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Abstract— Tuning a system to an operating environment calls
for experimentation, and a question that arises naturally is:
how many experiments are needed to come up with a system
meeting certain performance specifications?
This paper is an attempt to answer this fundamental question
at a somehow general level. We shall here refer to a set-up
where adaptation is done according to a worst-case approach,
but many facts established are central to adaptation in general.

I. INTRODUCTION

Given a system S, consider the problem of designing a de-

vice D that achieves some desired behavior when interacting

with S. The specification of the ‘desired behavior’ depends

on the intended use of the device, and is usually expressed

by saying that some signal sD generated by the interaction

of S and D should behave in a proper and desired way. To

emphasize that the generated signal sD also depends on the

specific condition of operation, in the sequel we shall use

ω ∈ Ω to indicate the operating condition and write sD(ω)
for the generated signal, see Figure 1.

Fig. 1. Signal sD(ω) is generated by the interaction of device D and
system S .

This idea is made more concrete through examples.

Example 1 (simulator): Suppose that the device should

act as a simulator of the system when the system input u

takes on value in a given class of signals U . In this case, ω =
u and the desired behavior for the device can be expressed in

terms of the multidimensional signal sD(u) = (y(u), yD(u)),
where yD(u) and y(u) are the outputs of the device and the

output of the system fed by the same input signal u ∈ U (see

Figure 2). The signal sD(u) should satisfy yD(u) ≃ y(u),
for every operating condition of interest, that is for every

u ∈ U . ⊓⊔
Example 2 (disturbance compensator): Suppose that the

output of system S is affected by some additive disturbance
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Fig. 2. Device D is as a simulator of system S

and the device D is introduced for compensating the dis-

turbance according to a feedforward scheme as in Figure

3. In this case the operating condition is defined by the

disturbance realization d, so that ω = d. If we denote

by yD(d) the controlled output of the system when the

disturbance realization is d, then the desired behavior can be

expressed in terms of the signal sD(d) = yD(d) and sD(d)
should be small for every d in some set D describing the

disturbances. ⊓⊔

Fig. 3. Device D acting as a disturbance compensator for system S

Devising a suitable device D for a system S requires

knowledge of some sort on S. Most literature in science

and engineering relies on a model-based approach, namely

it is assumed that a mathematical model for S is a-priori

available. Alternatively, the knowledge on S can be accrued

through experimentation. This latter approach, considered

herein, is referred to as ‘adaptive design’, [1], [2], [3],

[4], [5], since the problem is to adapt D on the basis of

experiments in the face of the lack of a-priori knowledge

on system S.

In adaptive design, one fundamental question to ask is:

How extensively do we need to experiment in

order to come up with a device meeting certain

performance requirements?

This fundamental –and yet largely unanswered– question is
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the theme this contribution is centered around.

In this paper, a worst-case perspective with respect to the

possible operating conditions is adopted, and we provide an

answer to the above question in this specific set-up. For one

answer, many more are the answers that this contribution is

incapable to provide, which will also be enlightened along

our way.

II. WORST-CASE APPROACH TO ADAPTATION

Worst-case performance

Suppose that the performance of the device D operating

in condition ω is quantified by a cost c(sD(ω)). Then, the

worst-case performance achieved by D over the set Ω of

operating conditions is

max
ω∈Ω

c(sD(ω)),

and, correspondingly, one wants to design

D⋆ = arg min
D

max
ω∈Ω

c(sD(ω)). (1)

c⋆ denotes the worst-case performance of device D⋆, that is

c⋆ = maxω∈Ω c(sD⋆(ω)).

In e.g. the simulator Example 1, ω = u and one can

take c(sD(u)) = ‖y(u) − yD(u)‖2, the 2-norm of the error

signal y(u)− yD(u). c⋆ can then be interpreted as an upper

bound to the largest 2-norm discrepancy between the system

behavior and the behavior of the simulator D⋆ in the same

operating condition:

‖y(u)− yD⋆(u)‖2 ≤ c⋆, ∀u ∈ U.

In the disturbance compensator Example 2, a sensible cost is

the 2-norm c(sD(d)) = ‖yD(d)‖2. Then, the best disturbance

compensator D⋆ satisfies:

‖yD⋆(d)‖2 ≤ c⋆, ∀d ∈ D.

In many cases, the device D is parameterized by a vector

γ ∈ ℜk, in which case we write Dγ to indicate device D
with parameter γ, and hence designing a device corresponds

to selecting a value for γ. Then, with the shorthand

Jγ(ω) := c(sDγ
(ω)),

the min-max optimization problem (1) can be rewritten

as the following robust optimization program with k + 1
optimization variables:

RP : min
γ,c∈ℜk+1

c subject to: (2)

Jγ(ω) ≤ c, ∀ω ∈ Ω.

Note that, given a γ, the slack variable c represents an upper

bound for cost Jγ(·) achieved by the device with parameter

γ. By solving (2) we seek that γ⋆ that corresponds to the

smallest upper bound c⋆.

Adaptive design

In model-based design, the cost Jγ(ω) can be evaluated

based on the model, and then γ⋆ is found by solving

the robust optimization program (2). Instead, when system

S is unknown, or only partially known, the cost Jγ(ω)
cannot be explicitly computed so that the constraints in (2)

are not known. However, one can conceive of evaluating

the constraints experimentally. What exactly this means is

discussed in the sequel.

Each constraint is associated with an operating condition

ω ∈ Ω. Evaluating experimentally a constraint in a specific

condition, say condition ω̂ ∈ Ω, amounts to experimentally

determine the domain of feasibility in the (γ, c)’s space

where the constraint Jγ(ω̂) ≤ c holds. To this purpose, a se-

quence of experiments should be run in the ω̂ condition, each

of which performed with a different device Dγ , γ ∈ ℜk, and

the corresponding performance Jγ(ω̂) should be evaluated

from the measured sDγ
(ω̂). An obvious objection to this way

of proceeding is that it would require in principle to test the

performance achieved by each and every device Dγ . It is an

interesting fact that, in many situations, such overwhelming

experimental effort can be avoided, and just one single

experiment is enough for the purpose of computing Jγ(ω̂).

Take e.g. the simulator Example 1. In this example, if û

is injected into S, signal ŷ = S[û] can be collected, along

with signal û itself. Based on this single experiment, one can

then compute y(û)− yDγ
(û) = ŷ −Dγ [û] for all γ’s, where

Dγ [û] is obtained by processing û with Dγ , an operation

that can be executed as an off-line post-processing of signal

û. After y(û) − yDγ
(û) has been computed, the constraint

‖y(û) − yDγ
(û)‖2 = Jγ(û) ≤ c is evaluated.

The same conclusion that one experiment is enough can also

be drawn for Example 2 whenever both the system and the

device are linear. Indeed, swapping the order of S and Dγ ,

we have:

yDγ
(d) = S[Dγ [d]] + d = Dγ [S[d]] + d. (3)

If we run an experiment in which disturbance d̂ is measured

and this disturbance is also injected as input to the system

(i.e. D is set to 1 during experimentation in the scheme of

Figure 3), from the measured system output ŷ = S[d̂] + d̂

and from d̂ itself we can then determine

yDγ
(d̂) = Dγ [S[d̂]] + d̂ (using (3))

= Dγ [ŷ − d̂] + d̂,

where computation of Dγ [ŷ−d̂] is executed off-line similarly

to the simulator example. By computing ‖yDγ
(d̂)‖2 = Jγ(d̂)

constraint Jγ(d̂) ≤ c is then evaluated.

In the sequel we shall assume that one single experiment in

condition ω̂ suffices to determine constraint Jγ(ω̂) ≤ c. This

assumption is not fulfilled in all applications of the adaptive

scheme, and further discussion on this point is provided in

Section V.
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Remark 1: The reader may have noticed that lack of

knowledge, for which adaptation is required, can enter the

problem in different ways. In Example 1, it was system S
to be unknown. In the disturbance compensator Example 2,

again uncertainty stayed with the system S, but even the set

D for d could be unknown.

The seemingly different nature of the uncertainty in S and in

D can be leveled off by adopting a more abstract behavioral

perspective, [6], where the system is just seen as a set of

behaviors, i.e. of possible realizations of system signals. In

such framework, uncertainty simply corresponds to say that

the set of behaviors defining the system is not a-priori known.

⊓⊔
We are now facing the central issue this contribution is

centered around, that is: an exact solution of the robust

optimization program (2) requires to consider as many

experiments as the number of elements in Ω, normally an

infinite number. The impossibility to carry out this task

suggests introducing approximate schemes where only a

finite number of ω’s, that is a finite number of experiments,

are considered. Thus, we can at this point more precisely

spell out the question we posed at the end of Section I, and

ask:

How many experiments do we need to perform in

order to come up with a design that approximates

the solution D⋆ of (2) to a desired level of

accuracy?

III. THE EXPERIMENTAL EFFORT NEEDED FOR

ADAPTATION

The fact that one concentrates on a finite number of

operating conditions only may appear naive. The interesting

fact is that this way of proceeding can be cast within a solid

mathematical theory providing us with guarantees on the

level of accuracy obtained.

Fix an integer N , and let ω(1), ω(2), . . . , ω(N) ∈ Ω be the

operating conditions of N experiments run on the system

to evaluate the N corresponding constraints for the robust

program (2). The robust optimization problem restricted to

the N experienced scenarios ω(i), i = 1, 2, . . . , N , reduces

to the following finite optimization problem referred in the

sequel to as ‘scenario program’:

SPN : min
γ,c∈ℜk+1

c subject to: (4)

Jγ(ω(i)) ≤ c, i = 1, 2, . . . , N.

Being finite, this problem has a level of solvability much

higher than the hard RP problem in (2) carrying infinitely

many constraints. As for the selection of the scenarios ω(i),

i = 1, 2, . . . , N , we suppose that they are extracted from

set Ω according to some probability distribution P that

reflects the likelihood of the different ω situations. This is

naturally the case in the disturbance compensator Example

2 where the disturbances are obtained in experimental

trials. If the scenarios are instead selected by the designer

of the experiment, like u in Example 1, probability P

is artificially introduced to describe the likelihood of the

different operating conditions.

Let (γ⋆
N , c⋆

N ) be the solution of SPN . c⋆
N quantifies the

performance of the device with parameter γ⋆
N over the

extracted operating conditions ω(1), ω(2), . . . , ω(N).

Moreover, we clearly have c⋆
N ≤ c⋆, the optimal cost

with all the constraints in place, and, for the extracted

scenarios, we have designed a very effective device, even

‘better than the best’, in the sense that it outperforms

device D⋆. We cannot be satisfied with this sole result,

however, since, due to the limited number of scenarios,

there is no performance guarantee for the much larger

multitude of possible operating conditions, all those that

have not been seen when performing the design of γ⋆
N .

Hence, the following question arises naturally: what can we

claim regarding the performance of the designed device for

all other operating conditions ω ∈ Ω, those that were not

experienced while doing the design according to SPN in (4)?

Answering this question is necessary to provide accuracy

guarantees and to pose the method on solid grounds. And,

indeed, our goal is to quantify the required number N of

experiments to ensure certain performance levels even on

unseen operating conditions.

The posed question is of the ‘generalization type’ in a

learning-theoretic sense: we want to know how the solution

(γ⋆
N , c⋆

N ) generalizes from experienced operating conditions

to unexperienced ones. For ease of explanation, we shall

henceforth concentrate on robust optimization problems of

convex-type, since this case can be handled in the light of a

powerful theory that has recently appeared in the literature

of robust optimization, [7], [8], [9]. The non-convex case

can be dealt with along a more complicated approach and

is not discussed herein.

The following result is taken from [9].

KEY RESULT: Select a ‘violation parameter’ ǫ ∈
(0, 1) and a ‘confidence parameter’ β ∈ (0, 1).
If N satisfies

k
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i ≤ β (5)

(recall that k + 1 is the number of optimization vari-

ables), then, with probability no smaller than 1 − β,

the solution (γ∗
N , c∗N ) to (4) satisfies all constraints of

problem (2) with the exception of those corresponding

to a set of operating conditions whose probability is at

most ǫ.

Let us try to explain in detail the meaning of this

result. If we neglect for a moment the part associated with

the confidence parameter β, then, the result simply says

that, by extracting a number N of operating conditions as

given by (5) and running the corresponding N experiments

to evaluate the constraints appearing in (4), the solution

(γ∗
N , c∗N ) to (4) violates the constraints corresponding to

other, unexperienced, operating conditions with a probability

that does not exceed a user-chosen level ǫ. This means that
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the so-determined c∗N provides an upper bound for the cost

Jγ⋆
N

(ω) valid for every operating condition ω ∈ Ω with

the exclusion of at most an ǫ-probability set. What may

be surprising is that this result holds irrespective of the

functional dependence of Jγ(ω) on ω.

As for the probability 1 − β, one should note that (γ∗
N , c∗N )

is a random quantity because it depends on the randomly

extracted operating conditions ω(1), ω(2), . . . , ω(N). It

may happen that these conditions are not representative

enough (one could even extract N times the same operating

condition!). In this case no generalization is expected, and

the fraction of operating conditions violated by (γ∗
N , c∗N )

will be larger than ǫ. Parameter β controls the probability

of extracting unrepresentative operating conditions, and the

final result that (γ∗
N , c∗N ) violates at most an ǫ-fraction of

operating conditions holds with probability 1 − β. One

important practical fact is that, due to the structure of the

equation in (5), β can be set to be so small (say β = 10−6)

that it is virtually zero for any practical purpose, and this

does not lead to a significant increase in the value of N

(see also the numerical example in Section IV).

For the reader’s convenience, the discussion in this section

is summarized in a recipe for a practical implementation of

the overall adaptive design scheme.

PRACTICAL RESULT: Select a violation parameter

ǫ ∈ (0, 1), let β = 10−6, and compute the smallest

integer N satisfying (5). Run N random experiments and

compute the corresponding N constraints for problem

(4).

Then, the solution γ⋆
N of (4) achieves performance c⋆

N

on all operating conditions but an ǫ fraction of them,

and, moreover, c⋆
N ≤ c⋆.

Before closing the section, the following final remark

is worth making in the light of equation (5):

The number of experiments N that are needed to

adapt the device does not depend on the system

complexity; it instead only depends on the com-

plexity of the device Dγ through the size k of its

parametrization γ.

Thus reality can be any complex and still we can

evaluate the experimental effort by only looking at the

device being designed.

IV. A NUMERICAL EXAMPLE

We consider the problem of inverting the nonlinear char-

acteristic between input u and output y(u, d) of a system

affected by an additive output disturbance d (Figure 4),

over the range of values U = [0, 1] for u (input-output

equalization).

The device is fed by y(u, d) and produces output

yDγ
(u, d) = γ1y(u, d)2 + γ2y(u, d) + γ3. The performance

of the device with parameter γ = (γ1, γ2, γ3) ∈ ℜ3 is given

by maxu,d∈U×D Jγ(u, d), where Jγ(u, d) = |yDγ
(u, d)−u|

Fig. 4. Inverting a nonlinear characteristic through a device

and D is a (unknown) range of values for d. In words, this

performance expresses the largest deviation off the perfect

equalization line yD = u.

We chose ǫ = 0.1, β = 10−6, and according to (5) N was

205.

The scenario program (4) is in this case

min
γ,c∈ℜ4

c subject to: (6)

|γ1y(u(i), d(i))2 + γ2y(u(i), d(i)) + γ3 − u(i)| ≤ c,

i = 1, 2, . . . , 205,

where u(1), u(2), . . . , u(205) are random values for u

independently extracted from U according to the uniform

distribution Pu over [0, 1], and d(1), d(2), . . . , d(205) are

random values for d independently created by the environ-

ment during experimentation according to some (unknown)

distribution Pd.

The 205 constraints in (6) can be evaluated by running 205
experiments on the system where the output samples y(i) =
y(u(i), d(i)), i = 1, 2, . . . , 205, are collected together with

u(i), i = 1, 2, . . . , 205. Figure 5 shows the outcomes of the

experiments. Note that the collected output data present some

dispersion due to the presence of the additive disturbance d.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

u

y

Fig. 5. Outcome of the experiments: samples of input u and output y(u, d)

By solving (6) we obtained γ⋆
205 = (0.424, 0.650, −0.081)

and c⋆
205 = 0.108.

c⋆
205 is the maximum equalization error for the extracted

scenarios. In Figure 6, we plot the input and equalized output
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pairs (u(i), yDγ⋆
205

(u(i), d(i))), i = 1, 2, . . . , 205, and the

region u±c⋆
205 := {(u, y) : u−c⋆

205 ≤ y ≤ u+c⋆
205, u ∈ U}.

u ± c⋆
205 is the strip of minimum width centered around the

perfect equalization line yD = u that contains all the 205
input and equalized output pairs.

In the light of the practical result at the end of the previous

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

u

yDγ⋆
205

Fig. 6. Input u and equalized output yDγ⋆
205

(u, d) for the extracted

scenarios, and the region of equalization u ± c⋆

205

section, device γ⋆
205 carries a guarantee that the equalized

output yDγ⋆
205

(u, d) differs from u of at most c⋆
205 = 0.108

for all u’s and d’s except for a subset of probability P =
Pu×Pd smaller than or equal to 0.1; moreover, the region of

equalization u± c⋆
205 is contained within u± c⋆. This result

holds irrespectively of D and Pd, which are unknown to the

designer of the device.

The actual nonlinear characteristic and disturbance d used

to generate the data in Figure 5 are shown in Figure 7

together with the designed device with parameter γ⋆
205. In

this example, the parameter of the device could have been

designed so as to exactly invert the nonlinear characteristic.

However, the obtained γ⋆
205 is different from such a choice,

because the device aims at inverting the nonlinear character-

istic between u and y while also reducing the effect of d on

the reconstructed value for the input u.

Fig. 7. Actual nonlinear characteristic and disturbance characteristics, along
with the designed device

V. CONCLUSIONS

The main goal of this contribution is that of attracting the

reader’s attention to the fundamental issue of evaluating the

experimental effort needed to perform adaptive design, and

some answers have been provided in a specific worst-case

context.

Many are the aspects that our discussion has left unanswered,

and open to further investigation:

• it is not always the case that one experiment provides

all the information needed to evaluate a constraint. In

the disturbance compensator example, for instance, if

either the system or the device are nonlinear it is not

possible to swap them, and constraint evaluation calls

for many experiments with virtually all possible devices

in place. More generally, more experiments are needed

when the input to the system depends on the device

being designed.

• a perspective different from the worst-case approach can

be used for adaptive design. For example, device quality

could be assessed by its average performance, [10], [11],

[12], rather than its worst-case performance over the

set of operating conditions of interest, and the theory

developed here does not apply to this case.
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