
Randomized min-max optimization: the exact risk of multiple cost levels

Algo Carè, Simone Garatti, Marco C. Campi

Abstract— In this paper, we present a theoretical result that
applies to convex optimization problems in the presence of
an uncertain stochastic parameter. We consider the min-max
sample-based solution, i.e. the min-max solution computed
over a finite sample of instances of the uncertain stochastic
parameter, and the costs incurred by this solution in corre-
spondence of the sampled parameter instances. Our goal is
to evaluate the risks associated to the various costs, where
the risk associated to a cost is the probability that the cost
is exceeded when a new uncertainty instance is seen. The
theoretical result proven in this paper is that the risks form
a random vector whose probability distribution is always an
ordered Dirichlet distribution, irrespective of the probability
measure of the uncertain stochastic parameter. This evaluation
characterizes completely the risks associated to the costs, and
represents a full-fledged result on the reliability of the min-max
sample-based solution.

Index Terms— Randomized Algorithms, Optimization, Opti-
mization Algorithms.

I. INTRODUCTION

In this paper, we consider uncertain optimization problems

where a decision, modeled as the selection of a variable

x belonging to a convex set X ⊆ R
d , has to be made

so as to minimize a cost function which depends on a

random uncertainty parameter too. Precisely, the uncertain

parameter is a random element δ which takes values in a set

∆ according to a probability measure P, and the cost function

is f (x,δ ). Throughout we will assume that, for every δ ,

f (x,δ ) is convex in x. The presence of δ in f implies that

any choice of x is associated to a variety of possible costs,

depending on the value assumed by δ .

A well-known rule to make a decision in this context is

that of considering N “scenarios”, i.e. N instances of δ , say

δ (1)
,δ (2)

, . . . ,δ (N), independent and identically distributed

(i.i.d.) according to P, and minimizing the worst-case cost

over these scenarios, that is:

min-maxN : min
x∈X ⊆Rd

max
i=1,...,N

f (x,δ (i)). (1)
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The optimal solution of (1) is indicated by x∗ and can be

obtained by rewriting (1) in epigraphic form as

EPIN : min
l∈R,x∈X ⊆Rd

l

subject to: f (x,δ (i))≤ l, i = 1, . . . ,N, (2)

and then by resorting to standard numerical solvers, [5]. See

Table I for some examples of min-max problems arising in

various applicative contexts.

Since x∗ is computed based on a finite sample of scenarios

only, the main concern with x∗ is that of assessing its

reliability with respect to the whole set of uncertainty

instances ∆, and a possible indicator to this purpose seems

to be l∗ = maxi=1,...,N f (x∗,δ (i)), i.e. the worst cost among

the seen scenarios. l∗, however, is just an empirical quantity,

and it is clear that l∗ is meaningful only if an assessment

of the risk that a new uncertainty instance δ carries a cost

f (x∗,δ ) greater than l∗ is provided. Quantitatively, this

entails to study the variable R = P{δ ∈ ∆ : f (x∗,δ ) > l∗},

which is called the risk associated to l∗. This problem

has been extensively studied, and the literature spans a

wide range that goes from the analysis of asymptotic

properties (i.e. for N → ∞), see e.g. [28], to finite sample

characterizations both for convex, [6], [7], [9], and non-

convex cost function f , [1]. This work is in the vein of

the so-called theory of the scenario approach, [6], [7],

[9], which under the assumption that f (x,δ ) is convex

in x provides the sharpest possible characterization of

the risk R. Note that R is a random variable since it

depends on x∗ and l∗, which in turn depend on the random

samples δ (1), . . . ,δ (N). The fundamental result of [9] is

that, irrespective of P, the probability distribution function

of R is always equal to or bounded by a Beta probability

distribution with parameters d + 1 and N − d (recall that

d is the dimension of the decision variable). Based on

this result, it can be shown that R not only tends to zero

with probability 1 as N → ∞, but also that, for finite N, R

keeps smaller than threshold 1
N

(

d + ln 1
β +

√

2d ln 1
β

)

with

confidence 1−β , [2]. In other words, the risk associated to

the worst-case cost l∗ can be kept under control thanks to

the knowledge of its probabilistic behavior.

Despite the sharp theoretical result offered by the theory

of the scenario approach, limiting to l∗ to characterize the

reliability of x∗ may turn out to be conservative, and it is

advisable to seek other indicators besides l∗.

The idea is to consider the whole set of costs f (x∗,δ (i))
associated to the various scenarios δ (1),δ (2), . . . ,δ (N). In the
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TABLE I

A FEW EXAMPLES OF MIN-MAX PROBLEMS.

Interpretation of δ Interpretation of x Interpretation of f (x,δ ) References

Linear regression theory Data point Coefficients weighting regressor functions Regression error [18], [8]

Investment theory Asset return Proportion of the assets in a portfolio Investment loss [22], [26]

Control theory Disturbance Realization Controller parameters Output variance [11], [7]

following, these costs will be indicated by l∗d+1, l
∗
d+2, . . . , l

∗
N ,

see Fig. 1.

As is clear from an intuitive point of view, l∗d+1, l
∗
d+2, . . . , l

∗
N

all together provide a more sensible characterization of x∗

than by using l∗ only. Assume for instance that the gap

between the maximum cost l∗ and the second greatest cost

and, similarly, other gaps between costs are large. Then,

one expects that a new δ carries a cost f (x∗,δ ) which is

significantly smaller than l∗ with a high probability. On the

contrary, when the values f (x∗,δ (i)) concentrate all around

l∗, it is apparent that f (x∗,δ ) will be almost always close to

l∗. See also [19].

In order to put such kind of reasoning on a solid quantitative

ground, the risk Rk associated to the cost level l∗k , i.e. the

probability to observe an uncertainty instance δ carrying a

cost higher than l∗k , must be evaluated simultaneously for

k = d + 1, . . . ,N. At the present time, however, the theory

of the scenario approach applies to the sole l∗ and does not

provide any characterization of the risks associated to other

cost levels. This paper aims to fill this gap by computing the

joint probability distribution of all risks Rd+1,Rd+2, . . . ,RN .

Our main achievement is that, no matter what the probability

measure P is, such joint probability distribution is a so-called

ordered Dirichlet distribution whose parameters depend on

the number of samples N and the number of decision

variables d only. This result completely characterizes the

variables Rk’s and can be suitably employed to support

decisions in many real cases even for small sizes of N.

To sum up, two kinds of quantities are central in the

characterization of the reliability of x∗:










l∗d+1

l∗d+2
...

l∗N











and











Rd+1

Rd+2

...

RN











,

i.e. the vectors of cost levels and of the associated risks.

While the cost levels are known as soon as the optimal

decision variable x∗ is computed, the corresponding risks

are hidden to the decision maker. Nevertheless, their joint

probability distribution is known given the theory so that

the risks can be kept under control. In particular, since

the ordered Dirichlet distribution is thin tailed, the risks

can be bounded with high confidence by dropping the

tails of the probability distribution. This way, a complete

characterization of the reliability of x∗ is obtained.

Since the characterization of the reliability of x∗

holds irrespective of the probability measure P, this

characterization of x∗ can play a prominent role in

data-driven optimization ([3]) where the designer has

optimization

direction

x

l

(a)

optimization

direction

x

l

x∗

l∗ = l∗2

l∗3
l∗4

l∗5

l∗6
l∗k

l∗N

(b)

Fig. 1. On the left, a pictorial representation of the optimization problem

(2), where each scenario δ (i) corresponds to a constraint of the form

f (x,δ (i))≤ l. On the right, the cost levels of x∗ are put in evidence.

no knowledge of the uncertainty other than through the

scenarios δ (1),δ (2), . . . ,δ (N) obtained as observations in a

procedure of real-data acquisition.

Structure of the Paper

In the next section our result is formally stated and some rel-

evant aspects are discussed. Section III provides a numerical

example.

II. MAIN RESULT

We first give the formal definition of cost levels and risks.

Definition 1 (Cost levels): We define the cost levels – or

just costs – of the optimal decision variable x∗ as l∗k =
max{l ∈R : f (x∗,δ (i))≥ l for a choice of k indexes i among

{1, . . . ,N}}, for k = d+ 1, . . . ,N. ∗
Note that the subscript k of l∗k expresses the number of

scenarios carrying a cost higher than or equal to l∗k in

correspondence of x∗.

Definition 2 (Risk): The risk of the cost level l∗k of the

optimal decision variable x∗ is indicated with Rk, and defined

as Rk = P{δ ∈ ∆ : f (x∗,δ )> l∗k }, for k = d + 1, . . . ,N. ∗
Our main result is given under the following condition.

Condition 1: For every fixed integer m and fixed given

instances δ (1), . . . ,δ (m), the optimal solution to

min-maxm : min
x∈X ⊆Rd

max
i=1,...,m

f (x,δ (i))

exists and is unique. ∗
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This condition can be relaxed, see e.g. the discussion

provided in [9], Section 2.1, but we here prefer to maintain

it to avoid technical complications.

The exact evaluation in Theorem 1 of the joint probability

distribution function is obtained under the following addi-

tional Condition 2. If Condition 2 does not hold, the second

part of Theorem 1 applies.

Condition 2: ∀x ∈ X ,∀l ∈ R, P{δ ∈ ∆, f (x,δ ) =
l}= 0. ∗
Condition 2 basically requires that, for every fixed x, the

values of the cost functions f (x,δ ) in correspondence of

various δ ’s do not accumulate over the same point, and it

is satisfied by problems whose constraints are “generically

distributed”.

Theorem 1: Under Conditions 1 and 2, the joint probabil-

ity distribution function of Rd+1, . . . ,RN is as follows:

P
N{Rd+1 ≤ εd+1,Rd+2 ≤ εd+2,Rd+3 ≤ εd+3, . . . ,RN ≤ εN}

=
N!

d!

∫ εd+1

0
rd

d+1

∫ εd+2

0

∫ εd+3

0
· · ·

∫ εN

0
1{0 ≤ rd+1 ≤ ·· ·

· · · ≤ rN ≤ 1}drN · · ·drd+3drd+2drd+1, (3)

where 1{·} denotes the indicator function. Moreover, under

Condition 1 only, the joint probability distribution function

is lower bounded by the right-hand side of (3):

P
N{Rd+1 ≤ εd+1,Rd+2 ≤ εd+2,Rd+3 ≤ εd+3, . . . ,RN ≤ εN}

≥
N!

d!

∫ εd+1

0
rd

d+1

∫ εd+2

0

∫ εd+3

0
· · ·

∫ εN

0
1{0 ≤ rd+1 ≤ ·· ·

· · · ≤ rN ≤ 1}drN · · ·drd+3drd+2drd+1. (4)

∗
Proof: See [12]. The proof is also available on request

from the authors.

It is worth noticing that the right-hand side of (3) and of (4)

do not depend on P. Moreover, since the result holds with

equality for the class of problems satisfying Conditions 1

and 2 (equation (3)), the result of the theorem is tight.

A. Practical use of Theorem 1

Theorem 1 can be applied in various ways. The

following two ways are especially useful in contexts

where the uncertainty instances δ (1),δ (2), . . . ,δ (N) come as

observations obtained from a data acquisition experiment.

Post-experiment analysis

The user has collected N samples of δ and has solved

problem min-maxN obtaining x∗ and the corresponding cost

levels l∗k , k = d + 1, . . . ,N. He fixes a confidence parameter

β ∈ (0,1) to a very small value, e.g. β = 10−5 or even

β = 10−10, and determines a vector εεε = (εd+1, . . . ,εN) such

that the right-hand side of (4) is bigger than or equal to

1−β . Then, the user can claim with high confidence 1−β
that, simultaneously for k = d+1, . . . ,N, the risk Rk of each

cost level l∗k is no larger than εk.

Experiment design

The user fixes a very small β ∈ (0,1), e.g. β = 10−5 or

even β = 10−10. Then he fixes a vector of m nondecreasing

elements 0 ≤ εd+1 ≤ ·· · ≤ εd+m ≤ 1 corresponding to the

desired upper bounds on the first m cost levels, l∗d+1, . . . , l
∗
d+m.

Then, by letting εh = 1 for h ≥ d +m+ 1, he computes the

minimum number N of samples which guarantees that the

right-hand side of (4) is no less than 1−β . If N instances

of δ are indeed extracted and problem min-maxN is solved,

then the obtained x∗ and the corresponding cost levels are

such that Rk ≤ εk, k = d + 1, . . . ,N, with high confidence

1−β .

In both cases the user can link a cost l∗k obtained through

the optimization procedure to the value εk limiting its risk Rk.

This provides a strong knowledge about the decision variable

x∗ without any further sampling effort.

B. Some theoretical and computational properties

We highlight some properties of the probability

distribution function of the risks as given in (3). Some

references about computational aspects are provided too.

Comments on Dirichlet distributions

The cumulative distribution function in the right-hand side

of (3) is an instance of the so-called (N−d)-dimensional or-

dered Dirichlet distribution function with the first parameter

equal to d+1 and other parameters equal to 1, see e.g. [30]

- page 182. The corresponding probability density function

is

pR(rd+1,rd+2, . . . ,rN)

=
N!

d!
rd

d+11{0 ≤ rd+1 ≤ rd+2 ≤ ·· · ≤ rN ≤ 1}.

By applying the following transformation to the random

variables Rk’s

DN = 1−RN

DN−1 = RN −RN−1

...

Dd+1 = Rd+2 −Rd+1

the vector Dd+1,Dd+2, . . . ,DN is obtained, which is

distributed according to the well-known Dirichlet

distribution, [30], [17]. Hence, the evaluation of an

ordered Dirichlet distribution function is usually converted

to the problem of evaluating a Dirichlet distribution function.

The reader is referred to [14], [15], [13], [21] and references

therein for studies on computational issues about Dirichlet

distributions.

Beta distributions as marginals

By a well-known property of the Dirichlet distribution, the

marginal probability distribution function of variable Rk is a

Beta with parameters (k,N−k+1), for each k = d+1, . . . ,N,

see [16]. That is,

P
N{Rk ≤ εk}= 1−

k−1

∑
i=0

(

N

i

)

ε i
k(1− εk)

N−i
. (5)
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This distribution function has the same form of the distribu-

tion function of the risk associated to l∗ for the class of the

so-called “fully-supported” problems, see [9]. Notably, the

right-hand side of (5) can be easily evaluated by means of

common tools, like the betainc function in MATLAB, [23],

or pbeta in R, [27].

As is clear, a lower bound for the joint distribution function

of Rd+1, . . . ,RN is given by the sum of the marginals, i.e.

P
N{Rd+1 ≤ εd+1,Rd+2 ≤ εd+2,Rd+3 ≤ εd+3, . . . ,RN ≤ εN}

≥ 1−
N

∑
k=d+1

P
N{Rk > εk}

= 1−
N

∑
k=d+1

k−1

∑
i=0

(

N

i

)

ε i
k(1− εk)

N−i
, (6)

and (6) may be an acceptable approximation of (3) in some

practical cases (see also Section III).

Based on (6) and following similar calculations as in [10] -

Appendix B, it can be shown that, for a given β ∈ (0,1), if

N ≥ max
k=d+1,...,N

N(k)
, (7)

where

N(k) :=

⌊

2

εk

(

k+ ln
1

β

)

+
4

εk

ln

(

2

εk

(

k+ ln
1

β

))⌋

+ 1

(⌊·⌋ denotes the integer part operator), then P
N{Rd+1 ≤

εd+1, . . . ,RN ≤ εN} ≥ 1 − β , i.e. conditions Rk ≤ εk,

k = d + 1, . . . ,N, simultaneously hold with high confidence

1−β . Although (7) may be loose, it reveals the logarithmic

dependence of N on β by which it is possible to enforce very

high confidence without affecting too much the sampling

effort.

Connection with order statistics

Consider the sampling of N random variables, uniformly and

independently distributed in [0,1], and sort them in order of

magnitude,

X (1) ≤ X (2) ≤ ·· · ≤ X (N)
,

X (i) being the i−th smallest value. Variable X (i) is called the

i−th order statistic and it is well known, [30], [25], that order

statistics have joint ordered Dirichlet distribution with uni-

tary parameters, that is P{X (1) ≤ ε1,X
(2) ≤ ε2, . . . ,X

(d+1) ≤
εd+1, . . . ,X

(N) ≤ εN} can be expressed as

N!

∫ ε1

0

∫ ε2

0
· · ·

∫ εd+1

0
· · ·

∫ εN

0
1{0 ≤ x1 ≤ ·· ·

· · · ≤ xN ≤ 1}dxN · · ·dxd+1 · · ·dx2dx1. (8)

If ε1 = ε2 = · · · = εd+1, then, by integrating with respect to

the first d+ 1 components, (8) becomes

N!

d!

∫ εd+1

0
xd

d+1

∫ εd+2

0
· · ·

∫ εN

0
1{0 ≤ xd+1 ≤ ·· ·

· · · ≤ xN ≤ 1}dxN · · ·dxd+2dxd+1,

which is exactly the right-hand side of (3) in Theorem

1. In short, the computation of P
N{Rd+1 ≤ εd+1,Rd+2 ≤

εd+2,Rd+3 ≤ εd+3, . . . ,RN ≤ εN} can be reduced to the

well known problem of computing the joint cumulative

distribution function of order statistics, see e.g. [13], [21].

The freely distributed package µ toss for R, [4], [24],

[27], contains the function jointCDF.orderedUnif which

computes (8), though, because of numerical issues, it is

reliable for N ≤ 100 only.

Computability through Monte-Carlo methods

By virtue of the analogy with the distribution of order

statistics, even Monte-Carlo methods can be employed to

evaluate (3) for fixed values of εd+1, . . . ,εN . Indeed, one can

repeat a large number of times, say M times, the following

steps (C is a counter initially set to 0):

• draw a sequence of N independent samples from a

uniform distribution in [0,1];
• sort the sequence, i.e. compute all the order statistics

from X (1) (the smallest value) to X (N) (the largest);

• evaluate the condition X (i) ≤ εi for i = d+1, . . . ,N, and

increment the counter C by 1 if it is satisfied for every

value of the index i.

Then, P̂ := C
M

is an estimate of the sought probability P :=
P

N{Rd+1 ≤ εd+1,Rd+2 ≤ εd+2, . . . ,RN ≤ εN}.

P̂ and P are related by the Hoeffding’s inequality (see [20],

[29]), which guarantees that P ≥ P̂−γ holds with confidence

1−η (e.g. η = 10−6) as long as the number of experiments

is large enough (precisely, as long as M ≥ 1
2γ2 ln 2

η ). This

method becomes increasingly impractical as γ gets smaller,

and more advanced randomized schemes must be considered

if lowering γ under 10−4 is needed.

III. NUMERICAL EXAMPLE

In this section, the main result of this paper is applied to

a simple min-max problem.

Problem formulation

During a campaign of data acquisition, 3000 independent

vectors δ (i) = (δ
(i)
0 ,δ

(i)
1 , . . . ,δ

(i)
10 ) ∈ R

11 were acquired, and

a min-max regression problem was set up where the first

component of the δ vector was regressed against the re-

maining 10 components of δ . Precisely, the following min-

max problem with 10 decision variables (d = 10) and 3000

scenarios (N = 3000)

min
x∈[−1,1]10

max
i=1,...,3000

∣

∣

∣

∣

∣

δ
(i)
0 −

10

∑
j=1

x j ·δ
(i)
j

∣

∣

∣

∣

∣

(9)

was solved. The obtained solution x∗ was

x∗ = (0.74,−0.94,0.43,0.47,0.25,0.22,0.01,0.25,−0.49,0.15).

After computing x∗, we evaluated the cost levels l∗k for 11≤
k ≤ 3000 according to Definition 1:

l∗k = max

{

l ∈R :

∣

∣

∣

∣

∣

δ
(i)
0 −

10

∑
j=1

x∗j ·δ
(i)
j

∣

∣

∣

∣

∣

≤ l for a choice of k

indexes i among {1, . . . ,3000}

}

.
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This consisted in evaluating

∣

∣

∣δ
(i)
0 −∑10

j=1 x∗j ·δ
(i)
j

∣

∣

∣ for the

various scenarios and sorting these values in decreasing

order.

Bounding the risks

The vector of risk thresholds εεε =(εd+1, . . . ,εN) was designed

according to the following rule: a parameter β ′ ∈ [0,1] was

fixed and, for each k = d + 1, . . . ,N, εk ∈ [0,1] was selected

such that
k−1

∑
i=0

(

N

i

)

ε i
k(1− εk)

N−i =
β ′

N − d
.

In words, the rule consists in choosing εεε so that the marginal

probability P
N{Rk > εk} is equal to

β ′

N−d
for all k = d +

1, . . . ,N.

By (6), the adopted choice for εεε entails that

P
N{Rd+1 ≤ εd+1, . . . ,RN ≤ εN}

≥ 1−
N

∑
k=d+1

P
N{Rk > εk}

= 1−
N

∑
k=d+1

β ′

N − d
= 1−β ′

, (10)

i.e. the risks are simultaneously less than the elements of

εεε with confidence at least 1 − β ′. For example, we have

confidence 0, 0.9, 0.99 for β ′ = 1,10−1,10−2 respectively.

A more refined evaluation is obtained through the right-hand

side of (3). Using the right-hand side of (3) along with the

Monte-Carlo algorithm in Section II-B, it turned out that the

conditions R11 ≤ ε11, . . . ,R3000 ≤ ε3000 simultaneously hold

with confidence equal to 0.98 when β ′ = 1, 0.997 when β ′ =
10−1, and 0.9997 when β ′ = 10−2.

Fig. 2 shows the values of εk for β ′ = 1, 10−1, and 10−2.

As it is apparent, the values of εk are quite insensitive to

the value of β ′ so that enforcing a high confidence only

marginally impacts on the εk’s.

11 50 100
0

0.025

0.05

 

 

11 500 1.000 1.500 2.000 2.500 3.000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

ε k

 

 

β=10
−2

β=10
−1

β=1

zoom

Fig. 2. Values of εk, k = 11, . . . ,3000, for β ′ = 1 (solid line), β ′ = 10−1

(dashed line), and β ′ = 10−2 (dash-dotted line).

Costs-risks evaluation

We selected β ′ = 10−2, so that confidence was 0.9997. Fig. 3

profiles l∗k against εk. The interpretation of the graph is that

each cost level l∗k on the y-axis has a risk smaller than the

εk on the x-axis with overall confidence 0.9997. By looking

e.g. at the worst cost, we see that the risk that x∗ carries

a cost which is greater than l∗11 = 5.55 is just 1.09%, i.e.

cost 5.55 is guaranteed for about the 99% of the possible

uncertainty outcomes of δ . At the same time, the cost l∗63 = 4

is guaranteed for the 96% of the δ ’s, while cost l∗229 = 3.01 is

guaranteed for the 90% of the δ ’s. By looking at the whole

graph in Fig. 3, a complete characterization of the reliability

of the solution x∗ is obtained.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

l k

ε
k

Fig. 3. Characterization of the optimal solution to problem (9). With
confidence 0.9997, costs l∗k ’s (on the y-axis) have risks no higher than the
corresponding εk’s (on the x-axis).
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