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a b s t r a c t

This paper deals with the problem of constructing confidence regions for the parameters of truncated
series expansion models. The models are represented using orthonormal basis functions, and we extend
the ‘Leave-out Sign-dominant Correlation Regions’ (LSCR) algorithm such that non-asymptotic confidence
regions for the parameters can be constructed in the presence of unmodelled dynamics. The constructed
regions have guaranteed probability of containing the true parameters for any finite number of data
points. The algorithm is first developed for FIR models and then extended to models with generalized
orthonormal basis functions. The usefulness of the developed approach is demonstrated for FIR and
Laguerre models in simulation examples.
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1. Introduction

One of the intrinsic tasks in system identification is to evaluate
how close themodel is to the true system. This depends heavily on
the quality and the size of the observed input–output data set and
the specific rule used to construct a (set of) model(s) from the ob-
served data. This work focuses on truncated series expansionmod-
els represented by orthonormal basis functions, and it develops a
method for constructing confidence regions for the coefficients of
the series expansion using only finitely many input–output data
points. This is of importance since in any practical situation the ob-
served number of data points will always be finite, and models of
dynamical systems are of limited value if there are no quality tags
attached which describe the accuracy of the models.
System identification using orthonormal basis functions

flourished during the 1990s. This was motivated by efficient pa-
rameterizations enabling the use of simple linear regression tech-
niques which produced models with enhanced qualities (Ninness,
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Hjalmarsson & Gustafsson, 1999). Typical examples of orthonor-
mal basis functions are the pulse basis functions corresponding
to the FIR (Finite Impulse Response) models, the Laguerre func-
tions (Wahlberg, 1991), the Kautz functions (Wahlberg, 1994) and
more generally orthonormal basis functions as in Heuberger, Van
den Hof and Bosgra (1995) and Van den Hof, Heuberger and Bokor
(1995).
In this setting the model class is given by

G(z−1, θ) =
L∑
k=1

θkBk(z−1),

and the true system is given by

G0(z−1) =
∞∑
k=1

θ0kBk(z
−1),

where Bk(z−1) are the orthonormal basis functions, θk, k = 1,
2, . . . , L, are the model parameters and θ0k , k = 1, 2, . . ., are the
true system parameters. The problem considered in this paper is
how to construct a guaranteed confidence set for the true system
parameters θ01 , θ

0
2 , . . . , θ

0
L based on a finite number of observed

data ut , yt from the system

yt = G0(z−1)ut + nt ,

where nt is an arbitrary noise sequence.
For this purpose, we extend the LSCR (Leave-out Sign-dominant

Correlation Regions) algorithm introduced in Campi and Weyer
(2005). See Campi and Weyer (2006a) for an overview. The LSCR
algorithm in Campi and Weyer (2005), inspired by the work
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of Hartigan (1969, 1970), provides non-asymptotic confidence sets
with a user specified probability for the case where the true
transfer functions from the input signal to the output signal and
from the noise to the output signal both belong to the model class.
In Campi and Weyer (2006b) and Campi and Weyer (in press),
the assumption that the noise model belongs to the model class
was removed, and in this paper we go one step further and also
allow for unmodelled dynamics in the transfer function from the
input to the output. The unmodelled dynamics is dealt with by
suitable input design and the application of the sign-function in the
computations of the correlation functions.
The main contribution of this paper is the constructive

method for providing non-asymptotic confidence regions for the
coefficients of the basis functions. A different approach for
generating confidence sets is based on asymptotic theory for
system identification (see e.g., Ljung (1999) or Söderström and
Stoica (1989)). This is a well-matured approach and the confidence
regions can be computed relatively easily. However, in some
cases the asymptotic approach may lead to unreliable results
when applied to a finite number of data points, as described
in Garatti, Campi and Bittanti (2004) and Campi and Bittanti
(2006). Moreover, asymptotic approaches have little validity when
the number of data points is small, and hence finite sample
methods as developed in this paper are of great interest. For further
discussions on model quality evaluation and confidence sets for
the parameters of dynamical systems, the readers are referred
to Campi, Ooi, andWeyer (2004), Campi andWeyer (2002), Weyer
and Campi (2002), Douma andVandenHof (2006), Hjalmarson and
Ninness (2006) and den Dekker, Bombois and Van den Hof (2008).
In the next subsection we give a simple preview example of the

developed procedure which illustrates the main ideas and shows
the generality of the approach.

1.1. A preview example

In order to illustrate the main ideas of the paper, we present an
introductory toy-example. Suppose that the true system is given
by

yt = θ00 ut + θ
0
1 ut−1 + nt ,

where θ00 = 1, θ01 = 0.1. The noise has been indicated with
a generic nt to signify that it can be arbitrary, and not just a
white signal. ut and nt are independent. The output yt of the true
system has weaker dependence on the past input ut−1 than on the
current input ut , and we assume we want to estimate θ00 , the non-
dynamical link between ut and yt .
Our task is to generate 25 input data and to construct a

guaranteed confidence interval for θ00 . We first generate an input
signal ut , t = 1, . . . , 25, which is independent and identically
distributed (i.i.d.) with

ut =
{
+1, with probability 0.5
−1, with probability 0.5,

and apply it to the system. The input–output data are shown in
Fig. 1. We regard the term θ01 ut−1 as unmodelled dynamics and
construct a reduced-order predictor

ŷt(θ) = θut .

The corresponding prediction error is given by

εt(θ) = yt − ŷt(θ) = yt − θut .

We then calculate

ft(θ) = sign[ut · εt(θ)], t = 1, 2, . . . , 25,
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Fig. 1. Data for the preview example.

where the sign-function is defined as

sign[x] =
{
−1, for x < 0,
+1, for x > 0.

If x = 0 we let sign[x] = 1 or −1 with probability 0.5 each.
Corresponding to the true parameter value, i.e. θ = θ00 , an
inspection reveals that sign[ut · εt(θ00 )] = sign[ut · (θ

0
1 ut−1 + nt)]

is an independent and symmetrically distributed process which
takes the values ±1 with probability 0.5 each. Thus, based on this
observation,we compute anumber of estimates of E{sign[utεt(θ)]}
using different subsets of the data, and we discard those regions in
parameter space where the empirical estimates take positive (or
negative) value too many times.
We select 20 subsets of data at random and compute the

empirical estimates

ḡi(θ) =
25∑
t=1

hi,t ft(θ), i = 0, . . . , 19,

where hi,t are i.i.d. with the distribution

hi,t =
{
0, with probability 0.5
1, with probability 0.5,

except for the first string which is given by h0,t = 0 for all t =
1, 2, . . . , 25 (hence ḡ0(θ) = 0). That is, hi,t determines if ft(θ) is
used when we compute the ith estimate of the correlation. Since
it is very unlikely that all the ḡi(θ)’s have the same sign for the
true θ = θ0, we discard the regions in parameter space where
all functions but at most one are less than the zero function ḡ0(θ)
or greater than the zero function ḡ0(θ), hence the name of the
method: Leave-out Sign-dominant Correlation Regions (LSCR). In
this procedure, however, we have neglected a detail whichwe now
describe. Since ft(θ) = sign[ut · εt(θ)] can only take on the values
−1 and 1, it is possible that two or more of the ḡi(θ) functions
take on the value zero on an interval. This tie and ambiguity can
be broken by introducing a random ordering obtained by adding a
random number νi, uniformly distributed between, say, −0.2 and
0.2 to the ḡi(θ) functions

gi(θ) = ḡi(θ)+ νi, i = 0, 1, . . . , 19,

and by considering these gi(θ) in place of the original ḡi(θ)
functions. Nextweplot gi(θ), i = 0, 1, . . . , 19, as functions of θ and
exclude the regions where at most one of the functions gi(θ), i =
1, 2, . . . , 19, is greater than g0(θ) or at most one is smaller than
g0(θ). The obtained gi(θ) functions and the confidence interval
are shown in Fig. 2. The confidence interval for θ00 is 2̂25 =
[0.80 1.12]. It is a rigorous fact (stated in Theorem 1) that the
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Fig. 2. The gi(θ) functions for the preview example together with a 80% confidence
interval (thick solid line) and the true parameter (F).

confidence interval constructed this way has probability 1 − 2 ·
2/20 = 0.8 of containing the true parameter value θ00 .
In this example, the noise sequence nt was a realization of a

biased independent Gaussian process with mean 0.5 and variance
0.1. However, no knowledge of the noise characteristics was used
in the algorithm, nor did we make use of any knowledge about
the unmodelled dynamics. Despite the facts that the system is not
within the model set, the number of data points is finite, and the
noise is biased and with unknown characteristics, the procedure
has provided a confidence interval for the true parameter value
with guaranteed exact probability.

1.2. The ‘‘essence’’ of the LSCR approach

LSCR is based on constructing data-based functions (usually
correlations) that are independent and symmetrically distributed
around zero corresponding to the true parameter value θ0, while
they are biased away from zero for θ 6= θ0. The ft(θ)’s of the
preview example are examples of such functions. These functions
are then summed up in many different ways, as done in the ḡi(θ)’s
of the preview example, leading to sums that for θ 6= θ0 are
likely to be prevalently positive or prevalently negative. Thus,
when constructing the confidence region one eliminates those θ
for which a prevalence of positive or negative values are observed,
and this leads to confidence regions that concentrate around the
true θ0. One deep and fundamental aspect in this construction is
thatwe are able to computewithminimal a priori assumptions, the
(low) exact probability that the true θ = θ0 will be erroneously
excluded from the confidence region. This is made possible by
the random sub-sampling employed in forming the sums (see
e.g. the definition of the ḡi(θ)’s) and by the fact that the data-
based functions (the ft(θ)’s) are independent and symmetrically
distributed around zero for θ = θ0.
In the context of the present paper, the sign-function is used

to secure the above-mentioned independence and symmetry
properties in the presence of unmodelled dynamics. Indeed,
inspecting the preview example one sees that ut · εt(θ00 ) = ut ·
(θ01 ut−1 + nt) is not an independent sequence since e.g. u1 ·
(θ01 u0 + n1) and u2 · (θ

0
1 u1 + n2) share u1. However, as shown

in Appendix A, the sign-functionmakes the sequence independent
and symmetrically distributed.

1.3. Organization of the paper

In Section 2, we develop the algorithm for construction of the
confidence regions for the case where the system is approximated
Fig. 3. The dynamical system.

by an FIR model. Then, in order to extend the algorithm to the case
of generalized orthogonal basis functions, the results of Heuberger,
Van denHof, DeHoog andWahlberg (2003) are briefly summarized
in Section 3.1. In Section 3.2, we show that a system modelled by
generalized orthonormal basis functions can be transformed into
an FIR model to which the algorithm developed in Section 2 is
applicable. The procedure is illustrated in two simulation examples
using an FIR and a Laguerre model in Section 4. Finally, some
concluding remarks are given in Section 5.
Notations: In this paper, matrices will be denoted by upper case
boldface (e.g. A), vectors will be denoted by lower case boldface
(e.g. x), and scalars will be denoted by lower case (e.g. y) or upper
case (e.g. Y ). For a matrix A, AT denotes its transpose. H2 is the
space of scalar functions which are analytic for |z| ≥ 1 and square-
integrable on the unit circle.

2. Confidence regions with undermodelling

In this section we present the algorithm for FIR models.

2.1. Problem definition

Data generating system: Consider the following linear time-
invariant stable1discrete-time system with additive noise as
shown in Fig. 3

yt = G0(z−1)ut + nt . (1)
The transfer function G0(z−1) is represented by

G0(z−1) =
∞∑
k=1

θ0k z
−k, (2)

where θ0k , k = 1, 2, . . . , is the sequence of Markov parameters.
We assume that we can choose the input ut . Moreover, the

choice of ut does not affect nt , that is G0(z−1) indeed represents
the input–output link, whereas nt represents all other sources
of variations in yt besides ut . This is formally expressed in the
following assumption.
Assumption:
(A1) The noise sequence nt is independent of ut .

Model class: For estimation purposes, we consider the following
predictor corresponding to an Lth order FIR model

ŷt(θ) = G(z−1, θ)ut =
L∑
k=1

θkz−kut = φTt θ, (3)

where φt , [ut−1, ut−2, . . . , ut−L]
T and θ , [θ1, θ2, . . . , θL]T.

Objective: The goal is to design the input sequence ut and to
construct a confidence set for θ0 , [θ01 , θ

0
2 , . . . , θ

0
L ]
T based on

N observed input–output data. The algorithm for construction of
the confidence set should not require any knowledge about the
noise characteristics, and the confidence set should contain θ0with
guaranteed user-chosen probability p.
Not having any assumptions on the noise characteristics is a

desired property in applications since in practice the properties of
the noise sequence are rarely known.

1 G0(z−1) =
∑
∞

k=1 θ
0
k z
−k is stable if

∑
∞

k=1 |θ
0
k | <∞.
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2.2. Construction of confidence regions

Wedetermine confidence regions for θ0 based on the sign of the
correlation between the prediction error εt(θ) and the inputs ut−s
for s = 1, 2, . . . , L.
Input design:
(D1) The input signal ut , for t = 1, 2, . . . ,N , is an independent

sequence and has equal probability 0.5 of being larger or
smaller than zero (see Remark 2 for more general choices
of ut ).

We next describe a procedure for constructing confidence regions
2s for s = 1, 2, . . . , L. The final confidence region is obtained later
on as the intersection of the regions2s.
Procedure for the construction of confidence region2s:
(1) Compute the prediction errors

εt(θ) = yt − ŷt(θ) = yt − φTt θ (4)
for t = 1+ L, 2+ L, . . . , K + L = N .

(2) Select an integer s ∈ {1, 2, . . . , L} and compute
ft−s,s(θ) = sign [ut−s · εt(θ)]
for t = 1+ L, 2+ L, . . . , K + L = N , where sign is defined as

sign[x] =


−1, if x < 0
−1, with probability 0.5 if x = 0
1, with probability 0.5 if x = 0
1, if x > 0.

(3) Calculate empirical correlation functions through the fol-
lowing procedure. Select an integer M and construct M bi-
nary, i.e. {0, 1}-valued, stochastic strings of length K as fol-
lows: Let h0,1, h0,2, . . . , h0,K be the string of all zeros. Ev-
ery element of the remaining strings takes the value 0 or
1 with probability 0.5 each, and the elements are indepen-
dent of each other. However, if a string turns out to be
equal to an already constructed string, this string is removed
and another string to be used in its place is constructed
according to the same rule. Name the constructed non-
zero strings h1,1, h1,2, . . . , h1,K ;h2,1, h2,2, . . . , h2,K ;. . .;hM−1,1,
hM−1,2, . . . , hM−1,K . Compute

ḡi,s(θ) =
N∑

t=1+L

hi,t−L · ft−s,s(θ), i = 0, 1, . . . ,M − 1.

(4) Add a small random number νi,s uniformly distributed on
[−α, α]with 0 < α < 0.5 to each correlation function:
gi,s(θ) = ḡi,s(θ)+ νi,s, i = 0, 1, . . . ,M − 1.
The addition of νi,s prevents ties from occurring in the next
step.

(5) Select an integer q in the interval [1,M/2] and find the region
2s such that at least q of the gi,s(θ) functions are greater than
the function g0,s(θ) = ν0,s and at least q are smaller than
g0,s(θ) = ν0,s.

The final confidence set 2̂N is obtained by intersecting the sets2s
for s = 1, 2, . . . , L, i.e.

2̂N =

L⋂
s=1

2s.

One implementation aspect which is important to note is that
constructing the set 2s as indicated in the procedure can be very
hard. What instead is easy is to pick a θ value and verify through
points (1)–(5) whether this θ belongs to2s. This suggests that2s
can be constructed by first gridding the θ space and then verify
one by one whether or not the θ’s on the grid are in2s. While this
method is practical for problems of low dimensionality (θ has few
elements, i.e. L is small), it becomes computationally intensive for
problems where θ has many elements. This issue must necessarily
be given attention in future research.
2.3. Properties of the confidence regions

In this section we identify several important properties of the
confidence regions.
As in Campi and Weyer (2006b); Campi and Weyer (in press),

there are no assumptions on the noise. The main distinguishing
feature of the current problem setting is that the true system does
not belong to the model class. Therefore, while the correlation
function ut−s · εt(θ0) evaluated at the true parameter was
an independent and symmetrically distributed sequence in the
settings in Campi and Weyer (2005); Campi and Weyer (2006b);
Campi and Weyer (in press), this is no longer the case in the
present setting. However, by taking the sign-function of the
correlation function, sign[ut−s ·εt(θ)] evaluated at θ = θ0 becomes
a sequence of independent random variables symmetrically
distributed around zero (see Appendix A). Therefore, for the true
value θ = θ0 it is unlikely that nearly all of the correlation
functions gi,s(θ) are positive or negative, and those regions in
parameter space where this happens are therefore excluded from
the confidence sets in point (5) of the procedure. This fact in
conjunction with the way the gi,s(θ) functions are constructed in
point (4) of the procedure results in the following theorem.

Theorem 1. The set 2s constructed in point (5) of the procedure has
the property that

Pr
{
θ0 ∈ 2s

}
= 1−

2q
M
,

where M and q are chosen by the user in points (3) and (5) of the
procedure.

Proof. See Appendix A.

1 − 2q/M is the exact probability that θ0 ∈ 2s, therefore
θ0 6∈ 2s with probability 2q/M . As 2̂N is obtained by intersecting
2s, s = 1, . . . , L, it follows that θ0 6∈ 2̂N with probability at most
2qL/M , and we have the following theorem.

Theorem 2.

Pr
{
θ0 ∈ 2̂N

}
≥ 1−

2Lq
M
.

It can be shown, as formally stated in Theorem 3, that the
constructed region concentrates around the true parameter θ0 in
the sense that any θ 6= θ0 will eventually be excluded from the
confidence set as the number of data points increases, provided
that the following additional assumptions hold.

(A2) The input ut and noise nt have probability density functions
such that both can be arbitrarily small with non-zero proba-
bilities.

(A3) The input ut and noise nt sequences are strict-sense station-
ary and strict ergodic.2

Assumption (A3) ensures that samplemeans converge to expected
values, and Assumption (A2) ensures that themismatch between θ
and θ0 for θ 6= θ0 will give rise to a bias also after the sign-function
is applied in point (2) of the procedure.

Theorem 3. Under assumptions (A1)–(A3), for every fixed θ 6= θ0

Pr
{
∃N̄|θ 6∈ 2̂N ,∀N > N̄

}
= 1. (5)

2 Independent and identically distributed sequences are strict sense stationary
and strict ergodic (Stout, 1974, Lemma 3.5.8.).
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Proof. See Appendix B. �

Remark 1 (Correlation with Generalized Instruments). Point (2) in
the procedure for the construction of confidence regions can
be generalized: Instead of correlating the prediction errors with
delayed inputs we can correlate them with an independent
sequence ξt , i.e. ft−s,s(θ) = sign[ξt−s ·εt(θ)]where εt(θ) is as before
given by (4). Provided that ξt is independent of the noise and has
equal probability of being larger and smaller than 0, Theorems 1
and 2 remain valid. In order for the confidence set to shrink around
θ0, ξt must also be sufficiently correlated with the input. This
accommodates situations where we cannot choose the system
input ut , but a signal correlated with ut is available. �

Remark 2 (Non-white Input Case). The input designed in (D1) is
white. At times having a smoother signal is more advisable for
real systems. In this case, we can consider applying a filtered
input F(z−1)ut where F(z−1) is a known stable filter with a stable
inverse. We then obtain

yt = G0(z−1) · F(z−1)ut + nt .

The output yt is then filtered with the inverse filter F−1(z−1), so
that

F−1(z−1)yt = G0(z−1)ut + F−1(z−1)nt . (6)

We can then employ the LSCR method using the input signal ut
and the filtered output signal F−1(z−1)yt . The fact that the noise
is filtered through F−1(z−1) in (6) is not a problem since the
procedure holds without any assumptions on the noise sequence
(apart from being independent of ut ). �

2.4. Extension to the multi-variable case

The procedure described in the previous section can easily
be extended to the MIMO (Multi-Input–Multi-Output) case by
considering each output separately. Consider the following MIMO
(m-input p-output) system

yt =
∞∑
k=1

40kut−k + nt ,

where

yt =

y1,t...
yp,t

 , ut =

u1,t...
um,t

 ,

nt =

n1,t...
np,t

 , 40k =

θ
0
11,k . . . θ01m,k
...

. . .
...

θ0p1,k . . . θ0pm,k

 .
We use a predictor corresponding to an FIR model

ŷt(4) =
L∑
k=1

4kut−k.

The prediction error εt(4) =
[
ε1,t , ε2,t , . . . , εp,t

]T
= yt − ŷt(4) is

given by

εj,t(4) =

L∑
k=1

(
θ̃j1,ku1,t−k + · · · + θ̃jm,kum,t−k

)
+

∞∑
k=L+1

(
θ0j1,ku1,t−k + · · · + θ

0
jm,kum,t−k

)
+ nj,t ,

for j = 1, 2, . . . , p.
Under the assumption that the input vector sequence ut , t =
1, 2, . . . ,N , is independent in time and each element has equal
probability 0.5 of being larger or smaller than 0 and considering
the functions

f i,jt−s,s(4) = sign
[
ui,t−s · εj,t(4)

]
,

for i = 1, 2, . . . ,m, j = 1, 2, . . . , p, s = 1, 2, . . . , L, we can
construct guaranteed confidence regions for the parameters {θ0ji,k},
for i = 1, 2, . . . ,m, j = 1, 2, . . . , p, k = 1, 2, . . . , L, by employing
the LSCR algorithm developed in Section 2.2. Theorems 1 and 2 still
hold with obvious modifications.

3. More general model classes

It is well known (Heuberger et al., 1995; Wahlberg, 1991) that
using the pulse basis functions for approximation of moderately
damped systems or systems with high sampling rates leads to
approximations of high order. To deal with these situations,
several orthonormal basis functions which incorporate prior
system information have been suggested, e.g. the Laguerre
functions (Wahlberg, 1991) and the Kautz functions (Wahlberg,
1994) which are both special cases of the generalized orthonormal
basis functions introduced in Heuberger et al. (1995) and Van
den Hof et al. (1995). In this section, we first briefly describe
these generalized orthonormal basis functions and then extend the
results from the previous section to cover series expansions using
these basis functions.

3.1. Generalized orthonormal basis functions

The theorem below describes the generalized orthonormal
basis functions. The theorem follows from the results and
discussions leading up to Definition 3.1 in Heuberger et al. (2003).

Theorem 4. Let A(z−1) be a stable all-pass transfer function with an
internally balanced realization (A, B, C,D) of order n > 0. Denote

Bk(z−1) = B(z−1)Ak−1(z−1),

where B(z−1) = (zI − A)−1B. Then, the set of all scalar elements
of the vectors Bk(z−1), k = 1, 2, . . ., form an orthonormal set in
H2, and for every strictly proper transfer function H(z−1) ∈ H2,
there exists a unique row vector sequence Lk, k = 1, 2, . . ., with∑
∞

k=1 ‖Lk‖
2 <∞, such that

H(z−1) =
∞∑
k=1

LkBk(z−1)

=

∞∑
k=1

(
Lk,1Bk,1(z−1)+ · · · + Lk,nBk,n(z−1)

)
.

One can construct an all-pass transfer function A(z−1) from any
given set of stable poles, and thus the basis can incorporate
dynamics of any complexity, combining, for example, both fast and
slow dynamics in damped and resonant modes. This allows for
the construction of simplified dynamic models by incorporating a
priori knowledge about the system dynamics into the basis.
The pulse, Laguerre, and Kautz functions are special cases of the

generalized orthonormal basis functions as shown next.
Pulse functions: Using the all-pass transfer functionA(z−1) = z−1
with balanced realization (A, B, C,D) = (0, 1, 1, 0), we obtain the
standard pulse basis

Bk(z−1) = Ak(z−1) = z−k.
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Laguerre functions: Using the all-pass transfer function A(z−1) =
(1− az)/(z− a) for some real-valued awith |a| < 1, and balanced
realization

(A, B, C,D) = (a,
√
1− a2,

√
1− a2,−a),

the Laguerre basis is obtained (Wahlberg, 1991):

Bk(z−1) =
√
1− a2z

(1− az)k−1

(z − a)k
.

Kautz functions: Using the all-pass transfer function A(z−1) =
−cz2+b(c−1)z+1
z2+b(c−1)z−c

for some real-valued b, c with |b|, |c| < 1, and a
balanced realization

A =

[
b

√
1− b2

c
√
1− b2 −bc

]
, B =

[
0√
1− c2

]
,

C =
[
γ1 γ2

]
, D = −c

with γ1 =
√
(1− c2)(1− b2) and γ2 = −b

√
1− c2, we get

Bk(z−1) =

√
1− c2(−cz2 + b(c − 1)z + 1)k−1

(z2 + b(c − 1)z − c)k

[√
1− b2
z − b

]
,

and the Kautz functions follow (Wahlberg, 1994).

3.2. Generalized FIR models

In this section we convert the models, which are series
expansions in the above generalized basis functions, into FIR
models using a filtering procedure. After the conversion, the results
in Section 2 can be used to generate confidence regions.
In the approach so far, data has been considered as a sequence

in time. Specifically the output data points were

y1, y2, . . . , yN−1, yN .

We next introduce a notation which clearly distinguishes between
a sequence and a specific element of the sequence. We let {yt}
denote a sequence and {yt}t=k an element of the sequence. With
this notation the above data points can be written as

{yt}t=1, {yt}t=2, . . . , {yt}t=N−1, {yt}t=N
or

{yt−N+1}t=N , {yt−N+2}t=N , . . . , {yt−1}t=N , {yt}t=N , (7)

where {yt−k} is the sequence {yt} shifted by k, i.e. {yt−k} = z−k{yt}.
(7) can also be written as

{z−N+1{yt}}t=N , {z−N+2{yt}}t=N , . . . , {z−1{yt}}t=N , {yt}t=N . (8)

Note that z−1 is an all-pass filter, and (8) is a special case of data
obtained by repeated filtering with an all-pass filter A(z−1) =
z−1. More generally an arbitrary all-pass filterA(z−1) can be used
leading to the data

{AN−1(z−1){yt}}t=N , {AN−2(z−1){yt}}t=N ,

. . . , {A(z−1){yt}}t=N , {yt}t=N . (9)

This observation forms the starting point for rewriting the models
in the orthonormal basis functions as generalized FIRmodels. Note
that from Theorem 4, G0(z−1) can be written as

G0(z−1) =
∞∑
k=1

θ0kBk(z−1) =
∞∑
k=1

θ0kB(z
−1)Ak−1(z−1).

Therefore, the last datum in (9) is given by

ỹN := {yt}t=N = θ01{B(z
−1){ut}}t=N

+ θ02{B(z
−1)A(z−1){ut}}t=N + · · · + {nt}t=N

= θ01ũN−1 + θ
0
2ũN−2 + · · · + ñN ,
where

ũj = {B(z−1)AN−(j+1)(z−1){ut}}t=N .
Similarly

ỹN−1 := {A(z−1){yt}}t=N
= θ01{B(z

−1)A(z−1){ut}}t=N + θ02{B(z
−1)A2(z−1){ut}}t=N

+ · · · + {A(z−1){nt}}t=N
= θ01ũN−2 + θ

0
2ũN−3 + · · · + ñN−1

and, in general,

ỹj := {AN−j(z−1){yt}}t=N = θ01ũj−1 + θ
0
2ũj−2 + · · · + ñj

=

∞∑
k=1

θ0k ũj−k + ñj (10)

where

ñj = {AN−j(z−1){nt}}t=N .

Expression (10) generalizes (1) and (2) to the case where a
generic all-pass filter is used in place of the shift operator. Fig. 4
illustrates how the data ũj, ỹj, j = 1, . . . ,N , are obtained through
the successive filtering with the all-pass filterA(z−1).
A reduced-order predictor is now given by

ˆ̃yj(θ) =
L∑
k=1

θkũj−k

=

L∑
k=1

(θ1,kũ1,j−k + θ2,kũ2,j−k + · · · + θn,kũn,j−k),

where θl,k and ũl,j−k denote the elements of the θk and ũj−k vectors.
The filtered inputs ũj should have properties similar to those

stated in (D1), (A2) and (A3) for ut in the case of pulse basis
functions. For this to happen, we modify the design of ut as given
next in (D2). Proposition 1 below then proves that ũj does exhibit
the desired properties.
(D2) The input ut is a zero-mean white Gaussian signal with

spectral densityΦu > 0.

The main difference between this input design (D2) and (D1) is
that in (D2) ut is Gaussian. Thanks to Gaussianity, independence is
preserved after the filtering with an all-pass filter, as done in this
section.

Proposition 1. With the input design in (D2), the filtered inputs
ũj, j = 1, . . . ,N, are independent and identically distributed zero-
mean Gaussian, and, moreover, the elements of ũj are mutually
independent and each element has probability 0.5 of being larger or
smaller than zero.

Proof. See Appendix C.

We further assume that the noise ñj satisfies
(A5) ñj is strict sense stationary and strict ergodic and independent

of ũj. Moreover, ñj has a probability density such that it can
be arbitrarily small with non-zero probability.

From Proposition 1 and Assumption (A5) it follows that the new
input ũj and noise ñj satisfy the assumptions on ut and nt in
Section 2 and therefore the theory of Section 2 can be applied to the
present situation. One aspect deserves to be explicitly mentioned
though. ũj is a vector in the general case, so all the functions in
the algorithm, and specifically gi,s(θ), become vector functions. The
confidence set2s is now obtained by taking the intersection of the
confidence sets obtained by considering the n scalar elements of
gi,s(θ) separately.
The following corollary summarizes the properties of the

confidence regions.
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Fig. 4. Generation of the filtered data set {ũt , ỹt }t=1,2,...,N from the original data set {ut , yt }t=1,2,...,N .
Corollary 1. Assume that the input has been designed according
to (D2) and that assumption (A5) holds. Then the set 2s has the
property

Pr
{
θ0 ∈ 2s

}
≥ 1− 2qn/M,

and the set 2̂N =
⋂L
s=12s has the property that

Pr
{
θ0 ∈ 2̂N

}
≥ 1− 2Lqn/M.

Furthermore, for every fixed θ 6= θ0,

Pr
{
∃N̄|θ 6∈ 2̂N ,∀N > N̄

}
= 1.

For simplicity we have stated the Corollary for the case where the
number of scalar basis functions and hence the number of parame-
ters, is a multiple of n, the order of the all-pass filter. The Corollary
holdswith obviousmodificationswhen amodel class forwhich the
number of scalar basis functions is not a multiple of n is used.

Remark 3 (Effects of Initial Conditions). Performing the successive
filtering illustrated in Fig. 4 requires information about past input
and output ut , yt , t ≤ 0, and, with an arbitrary initialization of
the filters, the results of this section do not hold true rigorously. If,
for example, the filters generating ũj are arbitrary initialized, then
ũj is not an independent sequence. However, after a transient, the
magnitude of the tail becomes negligible and the filtered input can
in practice often be treated as independent. Note however that the
transient reduces the number of data points that in practice can
be used, and the longer the transient (e.g., for all-pass filters with
poles close to the unit circle) the fewer the available data points.
Note also that the initial conditions do not affect the results when
the pulse basis functions are used since they have a finite impulse
response. �

4. Numerical example

In this section, we present two simulation examples which
illustrate the algorithms developed in this paper.
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Fig. 5. First 20 coefficients of pulse basis functions.

4.1. FIR model

Consider the linear time-invariant discrete-time system

yt = G0(z−1)ut + nt , (11)

where the true transfer function

G0(z−1) =
0.6321
z − 0.3679

(12)

was obtained from a continuous-time transfer function

G0c (s) =
1
s+ 1

by discretizing it with a zero-order-hold and sampling period 1
second. The transfer function (12) has a rapidly decaying impulse
response sequence as shown in Fig. 5. The measurement noise
sequence nt was a biased white Gaussian sequence with mean
0.2 and variance 0.05. The above information is only given for
completeness and it was not used in the algorithm.
The input sequence ut was chosen as a zero-mean white

Gaussian sequence with variance 1. As a model class, we used
second-order FIR models

ŷt(θ) = θ1ut−1 + θ2ut−2, θ , [θ1 θ2]
T.
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Fig. 6. Non-asymptotic 95% confidence region for (θ01 , θ
0
2 ) (blank region) using 50

data points.F= true parameter.
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Fig. 7. Non-asymptotic 95% confidence region for (θ01 , θ
0
2 ) (blank region) using 100

data points.F= true parameter.

To construct confidence regions for θ01 and θ
0
2 , we considered

N = 50, 100, 500 and 2000 data points generated according to
(11) and (12), and computed

ft−1,1(θ) = sign
[
ut−1 · (yt − ŷt(θ))

]
, t = 3, 4, . . . ,N,

ft−2,2(θ) = sign
[
ut−2 · (yt − ŷt(θ))

]
, t = 3, 4, . . . ,N.

Then, we computed the following M = 400 empirical correlation
functions

gi,1(θ) =
N∑
t=3

hi,t−2 · ft−1,1(θ)+ νi,1, i = 0, 1, . . . ,M − 1,

gi,2(θ) =
N∑
t=3

hi,t−2 · ft−2,2(θ)+ νi,2, i = 0, 1, . . . ,M − 1.

Here νi,1 and νi,2 were uniformly distributed on [−0.1, 0.1]. We
excluded the regions in parameter space where at most 4 (out of
theM = 400) gi,1(θ) (or gi,2(θ)) functions were smaller or greater
than the g0,1(θ) (or g0,2(θ)) function. The obtained confidence
regions are the blank areas in Figs. 6–9. The regions constructed
this way have a probability of at least 1 − 2 · 2 · 5/400 = 0.95
of containing the true parameter. The true value is marked with
F. The regions where at most 4 values of gi,1(θ) functions were
smaller than g0,1(θ) are marked with ©, and the region where
at most 4 were greater than g0,1(θ) are marked with �. Likewise
for gi,2(θ), where + and × represent the regions where at most 4
values of gi,2(θ)were smaller or greater than g0,2(θ). Aswe can see,
each step in the construction of the confidence region excludes a
particular region. As expected, the size of the region decreases as
the number of data points gets larger. Note that the axes have been
re-scaled between Figs. 7 and 8.
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Fig. 8. Non-asymptotic 95% confidence region for (θ01 , θ
0
2 ) (blank region) using 500

data points.F= true parameter.
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Fig. 9. Non-asymptotic 95% confidence region for (θ01 , θ
0
2 ) (blank region) using 2000

data points.F= true parameter.

4.2. Laguerre model

We now consider a system with a more slowly decaying
impulse response sequence. The transfer function G0(z−1) is now
given by

G0(z−1) =
0.155z + 0.094

(z − 0.607)(z − 0.368)
=

n1
z − p1

+
n2
z − p2

where n1 = 0.787, n2 = −0.632, p1 = 0.607, and p2 = 0.368. This
system was obtained from a continuous-time transfer function

G0c (s) =
1

(2s+ 1)(s+ 1)
by discretizing it with a zero-order-hold and a sampling period of
1 s. The input ut and the measurement noise nt were zero-mean
white Gaussian with variance 1 and 0.05 respectively. N = 4000
input–output data points were generated.
The transfer function G0(z−1) can be expanded using the pulse

and Laguerre basis functions. The coefficients of the respective
basis functions are given by

θ0k (pulse) =
2∑
`=1

n`pk−1` , for k > 0

θ0k (Laguerre) =
2∑
`=1

n`
√
(1− a2)

1− a · p`

[
p` − a
1− a · p`

]k−1
, for k > 0,

where a = 0.5 is the pole location of the Laguerre basis functions.
This pole lies between the true system poles. The first 20 coeffi-
cients are shown in Fig. 10, where we observe that for the Laguerre
basis functions the first two terms are dominant. The coefficients
of the pulse basis functions on the other hand are slowly decaying.
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Fig. 10. First 20 coefficients of Laguerre basis functions with a = 0.5 (top) and
pulse basis functions (bottom).

We chose a second-order Laguerre model for the system. Its
predictor is given by

ŷt(θ) = θ1B1(z−1)ut + θ2B2(z−1)ut ,

where

Bk(z−1) = B(z−1)Ak−1(z−1)

with

B(z−1) =

√
1− a2

z − a
, A(z−1) =

1− az
z − a

, a = 0.5.

To obtain the confidence region for θ01 and θ
0
2 , we applied the

successive filtering explained in Section 3.2 to the original data.
Zero initial conditions were used in the filters.
We used the last 1000 filtered data points and computed, for

j = 3003, 3004, . . . , 4000,

fj−1,1(θ) = sign
[
ũj−1 · εj(θ)

]
,

fj−2,2(θ) = sign
[
ũj−2 · εj(θ)

]
,

and obtainedM = 960 empirical correlation functions

gi,1(θ) =
4000∑
j=3003

hi,j−3002 · fj−1,1(θ)+ νi,1, i = 0, 1, . . . , 959,

gi,2(θ) =
4000∑
j=3003

hi,j−3002 · fj−2,2(θ)+ νi,2, i = 0, 1, . . . , 959.

Here νi,1 and νi,2 were uniformly distributed on [−0.1, 0.1]. We
excluded the regions in parameter space where at most 11 (out of
M = 960) gi,1(θ) (or gi,2(θ)) functionswere smaller or greater than
the g0,1 (or g0,2) function. The obtained confidence region is the
blank area in Fig. 11, and it contains the true parameter with prob-
ability at least 0.95. The region where at most 11 values of gi,1(θ)
functions were smaller than g0,1(θ) is marked with©, and the re-
gion where at most 11 were greater than g0,1(θ) is marked with �.
Likewise for gi,2(θ), where+ and× represent the regions where at
most 11 values of gi,2(θ)were smaller or greater than g0,2(θ).

5. Concluding remarks

In this paper, we have extended the LSCR algorithm for
construction of non-asymptotic confidence regions to the case
where undermodelling is present. The systems are approximated
by generalized orthonormal basis functions models, and by
applying the sign-function in the computations of the correlation
functions, guaranteed non-asymptotic confidence regions can be
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Fig. 11. Non-asymptotic 95% confidence region for (θ01 , θ
0
2 ) (blank region) using

1000 filtered data points.F= true parameter.

constructed. Remarkably, the method does not make use of any
assumptions on the noise or on the decay rate of the unmodelled
dynamics. Themethodwas first developed for FIRmodels and then
extended to models represented by generalized orthonormal basis
functions through a filtering procedure.

Appendix A. Proof of Theorem 1

We start by establishing some preliminary propositions.

Proposition 2. Under assumption (A1), for all s ∈ {1, 2, . . . , L},
vt , sign[ut−s · εt(θ0)] is an independent sequence and vt takes the
values 1 and−1 with probability 0.5 each.

Proof. To simplify notation, we write ε0t for εt(θ
0).

Note first that ε0t is given by

ε0t =

∞∑
k=L+1

θ0k ut−k + nt ,

from which it follows that

(a) ut−s and ε0t are independent for all s ∈ {1, 2, . . . , L},
(b) for any τ > t and for all s ∈ {1, 2, . . . , L}, uτ−s is independent
of the pair (vt , ε0τ ),

since ut is an independent sequence.
We first prove that vt takes the values±1 with probability 0.5

each. From the input design, it follows that Pr{ut−s = 0} = 0 and
using the properties of the sign-function we have that

Pr {vt = 1} = Pr
{
ut−s > 0, ε0t > 0

}
+ Pr

{
ut−s < 0, ε0t < 0

}
+ 0.5Pr

{
ε0t = 0

}
.

Utilizing fact (a) above and that Pr{ut−s > 0} = Pr{ut−s < 0} =
0.5, we get

Pr {vt = 1} = Pr{ut−s > 0} · Pr
{
ε0t > 0

}
+ Pr{ut−s < 0} · Pr

{
ε0t < 0

}
+ 0.5Pr

{
ε0t = 0

}
= 0.5

[
Pr
{
ε0t > 0

}
+ Pr

{
ε0t < 0

}
+ Pr

{
ε0t = 0

}]
= 0.5.

Pr {vt = −1} = 0.5 is proved similarly.
Nextweprove that vt is an independent sequence. Observe that,

for any two positive integers t and τ with τ > t ,

Pr{vt = 1, vτ = sign[uτ−s · ε0τ ] = 1}

= Pr{vt = 1, uτ−s > 0, ε0τ > 0}

+ Pr{vt = 1, uτ−s < 0, ε0τ < 0}

+ 0.5Pr{vt = 1, ε0τ = 0}
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= Pr{uτ−s > 0|vt = 1, ε0τ > 0} · Pr{vt = 1, ε
0
τ > 0}

+ Pr{uτ−s < 0|vt = 1, ε0τ < 0, } · Pr{vt = 1, ε
0
τ < 0}

+ 0.5Pr{vt = 1, ε0τ = 0}
= [using fact (b)]
= Pr{uτ−s > 0} · Pr{vt = 1, ε0τ > 0}

+ Pr{uτ−s < 0} · Pr{vt = 1, ε0τ < 0}

+ 0.5Pr{vt = 1, ε0τ = 0}
= 0.5Pr{vt = 1}
= 0.25,

that is Pr{vt = 1, vτ = 1} = 0.5 · 0.5 = Pr{vt = 1} · Pr{vτ =
1}. Treating all other combinations similarly we obtain Pr{vt =
1, vτ = −1} = Pr{vt = −1, vτ = 1} = Pr{vt = −1, vτ = −1} =
0.25. Hence, the independence of vt and vτ has been proved. �

Proposition 3. Let H be a stochastic M × K matrix with elements
hi,t , i = 0, 1, . . . ,M − 1, t = 1, 2, . . . , K, constructed according
to point (3) in Section 2.2, and further let ξ , [ξ1, ξ2, . . . , ξK ]T be a
vector independent of H of mutually independent random variables
symmetrically distributed around 0. Given an ī ∈ {0, 1, . . .M − 1},
let Hī be the M × K matrix whose rows are all equal to the īth row of
H. Then,Hξ and (H−Hī)ξ have the sameM-dimensional distribution
provided that the īth element of (H−Hī)ξ (which is 0) is repositioned
as the first entry of the vector.

Proof. Let H be the set of all deterministic {0, 1}-valued M × K
matrices whose first row is all zeros and where the rows are
all different from each other. An inspection of point (3) of the
algorithm in Section 2.2 reveals that the stochastic matrix H
constructed there takes on a value in H , and each matrix in H
carries the same probability to be obtained. Given a specific matrix
H ∈ H , introduce the notation |H−Hī| to denote thematrix where
each entry of H − Hī is substituted by its absolute value. Consider
the following map:

map : H→ |H− Hī|
and further reposition the ī-th row as the first row.

It is easy to verify that this map transforms elements H ∈ H
into elements of H and, moreover, if H1 6= H2, then map(H1) 6=
map(H2). That is, the map is one-to-one onH .
Now, from the fact that themap is one-to-one and the stochastic

matrix H constructed in point (3) takes on all possible matrices in
H with the same probability, it turns out thatmap(H) has the same
probability distribution as H.
Introduce next the new variables

ξ̃t ,

{
ξt , if hī,t = 0
−ξt , if hī,t = 1,

and let ξ̃ be the vector with elements ξ̃t . We show below that
(i) the vector ξ̃ is independent of H (so that ξ̃ is also independent
of map(H)); and (ii) the vector ξ̃ has the same distribution as ξ.
To verify these two properties without too much notational

clutter, suppose that K = 2. Fix a specific matrix H̄ ∈ H and
consider the event where H = H̄. The entries of the īth row of H̄
will take on fixed numerical values, for the sake of concreteness say
(hī,1, hī,2) = (0, 1). Then, over the event where H = H̄, for given
sets E1 and E2, we have:

Pr{H = H̄, ξ̃1 ∈ E1, ξ̃2 ∈ E2}
= Pr{H = H̄, ξ1 ∈ E1,−ξ2 ∈ E2}
= [since H and ξ are independent]
= Pr{H = H̄} · Pr{ξ1 ∈ E1,−ξ2 ∈ E2}
= [since ξ1 and ξ2 are independent]
= Pr{H = H̄} · Pr{ξ1 ∈ E1} · Pr{−ξ2 ∈ E2}
= [since ξ2 is symmetrically distributed]
= Pr{H = H̄} · Pr{ξ1 ∈ E1} · Pr{ξ2 ∈ E2}
= Pr{H = H̄, ξ1 ∈ E1, ξ2 ∈ E2},

showing that (ξ̃1, ξ̃2) and (ξ1, ξ2) have the same distribution,
conditionally to that H = H̄. Since the same holds for any other
choice of H̄, the conclusion is drawn that (H, ξ̃1, ξ̃2) has the same
joint distribution as (H, ξ1, ξ2), so that (H, ξ̃1, ξ̃2) carries the same
distribution properties as (H, ξ1, ξ2). Generalizing to any K , we
similarly get that (H, ξ̃) has the same joint distribution as (H, ξ).
Now, property (i) that ξ̃ is independent of H follows from that ξ is
independent ofH, since the joint distribution ofH and ξ̃ is the same
as that ofH and ξ. Moreover, themarginals of ξ̃ and ξ are obviously
the same, and this is property (ii).
To conclude the proof, observe now that (H−Hī)ξ = |H−Hī|ξ̃,

so that the vector (H−Hī)ξwhere the īth element is repositioned as
the first entry is the same asmap(H)·ξ̃. Sincemap(H) is distributed
as H, ξ̃ is distributed as ξ, and map(H) and ξ̃ are independent,
map(H) · ξ̃ has the same distribution as Hξ and the proposition
is established. �

Proposition 4. Let H and ξ be as in Proposition 3. Let µ ,
[µ0, µ1, . . . , µM−1]

T be a vector of mutually independent and
identically distributed random variables, independent of ξ and H.
Then, the random vector Hξ + µ has the following property: each
element of the vector Hξ + µ has the same probability 1/M to be in
the jth position (i.e. there are exactly j− 1 other elements in Hξ + µ
smaller than the variable under consideration) and this holds for any
choice of j between 0 to M − 1.

Proof. Pick an element of the vectorHξ+µ, say
∑K
t=1 hī,t ·ξt+µī.

This variable is in the jth position if the inequality

K∑
t=1

hī,t · ξt + µī >
K∑
t=1

hi,t · ξt + µi (A.1)

is satisfied for exactly j − 1 choices of i ∈ {0, 1, . . . ,M − 1}. The
relation (A.1) is equivalent to say that

K∑
t=1

(hi,t − hī,t) · ξt + µi − µī < 0

holds for j−1 selections of i ∈ {0, 1, . . . ,M−1}. FromProposition 3
it follows that

∑K
t=1(hi,t − hī,t) · ξt , i = 0, 1, . . . ,M − 1, with

the īth element repositioned as the first one, has the same joint
M-dimensional distribution as

∑K
t=1 hi,t · ξt , i = 0, 1, . . . ,M −

1, i.e. the joint distribution is independent of the chosen ī.
Moreover, since µi is independent and identically distributed, the
M-dimensional joint distribution of µi − µī, i = 0, 1, . . . ,M −
1, with the īth element repositioned as the first element is also
independent of the chosen ī. Asµ is independent ofH and ξ, it also
follows that the jointM-dimensional distribution of

K∑
t=1

(hi,t − hī,t) · ξt + µi − µī

with the īth element repositioned as the first is independent of the
chosen ī. Hence, the probability that ī is in the jth position does
not depend on the chosen ī, and since ī can take on M values this
probability is 1/M . �
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Using these propositions, we now prove Theorem 1. Let gs =
[g0,s(θ0), g1,s(θ0), . . . , gM−1,s(θ0)]T and note that gs can be written
as Hv + ν where H is the stochastic M × K matrix constructed in
point (3) of the algorithm in Section 2.2, v = [v1+L, . . . , vN ]T =[
sign[u1+L−s · ε1+L(θ0)], . . . , sign[uN−s · εN(θ0)]

]T
and ν = [ν0,s,

ν1,s, . . . , νM−1,s]
T. Observe that H is the same as in Proposition 4

while v satisfies the assumptions for ξ in Proposition 4 in view of
the results in Proposition 2 and ν satisfies the assumptions forµ in
Proposition 4.
Consider now the event

A =
{
g0,s(θ0) is in the 1st or 2nd or . . . or q th position

}
∪{g0,s(θ0) is in theMth or (M − 1)th or
. . . or (M − q+ 1)th position}.

In view of Proposition 4,

Pr(A) =
2q
M
. (A.2)

Suppose that we have extracted a probabilistic outcome ω in A.
Then, either gi,s(θ0) > g0,s(θ0) for at most q − 1 selection of i
or it is less than g0,s(θ0) for at most q − 1 selection of i, so that
θ0 6∈ 2s (recall the construction of2s). Vice versa, if ω 6∈ A, then
gi,s(θ0) > g0,s(θ0) for at least q selection of i and gi,s(θ0) < g0,s(θ0)
for at least q selection of i, yielding θ0 ∈ 2s. Using (A.2), the
conclusion is drawn that

Pr
{
θ0 ∈ 2s

}
= 1−

2q
M

and the proof is completed. �

Appendix B. Proof of Theorem 3

Before proving the theorem, we show a uniqueness property of
the true parameter θ = θ0.

Proposition 5. Let εt(θ) = yt − ŷt(θ) be the prediction error
associated with the predictor (3). Under assumptions (A1)–(A2), θ =
θ0 is the unique solution to the set of equations

E {sign[ut−s · εt(θ)]} = 0, s = 1, 2, . . . , L.

Proof. The fact that θ0 is a solution to

E {sign[ut−s · εt(θ)]} = 0 for s = 1, 2, . . . , L

has already been shown in the proof of Proposition 2 under
assumptions (A1). We prove here that it is the only solution.
E{sign[ut−s · εt(θ)]} = 0 is satisfied if and only if

Pr {ut−s · εt(θ) > 0} = Pr {ut−s · εt(θ) < 0} . (B.1)

We show by contradiction that, for each s, the condition (B.1) holds
only when θs = θ0s . Fix a θ such that θ̃s , θ

0
s − θs 6= 0, then by

dividing by θ̃s, (B.1) can be rewritten as

Pr
{
u2t−s + ut−s · x

s
t > 0

}
= Pr

{
u2t−s + ut−s · x

s
t < 0

}
, (B.2)

where

xst ,
∑

k≤L, k6=s

(θ̃k/θ̃s)ut−k +
∑
k>L

(θ0k /θ̃s)ut−k + (1/θ̃s)nt .

Now, using the given assumptions,we show that the probability on
the left-hand side of (B.2) is larger than the one on the right-hand
side due to the term u2t−s, arriving at a contradiction.
From the assumption (A1), xst is independent of ut−s. Hence,

Pr
{
ut−s · xst < 0

}
= Pr

{
ut−s < 0, xst > 0

}
+ Pr

{
ut−s > 0, xst < 0

}
= Pr {ut−s < 0} Pr

{
xst > 0

}
+ Pr {ut−s > 0} Pr

{
xst < 0

}
= 0.5 · Pr

{
xst 6= 0

}
= 0.5,

where Pr
{
xst 6= 0

}
= 1 follows from condition (D1) and

assumption (A2). Similarly, it can be shown that

Pr
{
ut−s · xst > 0

}
= 0.5,

so that

Pr
{
ut−s · xst < 0

}
= Pr

{
ut−s · xst > 0

}
= 0.5. (B.3)

For any setsA andB, it is true that Pr(A) = Pr(A∩B)+Pr(A∩Bc).
Using this relation and

B , {ω : u2t−s(ω)+ ut−s(ω) · x
s
t(ω) < 0}

⊆
{
ω : ut−s(ω) · xst(ω) < 0

}
, A,

we have

Pr{ut−s · xst < 0} = Pr
{
u2t−s + ut−s · x

s
t < 0

}
+ Pr

{
ut−s · xst < 0, u

2
t−s + ut−s · x

s
t ≥ 0

}
. (B.4)

The second term on the right-hand side of (B.4) is

Pr
{
ut−s · xst < 0, u

2
t−s + ut−s · x

s
t ≥ 0

}
= Pr

{
ut−s < 0, xst > 0, u

2
t−s + ut−s · x

s
t ≥ 0

}
+ Pr

{
ut−s > 0, xst < 0, u

2
t−s + ut−s · x

s
t ≥ 0

}
= Pr

{
u2t−s + ut−s · x

s
t ≥ 0|ut−s < 0, x

s
t > 0

}
× Pr

{
ut−s < 0, xst > 0

}
+ Pr

{
u2t−s + ut−s · x

s
t ≥ 0|ut−s > 0, x

s
t < 0

}
× Pr

{
ut−s > 0, xst < 0

}
= Pr

{
−ut−s ≥ xst |ut−s < 0, x

s
t > 0

}
× Pr

{
ut−s < 0, xst > 0

}
+ Pr

{
ut−s ≥ −xst |ut−s > 0, x

s
t < 0

}
× Pr

{
ut−s > 0, xst < 0

}
.

(B.5)

Since xst is independent of ut−s and can take on arbitrary small
values with non-zero probability (assumption (A2)), at least one
of the two terms on the right-hand side of (B.5) must be strictly
positive. Therefore, from (B.5) we have Pr{ut−s · xst < 0, u2t−s +
ut−s · xst ≥ 0} > 0 which in turn from (B.4) implies that

Pr
{
ut−s · xst < 0

}
> Pr

{
u2t−s + ut−s · x

s
t < 0

}
.

Similarly, we can prove that

Pr
{
ut−s · xst > 0

}
< Pr

{
u2t−s + ut−s · x

s
t > 0

}
.

Hence, using (B.3),

Pr
{
u2t−s + ut−s · x

s
t > 0

}
> Pr

{
u2t−s + ut−s · x

s
t < 0

}
,

which contradicts (B.2). This completes the proof of the proposi-
tion. �

Now we prove Theorem 3.
We will prove that, with probability 1, the functions ḡi,s(θ)/N ,

i = 1, 2, . . . ,M − 1, tend to 0.5 · E{ft−s,s(θ)} as N goes to infinity.
Then, for θ 6= θ0, it is known from Proposition 5 that E{ft−s,s(θ)} =
E{sign[ut−s · εt(θ)]} 6= 0 for some s ∈ {1, 2, . . . , L}, and when
N →∞ all the ḡi,s(θ) and gi,s(θ), i = 1, 2, . . . ,M−1, will have the
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same sign as E{ft−s,s(θ)}. Consequently, θ will be discarded from
2̂N for N large enough, as stated in the theorem.
Pick any θ 6= θ0 and an s ∈ {1, 2, . . . , L}. The process ft−s,s(θ) =

sign[ut−s · εt(θ)] inherits the properties of being strict sense
stationary and strict ergodic from ut and nt (assumption (A3)), see
e.g. Stout (1974, Theorem 3.5.8, p. 182). Thus, as N → ∞, the
Birkhoff–Khinchin theorem (see Theorem 1 in Section 3, Chapter
5 of Shiryaev (1995)) entails that

∑N
t=1+L ft−s,s(θ)/N converges to

E{ft−s,s(θ)}with probability one. Then,

ḡi,s(θ)
N
=
1
N

N∑
t=1+L

hi,t−L · ft−L,s(θ)

→ 0.5 · E{ft−s,s(θ)} 6= 0, i = 1, 2, . . . ,M − 1,

with probability one. It follows that all of the functions gi,s(θ) −
g0,s(θ) = ḡi,s(θ) + νi,s − ν0,s, i = 1, 2, . . . ,M − 1, will have the
same sign as E{ft−s,s(θ)} for allN > N̄ with a sufficiently large value
of N̄ , and the θ will be excluded from the confidence set 2s (and
hence from 2̂N ). Therefore (5) holds. �

Appendix C. Proof of Proposition 1

From (D2), ut is white with spectral densityΦu > 0 and hence

E{ũiũTj }

= E
{
{BN−i(z−1){ut}}t=N · {BT

N−j(z
−1){ut}}t=N

}
=
Φu

2π

∫ π

−π

BN−i(e−jω)BT
N−j(e−jω)dω

=

{
Φu · I, for i = j, (I: identity matrix)
0, for i 6= j, (C.1)

where we have used Parseval’s relationship and the orthogonality
of the basis functions (Theorem 4), i.e.

1
2π

∫ π

−π

Bn(e−jω)Bm(e−jω)dω =
{
I, n = m
0, n 6= m.

ũj is Gaussian since it is obtained by filtering ut which is Gaussian.
Moreover, uncorrelated Gaussian variables are independent, and
hence the theorem follows from (C.1). �
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