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Abstract— In this paper we consider the problem of con-
structing confidence sets for the parameters of linear systems
in the presence of arbitrary noise. The developed LSCR method
(Leave-out Sign dominated Correlation Regions) delivers con-
fidence regions for the model parameters with guaranteed
probability. All results hold rigorously true for any finite
number of data points and no asymptotic theory is involved.
Moreover, prior knowledge on the uncertainty affecting the
data is reduced to a minimum. The approach is illustrated
on a simulation example, showing that it delivers practically
useful confidence sets with guaranteed probabilities even when
the noise is biased.

I. INTRODUCTION

Models of dynamical systems are used in many fields of
science and engineering. It is however widely recognised that
a model is of limited value if no quality tag which tells us
the accuracy of the model, is supplied. It is desirable that the
method used for assessment of the model accuracy delivers a
non-conservative evaluation of the system uncertainties under
general conditions. Moreover, since there will always only
be a finite amount of data available for evaluation of model
uncertainties, the uncertainty description must be valid when
the number of data points is finite.

In this paper we present a procedure which gives guar-
anteed non-asymptotic confidence regions for the model
parameters of a dynamical system subjected to arbitrary
noise. The procedure consists of a simple input design step,
followed by an algorithm named LSCR (Leave-out Sign-
dominant Correlation Regions) which construct the confi-
dence set from the observed data. The procedure provides a
non-conservative evaluation of the uncertainties in the model
parameters, and it is valid for any finite number of data
points.

Roughly speaking the problem considered is as follows:
An unknown dynamical system formula

yt = G0(z−1)ut + wt

as in Figure 1 is given. The transfer function G0(z−1) be-
longs to a set of transfer functions G(θ, z−1) parameterized
by θ, that is G0(z−1) = G(θ0, z−1) for some θ0. The
structure of the model class G(θ, z−1) is known, but θ0

itself is unknown. The noise wt describes all other source
of variation in yt apart from those caused by ut, and wt

is independent of ut. Our task is to design an input signal
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Fig. 1. Dynamical system.

ut, t = 1, . . . , N , and a procedure which yields a confidence
region Θ̂N for θ0 with the property that

Pr{θ0 ∈ Θ̂N} = 1 − δ

where the number of data points N , and the confidence level
δ, can be arbitrary chosen.

Note that the procedure must work for any noise wt. The
noise can be large or small, correlated or uncorrelated, zero
mean or even biased. Moreover, no a-priori information on
the noise which can be used by the procedure, is available.
This is important since noise characteristics are hardly known
in practice. wt can e.g. describe external influences generated
by other systems, measurement noise, etc.

The philosophy behind the problem formulation is that we
let the data speak, without assuming what they have to tell
us through a-priori assumptions on noise. The size of the
obtained Θ̂N will of course depend on the noise, but it must
be the best possible given the present noise level. Moreover,
the results must hold for any given finite number N of data
points, since in practice the number of data points is finite,
and possibly small.

The ideas of the proposed approach are illustrated in the
next preview example. Then, subsection I-B discusses the
contribution of the present paper relative to the existing
literature. The detailed developments are presented in the
following sections.

A. A preview example

Here the main ideas are illustrated. Consider the system

yt = b0ut + wt (1)

where b0 = 1 and {wt} is an independent sequence of
normally distributed variables with mean 0.5 and variance
1, i.e. the noise is biased. The distribution of wt is given for
completeness, but it is not used in the algorithm.

Our goal is to generate N = 15 input data u1, . . . , u15

which enable us to construct a confidence interval Θ̂15 such
that Pr{b0 ∈ Θ15} = 0.75.
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Fig. 2. The input, output and noise sequence used in the preview example.

Input design. Let ut, t = 1, . . . , 15, be independent and
identically distributed (iid) with distribution

ut =
{

1 with probability 1/2
−1 with probability 1/2 (2)

(In fact any input signal which is iid and symmetrically
distributed around 0 will do.) 15 data points were generated
according to (1) and (2) and shown in Figure 2.

Procedure for construction of a confidence interval Θ̂N =
[θ̂min,N , θ̂max,N ].

Rewrite the system as a model with generic parameter b:

yt = but + wt

The predictor and prediction error associated with the model
are

ŷt(b) = but, εt(b) = yt − ŷt(b) = yt − but

Next we compute the prediction errors εt(b) for t =
1, . . . , 15 and calculate

ft(b) = utεt(b), t = 1, . . . , 15

Using the ft(b)’s, we want to form empirical estimates of the
correlation E[utεt(b)]. We note that E[utεt(b)] = (b0 − b)
which is equal to 0 for b = b0 and different from zero for b �=
b0. Hence, the empirical estimates will be zero mean random
variables for b = b0. Based on this observation, we compute a
number of estimates of the correlation using different subsets
of the data, and we discard those regions in parameter space
where the empirical estimates take positive (or negative)
value too many times. These empirical estimates, however,
need to be carefully constructed as illustrated in the follow-
ing.

First, we generate a set G of subsets of I = {1, . . . , 15}
which is a group with respect to the symmetric difference,
i.e. (Ii ∪ Ij) − (Ii ∩ Ij) ∈ G, if Ii, Ij ∈ G. The set I is the
index set for the 15 functions f1(b), f2(b), . . . , f15(b), and
each set in the group G gives the indices of the functions
fi(b) used for computing one particular empirical estimate.
The group used in this example is given in Appendix A.
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Fig. 3. The gi(b) functions for the preview example together with the
confidence interval.

The estimates of the scaled correlation E[utεt(b)] (scaled,
since we do not divide with the number of elements in Ii)
are then given by

gi(b) =
∑
k∈Ii

fk(b), i = 1, . . . , 16

(gi(b) = 0 if Ii = ∅). The 15 nonzero gi(b)’s are plotted in
Figure 3 as functions of b.

We recognise that it is very unlikely that all the gi(b0)’s
have the same sign, and we therefore discard the right-
most and leftmost regions where at most one function out
of the 15 non-zero functions is less than zero or greater
than zero, hence the name of the method; Leave-out Sign-
dominant Correlation Regions. The resulting interval Θ̂15 =
[0.59, 1.35], is the confidence region for b0. It is a rigorous
fact (stated in Theorem 3.1) that the confidence region
constructed this way has probability 1 − 2 · 2/16 = 0.75
to contain the true parameter value b0. Despite the fact
that the noise is biased, the presented procedure provides
a confidence interval around the true parameter value. The
developed procedures stands on a solid theoretical footing
and it delivers confidence regions with guaranteed probabili-
ties which holds rigorously true for any finite number of data
points and any arbitrary noise.

As expected, due to the small number of data points,
this confidence interval is rather large and the associated
probability is low. Next we repeated the experiment with
2047 data points using the group with incidence matrix
R(2047) (see Appendix A). We kept the region in parameter
space where at least 50 of the 2047 nonzero gi(b) functions
are greater than 0 and at least 50 are smaller than zero.
The resulting interval Θ̂2047 = [0.93, 1.06], contains the true
parameter value b0 with exact probability 1− 50 · 2/2048 =
0.9512 > 95% (see Theorem 3.1).

B. Contribution and discussion of the existing literature

The results in this paper build on our previous work Campi
and Weyer (2005). In that paper we assumed that the true
transfer functions from both the noise and the input signal to
the output signal belonged to the model class, and we derived
non-asymptotic confidence sets for the model parameters
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of both transfer functions. These results are significantly
strengthened in the present paper. The assumption that the
true transfer function between the noise and the output
belongs to the model class has been completely removed.
In this contribution there are no assumptions on the noise,
it can even be biased as seen in the preview example. Here
we present a procedure for input design and an algorithm
for constructing mathematically rigorous confidence sets for
the system parameters valid for any number of data points
regardless of what the noise is. As in Campi and Weyer
(2005) the mathematical approach used in this paper is
inspired by the work of Hartigan (1969).

A standard approach for deriving confidence sets for
the parameters of dynamical systems is to employ asymp-
totic system identification theory (see e.g. Ljung (1999) or
Söderström and Stoica (1988)). It is common experience of
theorists and practitioners that this theory - though applied
heuristically with a finite number of data points - in many
situations delivers sensible results. On the other hand, the
correctness of the results is not guaranteed, and contributions,
e.g. Garatti et al. (2004), have appeared that show that the
asymptotic theory may fail to be reliable in certain situations.
Thus, there is a need for developing techniques that provide
results guaranteed for finite data samples, and this is what
the current paper delivers.

Similarly to set membership identification, the method
presented in this paper returns regions for the true system
parameter. However, unlike the setting in set membership
identification, we do not make any assumptions about the
disturbances. Further discussions on model quality evaluation
and confidence sets for the parameters of dynamical systems
are given in Campi and Weyer (2005).

C. Organisation of the paper

In this paper we present a basic version of our procedure
applied to systems where the transfer function between input
and output is given by G0(z−1) = B0(z−1)/A0(z−1). In
Section II we introduce the data generating system and state
the assumptions on the system and the disturbance. Then in
section III we present the LSCR algorithm for construction of
confidence sets. We state results showing that the confidence
sets have guaranteed probability for any finite number of data
points and that they shrink around the true parameter as the
number of data points increases. The procedure is illustrated
on a simulation example in Section IV. Conclusions are given
in Section V. The proofs are omitted due to space limitations,
but will be provided in an upcoming publiction.

II. DATA GENERATING SYSTEM

The data generating system is given by

yt = G0(z−1)ut + wt (3)

where z−1 is the backward shift operator (z−1ut = ut−1).
Here G0(z−1) = B0(z−1)

A0(z−1) , with

A0(z−1) = 1 + a0
1z

−1 + · · · + a0
na

z−na

B0(z−1) = b0
1z

−1 + · · · + b0
nb

z−nb

G0(z−1)
rt � � ���

wt

yt

⇓

�
G̃0(z−1)K(z−1) � � �� ����

w̃t

ytrt ũt

−

Fig. 4. Closed loop system recast as an open loop system.

Assumptions.

1) The user can choose the input signal ut, and the choice
of ut does not affect wt.

2) The model orders na and nb are known and A0(z−1)
and B0(z−1) are co-prime.

There are no assumptions on wt. No upper bound on the
magnitude is assumed, and it is allowed to have any non-zero
mean and the auto correlation function can be arbitrary.

Remark 2.1: There is no loss of generality in having wt

additive at the output. Disturbances not entering at the output
can for example be represented by wt = H0(z−1)et where
et is the real disturbance and H0(z−1) describes how et

is filtered when it passes through the system. Since no
assumption is made about wt, there are no assumption on
H0(z−1).

Remark 2.2: Closed loop systems can be cast in the
present setting as shown in Figure 4 where rt plays the role
of ut and

G0(z−1) =
G̃0(z−1)K(z−1)

1 + G̃0(z−1)K(z−1)

wt =
1

1 + G̃0(z−1)K(z−1)
w̃t

The algorithm developed in this paper allows us to construct
confidence sets for G̃0(z−1) without going via the closed
loop transfer function G0(z−1) assuming that the controller
K(z−1) is known.

III. ALGORITHM FOR CONSTRUCTION OF CONFIDENCE

SETS

The procedure consists of an easy experiment design step,
followed by an algorithm for construction of the confidence
sets based on the observed data. The confidence region is
constructed as the intersection of a number of larger sets
which are generated using the empirical correlation between
the input signal and the prediction error as already illustrated
in the preview example.

Experiment design.
Let ut, t = 1−n, . . . , N be independent and symmetrically
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distributed around 0. n = na + nb is the number of system
parameters.

Construction of confidence sets.
1) Compute the predictions1

ŷt(θ) = (1 − A(z−1, θ))yt + B(z−1, θ)ut

= φT
t θ, t = 1, . . . , N

where

A(z−1, θ) = 1 + a1z
−1 + · · · + anaz−na

B(z−1, θ) = b1z
−1 + · · · + bnb

z−nb

φt = [−yt−1, . . . ,−yt−na ,

ut−1, . . . , ut−nb
]T

θ = [a1, . . . , ana
, b1, . . . , bnb

]T

2) Compute the prediction errors

εt(θ) = yt − ŷt(θ) = yt − φT
t θ

3) Form the vector ξt of Instrumental Variables (IV)

ξt = [ut−1, . . . ut−n]T , t = 1, . . . , N

and compute

ft(θ) = ξtεt(θ), t = 1, . . . , N

4) Let I = {1, . . . , N} and construct the group G(N) =
{Ii, i = 1, . . . , M} of subsets of I given in Appendix
A2. G(N) is a group under the symmetric difference
operation (i.e. (Ii ∪ Ij)− (Ii ∩ Ij) ∈ G(N), if Ii, Ij ∈
G(N)). Compute3

gi(θ) =
∑
t∈Ii

ft(θ) i = 1, . . . , M

5) Let gk
i (θ) denote the kth element of gi(θ) k =

1, . . . , n. Select an integer q in the interval [1, (M +
1)/2n] Construct the regions Θ̂k

N such that at least q
of the gk

i (θ) functions are larger than 0 and at least q
are smaller than 0. The confidence set is given by

Θ̂N = ∩n
k=1Θ̂

k
N (4)

The intuitive idea is that for θ = θ0 the functions gk
i (θ) =∑

t∈Ii
ut−kεt(θ) takes on positive and negative values at

random since gk
i (θ0) =

∑
t∈Ii

ut−kA0(z−1)wt and ut−k

is independent and symmetrically distributed around 0. It
is therefore unlikely that only a small fraction of them are
positive or negative, and point 5 in the algorithm excludes the
regions in parameter space where this happens (q should be

1The predictors are obtained from (3) by ignoring wt. The predictors are
not the one step ahead predictors commonly used in system identification
as these predictors require more knowledge about the noise than is available
in the present setting.

2In fact any group with respect to symmetric differences can be used. A
group is a non-empty set G with a binary operation ◦ such that: a ◦ b ∈
G, ∀a, b ∈ G and a ◦ (b ◦ c) = (a ◦ b) ◦ c, ∀a, b, c ∈ G; there exists an
identity element e ∈ G such that a ◦ e = e ◦ a = a, ∀a ∈ G; for every
a ∈ G, there exists an inverse a−1 such that a ◦ a−1 = a−1 ◦ a = e.

3In order to get an estimate of the correlation functions we should divide
by the number of elements in Ii. However, since only the sign of the gi

functions is important we have omitted this normalisation.

small compared to M ). It is shown in Theorem 3.1 below that
the probability that θ0 belongs to Θ̂k

N is exactly 1 − 2q/M .
The algorithm above has connections with Instrumental

Variable (IV) methods for system identification. The main
idea behind IV methods is that the prediction errors should
be uncorrelated with past data, and the estimate is given by

θ̂N =

{
θ

∣∣∣∣∣
N∑

t=1

ξtεt(θ) = 0

}

where ξt is a vector made up of past data independent of
the noise. In our approach the goal is not to come up with a
particular value for the estimate, but to construct confidence
sets, and we ensure that ξt and εt(θ) are uncorrelated for θ =
θ0 by input design. The confidence set Θ̂N is constructed by
excluding the regions in parameter space where any of the
components of

∑
ξtεt(θ) takes on positive or negative values

too many times when calculated on the subsets given by the
group.

The next theorem gives the probabilities that θ0 belongs
to the constructed sets.

Theorem 3.1: Let ut be independent an symmetrically
distributed around 0, and let Ii, i = 1, . . . , M , be the
elements of the group used in point 4 in the algorithm.
Moreover, assume that Pr{gi(θ0) = 0} = 0 for all i for
which Ii �= ∅. Then, for any k = 1, . . . , n,

Pr{θ0 ∈ Θ̂k
N} = 1 − 2q/M (5)

where Θ̂k
N is constructed in point 5 of the algorithm given

above.

An immediate consequence of Theorem 3.1 is
Corollary 3.2: Under the assumptions in Theorem 3.1,

Pr{θ0 ∈ Θ̂N} ≥ 1 − 2nq/M (6)

where Θ̂N is given by (4).

Note that the probability in (5) is the exact probability,
not a lower bound. The inequality in (6) is due to that the
events {θ0 �∈ Θ̂k

N}, k = 1, . . . , n, may be overlapping. Also
note that the stochastic element is the set Θ̂N since it is
constructed from data, and that the probability is with respect
to the input and the noise.

The only reason for the assumption Pr{gi(θ0) = 0} = 0
is to prevent ties from occurring in point 5 of the procedure
for constructing Θ̂k

N , i.e. to prevent two functions to take
on the value 0 on a set of non-zero measure in R

n. The
assumption is mild. It is for example satisfied whenever
ut and wt admit densities. Moreover, the assumption can
be completely removed by using a random ordering when
several functions take on the value 0.

Theorem 3.1 and Corollary 3.2 shows that the constructed
confidence sets have guaranteed probability. The next theo-
rem shows that the confidence sets concentrate around the
true parameter θ0 as the number of data points increases.

Theorem 3.3: In addition to the assumptions of Theorem
3.1, assume that
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1) A0(z−1) is asymptotically stable.
2) |ut| ≤ U for some U and|wt| ≤ Ktα for some K and

α < 1/2.
Then, for all ε > 0

Pr{∃N(ε)| Θ̂N ⊆ {θ : ||θ − θ0|| ≤ ε} ∀N > N(ε) } = 1

That is, there exists a realisation dependent N(ε) such
that the confidence set is included in an ε neighbourhood of
θ0 for all N > N(ε).

Remark 3.1: The assumption on wt is very mild since
wt is allowed to grow unbounded. It is for example almost
surely satisfied if wt is a white Gaussian noise sequence. The
assumption that ut is mild too since ut is a signal chosen
by the user. Moreover, the assumption can be relaxed by
assuming that the higher order moments are bounded in terms
of the second order moment using Cramer’s conditions, i.e.
there exists a c such that E|ut|k < ck−2k!Eu2

t .
Corollary 3.2 and Theorem 3.3 show that the confidence

sets have guaranteed probability for any finite number of data
points, and moreover, as the number of data points increases
the confidence sets shrink around the true parameter. Next
we illustrate the method on a simulation example.

IV. SIMULATION EXAMPLE

The system is given by

yt = a0yt−1 + b0ut−1 + vt

where a0 = 0.7 and b0 = 0.3. ut is independent and
uniformly distributed on [−√

3,
√

3], i.e. it is zero mean
with variance 1. Here we have denoted the noise by vt since
wt in the formulation (3) is given by wt = 1

1+a0z−1 vt. For vt

we consider two different processes. The first one is lowpass
filtered white noise

vt = c0vt−1 + (1 − c2
0)et

where c0 = 0.5 and et is white Gaussian noise with variance
0.16. The second processes is biased lowpass filtered white
noise

vb
t = vt + 0.5

where vt is given above. The predictor is given by

ŷt = ayt−1 + but−1

For each noise scenario a data set of length N = 1023
was generated. The prediction errors are given by

εt(a, b) = yt − ayt−1 − but−1, t = 1, . . . , 1023

and the group is constructed according to the procedure in
Appendix A. This group has M = 1024 elements. Next, we
computed the empirical correlations

gi,1(a, b) =
∑
t∈Ii

ut−1εt(a, b), i = 1, . . . , 1024

gi,2(a, b) =
∑
t∈Ii

ut−2εt(a, b), i = 1, . . . , 1024
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Confidence set. 1023 data points.

Fig. 5. Non-asymptotic confidence region for (a0, b0) (blank region). 1023
data points. wt is lowpass filtered white noise. � = true parameter.
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0.3
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Confidence set. 1023 data points. Biased noise

Fig. 6. Non-asymptotic confidence region for (a0, b0) (blank region). 1023
data points. wt is biased lowpass filtered white noise. � = true parameter.

In order to obtain a 95% confidence set we discarded those
values of a and b for which zero was among the 12 largest
or smallest values gi,1(a, b) and gi,2(a, b). Then according to
Theorem 3.2 (a0, b0) belongs to the constructed region with
probability at least 1 − 2 · 2 · 12/1024 = 0.9531.

The obtained confidence sets are the blank areas in Figure
5 (unbiased noise) and 6 (biased noise). The areas marked
with x is where 0 is among the 12 smallest values of gi,1,
the areas marked with + is where 0 is among the 12 largest
values of gi,1. Likewise for gi,2 with the squares representing
when 0 belongs to the 12 largest elements and the circles
the 12 smallest. The true value (a0, b0) is marked with a
diamond. As we can see, each step in the construction of the
confidence sets excludes a particular region.

Using the algorithm for the construction of Θ̂N we
have obtained a bounded confidence set with a guaranteed
probability based on a finite number of data points. As no
asymptotic theory is involved this is a rigorous finite sample
result. Moreover, the results were obtained without using any
a priori knowledge about the noise.

Next we increased the number of data points to N = 4095.
The group from Appendix A has now M = 4096 elements,
and in order to obtain a 95% confidence set, we now excluded
the regions in parameter space where zero were among the
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Fig. 7. Non-asymptotic confidence region for (a0, b0) (blank region). 4095
data points. wt is lowpass filtered white noise. � = true parameter.
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Fig. 8. Non-asymptotic confidence region for (a0, b0) (blank region). 4095
data points. wt is biased lowpass filtered white noise. � = true parameter.

48 largest or smallest values of gi,1(a, b) and gi,2(a, b). The
results are shown in Figure 7 and 8. The size of the sets
are smaller than with 1023 data points illustrating that the
confidence sets concentrates around the true parameters as
the number of data points increases.

V. CONCLUSIONS

In this paper, we have extended the Leave-out Sign-
dominated Correlation Regions (LSCR) method for the con-
struction of confidence sets to systems with arbitrary noise.
The method is based on computing empirical correlation
functions using subsamples and discarding regions in the
parameter space where only a small fraction of the empirical
functions are greater or smaller than zero.

The developed methodology is grounded on a solid the-
oretical basis, giving guaranteed probabilities for the true
parameter to belong to the constructed set for any finite
number of data points, and, as illustrated by the simulation
examples, it produces practically useful confidence sets.
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APPENDIX

A. Gordon’s construction of the incident matrix of a group

Given I = {1, . . . , N}, the incident matrix for a group
G(N) = {Ii} of subsets of I is a matrix whose (i, j) element
is 1 if j ∈ Ii and zero otherwise. In Gordon (1974), the
following construction procedure for an incident matrix R̄ is
proposed where I = {1, . . . , 2l − 1} and the group has 2l

elements.
Let R(1) = [1], and recursively compute (k = 2, 3, . . . , l)

R(2k − 1) =

⎡
⎣ R(2k−1 − 1) R(2k−1 − 1) 0

R(2k−1 − 1) J − R(2k−1 − 1) e
0T eT 1

⎤
⎦

where J and e are, respectively, a matrix and a vector of all
ones, and 0 is a vector of all zeros. Then, let

R̄ =
[

0T

R(2l − 1)

]
Gordon (1974) also gives construction of groups when the
number of data points is different from 2l − 1.
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