirical evaluations of correlations
of the type E[εt(θ)εt+r(θ)] of the prediction errors using
different subsets of the observed data points. For the true
parameters, εt(θ0) is white noise, and it is therefore unlikely
that nearly all estimates of the correlations will be positive
or that nearly all estimates will be negative. The regions
in the parameter space where the estimates take on posi-
tive or negative values too many times are excluded from
the confidence set and hence the name LSCR (Leave-out
Sign dominant Correlation Regions). However, second order
statistics of the type E[εt(θ)εt+r(θ)] are not sufficient for
the identification of nonlinear systems in general. A simple
example illustrating this is given next.

Example 1: Consider the system given by

yt = θ0
(
y2

t−1 − 1
)

+ wt, (1)

where θ0 = 0 and wt is and i.i.d sequence of random
variables, symmetrically distributed around zero with unit
variance. Suppose we want to use LSCR for construction of
a confidence interval for the parameter θ in the model class
given by

yt = θ
(
y2

t−1 − 1
)

+ wt. (2)

Following the idea of the LSCR method, we compute the
optimal predictor ŷt(θ) = θ(y2

t−1 − 1) and the prediction
error εt(θ) = yt − ŷt(θ). For the true parameter θ0 we
have that εt(θ0) = wt is white. LSCR constructs confidence
regions based on many different empirical evaluations of the
correlations E[εt(θ)εt+r(θ)]. In [3] it is shown that, under
suitable conditions, θ0 is the only value of θ for which
these correlations are zero in the case of linear ARMA
and ARMAX systems and, since the confidence sets are
constructed by leaving out regions where the correlations
take on positive or negative values too many times, the
obtained confidence region shrinks around the true parameter
value θ = θ0 as the number of data points grows. Here we
show that E[εt(θ)εt+r(θ)] = 0 does not imply θ = θ0 for
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the situation in (2), i.e. second order statistics do not suffice.
Since in our example yt = wt, we have

εt(θ) = yt − ŷt(θ) = wt − θ(w2
t−1 − 1); (3)

and

E[εt(θ)εt+r(θ)] = E[(wt − θ(w2
t−1 − 1))·

(wt+r − θ(w2
t+r−1 − 1))]. (4)

For r ≥ 2, E[εt(θ)εt+r(θ)] = 0 since wt and (w2
t−1 − 1)

are zero mean random variables, and the products in (4) only
include terms with different time indices. For r = 1 we
have E[εt(θ)εt+1(θ)] = −θE[wt(w2

t − 1)] = −θ(E[w3
t ] −

E[wt]) = 0 since wt is symmetric. So E[εt(θ)εt+r(θ)] =
0, r �= 0, for every value of θ and this implies that it is not
possible to establish the true value of θ from the conditions
E[εt(θ)εt+r(θ)] = 0. Thus, the confidence region obtained
by using LSCR do not shrink around θ0 in general for non-
linear systems when the number of samples increases.

Consider now the use of higher order statistics; take
for example the condition E[ε3t (θ)] = 0. For θ = θ0,
E[ε3t (θ)] = E[w3

t ] = 0 because wt is symmetric. Again
using the properties of wt we have that

E[ε3t (θ)] = E[
(
wt − θ

(
w2

t−1 − 1
))3

] (5)

= −θ3E[
(
w2

t−1 − 1
)3

]. (6)

Thus, unless E[
(
w2

t−1 − 1
)3] = 0, the only solution to the

equation E[ε3t (θ)] = 0 is θ = θ0 = 0. In the same way,
it is not difficult to see that E[ε2t (θ)εt+1(θ)] = θ(E[w2

t ] −
E[w4

t ]) = θ(1−E[w4
t ]); thus, unless E[w4

t ] = 1, θ = θ0 = 0
is also the only solution to the condition E[ε2t (θ)εt+1(θ)] =
0. From above it is clear that an extension of LSCR to non-
linear systems must involve higher order statistics. In the
next section we introduce these extensions and apply them
to the model class (2) in a simulation example.

II. EXTENSION OF LSCR TO HIGHER ORDER STATISTICS

Suppose a nonlinear system S0 belongs to a parameterized
system class Sθ, that is S0 = Sθ0 for some θ0. Assume S0

is as a mapping from an independent noise sequence wt to
an observable data sequence yt. Assume also that wt is zero
mean and symmetrically distributed around zero. The aim is
to find a confidence region for the parameter θ0 from the
observed output yt.

In the LSCR method a sequence ηt(θ) is generated for
every value of θ, in such a way that for the true parameter
θ0 we have that ηt(θ0) = wt. Then, the confidence region
for θ0 is constructed by choosing the values of θ for which
ηt(θ) resembles (measured in terms of empirical evaluations
of the correlation functions) white noise.

In the case of linear systems, the ηt(θ) sequence can easily
be constructed by means of optimal linear prediction, taking
advantage of the fact that the prediction error εt(θ0) = yt −
ŷt(θ0) of a linear system is the input noise. Suppose for
example that the model class is Aθ(q−1)yt = Cθ(q−1)wt.
If ŷt(θ) is the optimal predictor and we let ηt(θ) = yt −

ŷt(θ), then, under the assumption that Cθ0 is stable, we have
ηt(θ0) = wt.

For nonlinear systems some extra care is required in
the construction of the ηt(θ) sequence because using the
prediction error does not lead to an independent sequence
in general. To see this, consider the system class yt =
θyt−1+yt−1wt. The optimal predictor is ŷt(θ) = θyt−1, and
hence yt − ŷt(θ) = (θ0 − θ)yt−1 + yt−1wt. For θ = θ0 we
obtain yt − ŷt(θ0) = yt−1wt which is not an independent
sequence. The wt signal can instead be reconstructed by
inverting the system, i.e. ηt(θ) = (yt − θyt−1)/yt−1. In fact,
as long as yt−1 �= 0, we have ηt(θ0) = wt. This simple
example shows that an extension of the LSCR method to
nonlinear systems must consider a more general method than
optimal prediction for the construction of the ηt(θ) sequence.
Here we use the more general idea of input-output system
inversion in order to extract the noise wt from the output yt.

The ideas presented above are reflected in the following
set of assumptions.

a.1 The observed data yt is the output of the system
S0 driven by an independent noise wt symmetrically
distributed around zero, i.e. yt = S0(wt);

a.2 The system S0 can be represented within the model
class Sθ. This means that there exists a value θ0 of the
parameter such that Sθ0 = S0;

a.3 The systems in the considered class Sθ are invert-
ible, i.e. there exist inverse systems S−1

θ such that
S−1

θ (Sθ(wt)) = wt.

wt
yt ytS0 S−1

θ

ηt(θ)

Fig. 1. Scheme for generation of ηt(θ).

A. Construction of the confidence region ΘN

We first describe the procedure for constructing the region,
and then state the main theorem concerning the reliability of
the constructed region.

Algorithm
I.1 Compute ηt(θ) = S−1

θ (yt) for t = 1, 2, . . . , K;
I.2 Choose an integer s ≥ 0 and let e = (e0, e1, . . . , es)

be a vector of nonnegative integers such that e0 and
es are greater than zero and at least one of the ej ,
0 ≤ j ≤ s, is odd. For every t = 1, 2, . . . , K−s = N ,
compute

ft,e(θ) =
s∏

j=0

ηt+j(θ)
ej ; (7)

I.3 Let I = {1, . . . , N} and consider a collection G of
subsets Ii ⊆ I, i = 1, . . . , M , forming a group under
the symmetric difference operation (i.e. (Ii∪Ij)−(Ii∩
Ij) ∈ G if Ii, Ij ∈ G). Compute

gN
i,e(θ) =

1
#Ii

∑
k∈Ii

fk,e(θ), i = 1, . . . , M − 1; (8)
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where #Ii is the number of elements in Ii.
I.4 Select an integer q in the interval [1, (M + 1)/2) and

find the region ΘN
e where at least q of the gN

i,e(θ)
functions are bigger than zero and at least q are smaller
than zero.

The intuitive idea behind this construction is that, for θ =
θ0, the functions gN

i,e(θ) assume positive or negative value
at random (ηt(θ0) is a symmetrically distributed zero mean
independent sequence, and at least one of the powers is odd),
so that it is unlikely that almost all of them are positive or
that almost all of them are negative. Since point I.4 in the
construction of ΘN

e discards regions where all gN
i,e(θ))’s but

a small fraction (q should be taken to be small compared
to M ) are of the same sign, we expect that θ0 ∈ ΘN

e with
high probability. This is put on solid mathematical grounds in
Theorem 1 below, showing that the probability that θ0 ∈ ΘN

e

is actually 1−2q/M . Thus, q is a tuning parameter that has to
be selected such that a desired probability of the confidence
region is obtained.

Theorem 1: Assume that wt admits a density and is
symmetrically distributed around 0. Then the region ΘN

e

constructed above is such that

P [θ0 ∈ ΘN
e ] = 1 − 2q/M. (9)

Proof: See Appendix A.

In general, we will be interested in using more than one
ft,e(θ) function; thus we will have different vectors el and
the final confidence set is constructed as the intersection of
the sets ΘN

el
. If we have h vectors e1, e2, . . . , eh then the

confidence region equals ΘN = ∩h
l=1Θ

N
el

.
Theorem 2: The set ΘN constructed above has the prop-

erty that
P [θ0 ∈ ΘN ] ≥ 1 − 2hq/M. (10)

Proof: The proof follows from Theorem 1. The inequal-
ity in (10) is due to that the events θ0 /∈ ΘN

el
may overlap.

Example 2 (Continuation of Example 1): Here we inves-
tigate the differences between using second and third order
statistics. In this case, since the sequence ηt(θ) is the
prediction error yt − ŷt(θ) we continue to use the notation
from Example 1 and let ηt(θ) = εt(θ). The input wt is an
i.i.d. sequence of zero mean Gaussian random variables with
variance 1, and we seek a 90% confidence interval for θ.

Fig. 2 shows some of the gN
i,e(θ) functions obtained for

N = 11500. These functions are estimates of the second
order statistic E[εt(θ)εt+1(θ)] and the third order statistic
E[ε3t (θ)]. Note that these two statistics correspond to the
choices s = 1, e = (1, 1) and s = 0, e = (3) respectively. It
is interesting to note the different behavior of the functions;
the second order statistic gives very flat gN

i,e(θ) functions
which lead to a large confidence interval while the third
order statistic gives gN

i,e(θ) functions that depart from zero
for increasing values of |θ|, leading to a small confidence
interval. Even better confidence intervals are obtained with
the third order statistic E[ε2t (θ)εt+1(θ)] (which corresponds
to s = 1 and e = (2, 1)). Fig. 3 shows the gN

i,e(θ) functions

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−1

−0.5

0

0.5

1

g
i,e
N (θ)

θ

Second order statistic E[ε
t
(θ) ε

t+1
(θ)]

Third order statistic E[ε
t
3(θ)]

Fig. 2. gN
i,e(θ) functions for Example 2, with N = 11500, for e = (1, 1)

and e = (3).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

θ

g
i,e
N (θ)

Third order statistic E[ε
t
3(θ)]

Third order statistic E[ε
t
2(θ)ε

t+1
(θ)]

Fig. 3. gN
i,e(θ) functions for Example 2, with N = 11500, for e = (3)

and e = (2, 1).

obtained with this statistic and the corresponding functions
for E[ε3t (θ)]. This different behavior is due to the fact that,
for θ = 0, E[ε2t (θ)εt+1(θ)] = θ(1 − E[w4

t ]) has a zero of
order 1 while E[ε3t (θ)] = −θ3E[

(
w2

t−1 − 1
)3] has a zero of

order 3. Figs. 4 and 5 show the confidence regions obtained
for these two third order statistics when N takes different
values in the range [1000, 12000].

Remark 2.1: We note here that in point I.2 and I.3 of the
construction procedure it is possible to replace ft,e with other
functions. The only property of ft,e used in the proof of
Theorem 1 is that ft,e is a function of ηt, ηt+1, . . . , ηt+s (the
argument θ has been omitted) which is even or odd in all
arguments and odd in at least one. For example, suppose
s = 2; a possible candidate for ft,e, obtained choosing
e = (2, 1, 3), is η2

t ηt+1η
3
t+2. This function is odd in ηt+1

and even in ηt and ηt+2. On the other hand, other functions
than monomials can exhibit the same odd-even structure. For
example the function cos(ηt) sin(ηt+1) arctan(ηt+2) can be
used and Theorem 1 still holds.
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Fig. 4. 90% confidence intervals for an increasing number of data points
using the third order statistic E[ε3t (θ)].
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Fig. 5. 90% confidence intervals for an increasing number of data points
using the third order statistic E[ε2t (θ)εt+1(θ)].

III. SIMULATION EXAMPLE: A SIMPLE BILINEAR SYSTEM

In this simulation example we consider a well studied class
of nonlinear systems, namely bilinear systems (see [11], [13],
[12], [4], [2]). A detailed study of the system used here can
be found in [14]. Consider the system

yt = θ0yt−2wt−1 + wt; (11)

where wt is independent and symmetrically distributed
around zero with unit variance σ2 = 1. By iterating (11)
the output yt can be written as

yt =
q−1∑
k=0

θ0k
wt−2k

k∏
j=1

wt−2j+1 + θ0q
yt−2q

p∏
j=1

wt−2j+1.

(12)
Note that the product

∏k
j=1 wt−2j+1 has unit second order

moment for any k:

E

⎡
⎢⎣

⎛
⎝ k∏

j=1

wt−2j+1

⎞
⎠

2
⎤
⎥⎦ =

k∏
j=1

E[w2
t−2j+1] (13)

= σ2k = 1. (14)

Thus, if |θ0| < 1, by letting q → ∞ in (12) we can take as
a candidate stationary solution

yt =
∞∑

k=0

θ0k
wt−2k

k∏
j=1

wt−2j+1. (15)

It can be shown that (15) is the L2 as well as the almost
sure limit of the sum in the first term of (12). Moreover, it
is stationary and it satisfies (11).

In the simulations we used θ0 = 0.2 and wt was an
i.i.d. sequence normally distributed with zero mean and unit
variance. ηt(θ) was calculated according to

ηt(θ) = yt − θyt−2ηt−1(θ). (16)

For the value θ = 0 we have ηt(0) = yt. After some
cumbersome calculations, it is possible to show that the
stationary solution yt satisfies E[ytyt+r] = 0 for every
r > 0 and E[ytyt+ryt+l] = 0 for every l ≥ r ≥ 0 except
(r, l) = (1, 2). As ηt(0) = yt, this implies that the value
θ = 0, regardless of the true parameter θ0, is a solution
to the equations E[ηt(θ)ηt+r(θ)] = 0 for every r > 0 and
E[ηt(θ)ηt+r(θ)ηt+l(θ)] = 0 for every l ≥ r ≥ 0 except
(r, l) = (1, 2). So it is clear that the only possible statistic (up
to the third order) is E[ηt(θ)ηt+1(θ)ηt+2(θ)], and it can be
shown that the only solution to E[ηt(θ)ηt+1(θ)ηt+2(θ)] = 0
is indeed the true parameter θ = θ0. In our simulation
we have therefore used this third order statistic in order to
construct the confidence region for θ0. We have therefore
chosen s = 2 and e = (1, 1, 1) in point I.2 in section II-
A. The group G is constructed as in Appendix B, and the
functions gN

i,e(θ) are given by

gN
i,e(θ) =

1
#Ii

∑
k∈Ii

ηk(θ)ηk+1(θ)ηk+2(θ) (17)

for i = 1, 2, . . . ,M − 1. The 90% confidence intervals
obtained for increasing number of data points are shown in
Fig. 6. The gN

i,e(θ) functions obtained for N = 12000 are
shown in Fig. 7. In Fig. 8 the obtained gN

i,e(θ) functions of
the second order statistic with e = (1, 1) are shown. It is
clear that the use of the second order statistic gives useless
(even if guaranteed) confidence regions while the use of third
order statistic gives good results.

IV. CONCLUSION

In this paper we have derived a method for the construction
of confidence regions for the parameters of nonlinear sys-
tems. The proposed technique is based on the use of higher
order statistics, and it extends the LSCR method recently
introduced in [3] for linear systems. The obtained confidence
regions have guaranteed probability for any finite number
of data samples. The simulation examples show that the
method works well and that it is important to use higher
order statistics.
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Fig. 6. Confidence regions at 90% with third order statistic
E[ηt(θ)ηt+1(θ)ηt+2(θ)] for increasing number of data points
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Fig. 7. gN
i,e(θ) functions (N=11500) for the bilinear system (11) with

θ0 = 0.2, for e = (1, 1, 1) (third order statistic E[ηt(θ)ηt+1(θ)ηt+2(θ)]).
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APPENDIX

A. Proof of Theorem 1

The proof of Theorem 1 follows along the same line as
the proof of Theorem 2.1 in [3]. The only difference is in
the formulation and proof of Proposition A.1 in appendix A
of [3]. Here we state and prove the equivalent proposition
for higher order statistics.

Proposition 1.1: Let {wt} be a sequence of independent
random variables with symmetric distribution around zero.
Let I = {1, . . . , N}, and let G be a collection of subsets
Ii ⊆ I , i = 1 . . . M , forming a group under the symmetric
difference operation (i.e. Ii∆Ij := (Ii ∪ Ij) − (Ii ∩ Ij) ∈
G if Ii, Ij ∈ G). Take an integer s ≥ 0 and let e =
(e0, e1, . . . , es) be a vector of nonnegative integers such that
e0 and es are greater than zero and at least one of the ei

is odd. For every k ∈ I , set Wk =
∏s

i=0 wei

k+i. Pick any
Ī ∈ G; then, the set of variables{∑

k∈Ii

Wk, i = 1, . . . , M

}
(18)

has the same M -dimensional joint distribution as the set of
variables ⎧⎨

⎩
∑
k∈Ii

Wk −
∑
k∈Ī

Wk, i = 1, . . . , M

⎫⎬
⎭ , (19)

provided that the order of the variables is suitably rearranged.
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Proof: The idea of the proof is to introduce new
variables w̃t = −wt for some of the wt and to rewrite these
wt as −w̃t in (19) in such a way that the set (19) is written
as (18) with some of the wt replaced with w̃t. As wt is
symmetrically distributed around 0, wt and w̃t will have the
same distribution and (19) and (18) will have the same joint
M -dimensional distribution. More specifically, we want to
substitute some wt with −w̃t in such a way that the number
of substitutions in every element Wk is odd if k ∈ Ī and
even if k /∈ Ī . In other words, we want that Wk is written,
in the new notation (i.e. replacing some of the wt with −w̃t),
with a “minus” in front if and only if k ∈ Ī . We show how
this can be done. Consider the whole set of elements

W1 , W2 , W3 , . . . , WN (20)

We scan these elements from left to right adjusting the signs
one by one. Starting from W1, we do not change sign until
we find an element - say Wk̄ - in the set {Wk, k ∈ Ī}.
When this happens we change the sign of Wk̄. Let p be
the maximum integer such that ep is odd; then, we define
w̃k̄+p = −wk̄+p and change the sign of Wk̄ by substituting
wk̄+p with −w̃k̄+p. This means that Wk̄ is now written as

Wk̄ = −we0
k̄

we1
k̄+1

· · · w̃ep

k̄+p
· · ·wes

k̄+s
(21)

Then, we substitute the old variable wk̄+p with the new one
−w̃k̄+p in all other elements Wk of the sequence (20) where
the variable wk̄+p shows up. The important thing to note
is that the substitution of wk̄+p with −w̃k̄+p cannot change
the sign of any of the elements Wk with k < k̄. In fact,
suppose wk̄+p is contained in an element Wk′ with k′ <
k̄; then clearly wk̄+p = wk′+i′ with i′ > p. This means,
by the definition of p, that wk̄+p appears in Wk′ with an
even exponent and, thus, substituting it with −w̃k̄+p does
not cause any sign change. Thus, with this substitution we
may only affect the signs of the Wk for k > k̄, but this is
not a problem, since we can readjust them, where necessary,
in successive steps. Now that Wk̄ is processed, we continue
with our procedure and check the sign of Wk̄+1, Wk̄+2 and
so on. If the generic element Wk has sign “+” and k ∈ Ī
(or viceversa) we change the variable wk+p with −w̃k+p,
stopping the procedure when all the Wk have been scanned.

Now, set vk = wk if wk has not been substituted and
vk = w̃k if wk has been substituted. Define the new elements
Vk =

∏s
i=0 vei

k+i; then, if k ∈ Ī we have Wk = −Vk, while
if k /∈ Ī Wk = Vk. Now, note that the i-th element of (19)
is given by∑

k∈Ii\Ī

Wk −
∑

k∈Ī\Ii

Wk =
∑

k∈Ii\Ī

Vk +
∑

k∈Ī\Ii

Vk

=
∑

k∈Ii∆Ī

Vk (22)

Furthermore, as G is a group under the symmetric difference,
Ii∆Ī ∈ G, ∀i, and it is easy to see that Ii∆Ī = Ij if and only
if Ij∆Ī = Ii. Thus, the set {Ii, i = 1, . . . ,M} coincides
with the set {Ii∆Ī , i = 1, . . . , M}. This means that (19)

can be written, by reordering the elements and using (22),
as {∑

k∈Ii

Vk, i = 1, . . . ,M

}
. (23)

But, for every k, vk and wk have the same distribution and,
as the wk are independent, so are the vk. Thus, for every k,
Wk and Vk have the same distribution and, more generally,
the set of variables in (23) has the same M -dimensional joint
distribution as the set of variables in (18).

B. Group construction

Given a set I = {1, 2, . . . , N} and an integer M = 2m

we use the following extension of Gordon’s method [7] for
constructing a set G of M subsets Ii, i = 1, . . . , M which
is a group under symmetric differences.

1) Generate an M×M−1 matrix QM−1 in the following
way. Let R(1) = [1], and recursively compute (k =
2, 3, . . . , m)

R(k) =

⎡
⎣ R(k − 1) R(k − 1) 0

R(k − 1) J − R(k − 1) e
0T eT 1

⎤
⎦ , (24)

where J and e are respectively a matrix and a vector
of all ones and 0 is a vector of all zeros. Then let

QM−1 =
[

R(m)
0T

]
.

2) Set n = �N/(M − 1)� and construct the matrix

Qn(M−1) = [QM−1 QM−1 · · · QM−1]

where QM−1 is repeated n times. The incidence matrix
QN of the group G (i.e. the matrix with generic
element QN (i, j) = 1 if j ∈ IN

i and zero otherwise)
is obtained by taking the first N columns of the matrix
Qn(M−1).
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