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Abstract. Many engineering problems can be cast as optimization problems subject to convex constraints
that are parameterized by an uncertainty or ‘instance’ parameter. Two main approaches are generally available
to tackle constrained optimization problems in presence of uncertainty: robust optimization and chance-con-
strained optimization. Robust optimization is a deterministic paradigm where one seeks a solution which
simultaneously satisfies all possible constraint instances. In chance-constrained optimization a probability
distribution is instead assumed on the uncertain parameters, and the constraints are enforced up to a pre-speci-
fied level of probability. Unfortunately however, both approaches lead to computationally intractable problem
formulations.

In this paper, we consider an alternative ‘randomized’ or ‘scenario’ approach for dealing with uncertainty
in optimization, based on constraint sampling. In particular, we study the constrained optimization problem
resulting by taking into account only a finite set of N constraints, chosen at random among the possible
constraint instances of the uncertain problem. We show that the resulting randomized solution fails to satisfy
only a small portion of the original constraints, provided that a sufficient number of samples is drawn. Our
key result is to provide an efficient and explicit bound on the measure (probability or volume) of the original
constraints that are possibly violated by the randomized solution. This volume rapidly decreases to zero as N

is increased.

1. Introduction

Uncertain convex programming [4, 15] deals with convex optimization problems
in which the constraints are imprecisely known. In formal terms, an uncertain convex
program (UCP) is a family of convex optimization problems whose constraints are
parameterized by an uncertainty (or instance) parameter δ ∈ � ⊆ R

�

UCP :

{
min

x∈X⊆Rn
cT x subject to f (x, δ) ≤ 0, δ ∈ �

}
, (1)

where x ∈ X is the optimization variable, X is convex and closed, and the function
f (x, δ) : X × � → R is convex in x for all δ ∈ �. The function f (x, δ) is here
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assumed to be scalar-valued without loss of generality, since multiple scalar-valued con-
vex constraints fi(x, δ) ≤ 0, i = 1, . . . , nf , may always be converted into a single
scalar-valued convex constraint of the form f (x, δ) = maxi=1,... ,nf

fi(x, δ) ≤ 0. Also,
in the problem family (1) the optimization objective is assumed to be linear and ‘certain’
without loss of generality.

1.1. Current solution approaches

Two main and distinct philosophies of solution to uncertain programs are currently found
in the literature: a probabilistic approach based on ‘chance constraints’, and a determinis-
tic one based on ‘robust optimization’. The chance-constrained approach has the longest
history, dating back to the work of Charnes and Cooper for linear programs in 1959, [10].
The essence of this probabilistic approach is to consider the uncertainty parameter δ as a
random variable and to enforce the constraints up to a desired level of probability. More
precisely, if P is the probability on �, and ε ∈ [0, 1] is an acceptable ‘risk’ of constraint
violation, the chance (or probability) constrained version of the uncertain program is the
following program

PCP : min
x∈X⊆Rn

cT x subject to P {f (x, δ) > 0} ≤ ε. (2)

Unfortunately however, such kind of optimization problems turn out to be extremely
difficult to solve exactly. Moreover, even if f (x, δ) is convex in x for all δ, the feasible
set {x : P {f (x, δ) > 0} ≤ ε} may be nonconvex, and hence PCP is not a convex pro-
gram in general. We direct the reader to the monograph by Prékopa [27] for an extensive
presentation of many available results on chance-constrained optimization.

An alternative to the chance-constrained approach to the solution of uncertain pro-
grams is the so-called ‘min-max’ or ‘worst-case’ approach. While the worst-case para-
digm is classical in statistical decision theory, numerically efficient algorithms (mainly
interior point methods for convex programming) for the solution of worst-case optimi-
zation problems in some specific cases appeared only recently in the literature, see [3–5,
14, 15]. Perhaps due to the influence of robust control theory on this particular area of
optimization, the term ‘robust optimization’ was employed in the above references to
denote the min-max or worst-case approach.

In robust optimization one looks for a solution which is feasible for all possible
instances of the uncertain parameter δ, and hence for all problem instances belonging to
the family UCP. This amounts to solving the following robust convex program

RCP: min
x∈Rn

cT x subject to x ∈ X ∩ �, (3)

where

�
.=

⋂
δ∈�

{x : f (x, δ) ≤ 0} (4)

(throughout, we assume that X ∩ � �= ∅).
Notable special cases of the above problem are robust linear programs [5], for which

f (x, δ) is affine in x, and robust semidefinite programs [15], for which the set � is
expressed as
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� =
⋂
δ∈�

{x : F(x, δ) � 0} ,

where F(x, δ) = F0(δ) + ∑n
i=1 xiFi(δ), Fi(δ) = FT

i (δ), and ‘�’ means ‘negative
semidefinite’.

Robust convex programs have found applications in many contexts, such as truss
topology design [3], robust antenna array design, portfolio optimization, and robust
estimation and filtering, [13, 15]. In the context of systems and control engineering,
robust semidefinite programs proved to be useful in constructing Lyapunov functions
for uncertain systems, and in the design of robust controllers, see e.g. [1].

The RCP problem is still a convex optimization problem, but since it involves an
infinite number of constraints, it is in general numerically hard to solve, [4]. For this
reason, in all the previously cited literature particular relaxations of the original prob-
lem are sought in order to transform the original semi-infinite optimization problem
into a standard one. Typical relaxation methods require the introduction of additional
‘multiplier’ or ‘scaling’ variables, over which the optimization is to be performed. The
projection of the feasible set of the relaxed problem onto the space of original problem
variables is in general an inner approximation of the original feasible set, and there-
fore relaxation techniques provide an upper bound on the actual optimal solution of
RCP. The main difficulties with the relaxation approach are that the sharpness of the
approximation is in general unknown (except for particular classes of problems, see [6,
17]), and that the method itself can be applied only when the dependence of f on δ

has a particular and simple functional form, such as affine, polynomial or rational. As
an additional remark, we note that the standard convex optimization problem achieved
through relaxation often belongs to a more complex class of optimization problems than
the original one, that is relaxation ‘lifts’ the problem class. For example, robust linear
programs may result in second order cone programs (see for instance [22]), and robust
second order cone programs may result in semidefinite programs, [31, 32].

1.2. A computationally feasible paradigm: Sampled convex programs

Motivated by the computational complexity of the discussed methods for uncertain con-
vex programming, in this paper we pursue a different philosophy of solution, which is
based on randomization of the parameter δ. Similar to the probabilistic approach, we
assume that the uncertain problem family (1) is parameterized by an instance parameter δ

which is a random variable with probability P . Then, we collect N randomly chosen sam-
ples δ(1), . . . , δ(N) of the instance parameter, and construct the sampled convex program

SCPN : min
x∈Rn

cT x subject to x ∈ X

f (x, δ(i)) ≤ 0, i = 1, . . . , N. (5)

This sampled (or ‘randomized’) program has a distinctive advantage over RCP and PCP:
it is a standard convex program with N constraints, and hence it is typically efficiently
solvable. However, a fundamental question need be addressed: what can we say about
the constraint satisfaction for an optimal solution of SCPN ?

The feasible set of the randomized problem SCPN is an outer approximation of the
feasible set of RCP. Therefore, the randomized program yields an optimal objective
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value that outperforms the optimal objective value of RCP. The price which is paid for
this enhancement is that the randomized solution is feasible for many – but not all – of
the instances of δ. In this connection, the crucial question to which this paper is devoted
is the following:

How many samples (scenarios) need to be drawn in order to guarantee
that the resulting randomized solution violates only a ‘small portion’ of
the constraints?

Using statistical learning techniques, we provide an explicit bound on the measure
(probability or volume) of the set of original constraints that are possibly violated by
the randomized solution. This volume rapidly decreases to zero as N is increased, and
therefore the obtained randomized solution can be made approximately feasible for the
robust problem (3) by sampling a sufficient number of constraints. This result credits the
method with wide applicability. Moreover, we show that an optimal solution resulting
from the sampled problem (5) is feasible (with high probability) for the chance-con-
strained problem (2).

Deterministic constraint reduction methods have been proposed by other researchers
in different contexts. Approximate linear programs for queuing networks with a reduced
number of constraints have been studied in [24]. Dynamic programming is considered
in [18] where an approximated cost-to-go function is introduced to implement a linear
programming-based solution with a low number of constraints. A similar approach has
also been independently proposed in [28].

These mentioned contributions propose ad-hoc constraint reduction methods that
exploit the specific structure of the problem at hand. A considerable body of literature
also exists on so-called column generation methods, which are typically employed for
linear programs with a very large number of variables. The dual analog of these methods
can indeed be viewed as a constraint reduction technique, and it is related to Kelley’s cut-
ting plane methods for convex programming, [20]. We address the reader to the survey
[23] and the references therein for further discussion on this topic. Other methods are
also known in linear programming that start by solving a subproblem with a randomly
chosen subset of the original constraints, and then iteratively update this subset by elim-
inating inactive constraints and adding violated ones, see for instance Section 9.10 of
[25].

The literature on randomized methods for uncertain convex optimization problems
is instead very scarce. A noteworthy contribution is [12], in which a constraint sample
complexity evaluation for uncertain linear programs is derived, motivated by applica-
tions in dynamic programming. The bound on the sample complexity in [12] is based on
the Vapnik-Chervonenkis (VC) theory, [33, 34], and this contribution has the important
merit of bringing instruments from the statistical learning literature of uniform conver-
gence into the realm of robust optimization. Following a similar approach, a sample
complexity evaluation for a certain class of quadratic convex programs has also been
independently derived in [7]. The contribution of the present paper is somehow different
in spirit from [12] and [7]. We no longer rely on the VC theory, but instead our approach
hinges upon the introduction of so-called ‘support constraints’ (see Definition 4). In this
way we gain two fundamental advantages: i) generalizing the VC approach to different
classes of convex programs (other than linear or quadratic) would require to determine



Uncertain convex programs: randomized solutions 29

an upper bound on the VC-dimension for the specific problem class under consider-
ation, which is in general a difficult task that can possibly lead to conservative estimates.
Such an evaluation is not required along our approach, where the sample complexity
can be straightforwardly computed; ii) more fundamentally, our results in Theorem 1
and Corollary 1 hold for any convex program, and therefore even for constraint sets
having infinite VC-dimension, in which case the VC theory is not even applicable. As an
additional remark, we mention that the sample complexity evaluation in [12] holds for
all feasible solutions of the optimization problem and not just for the optimal solution,
contrary to the evaluation derived here. On the one hand, this fact may introduce con-
servatism in the evaluation of [12], since the bound holds for other feasible solutions,
besides the optimal one. On the other hand, having a sample complexity evaluation valid
for all feasible solutions has interest in certain contexts, such as the ones studied in [7].

In the different – though strictly related – setting of feasibility determination, the
idea of approximate feasibility in robust semidefinite programming has been discussed
in [2], and stochastic algorithms for approximate feasibility are studied in [9]. Constraint
sampling schemes for large scale uncertain programs have also recently been proposed
in [26].

The paper is organized as follows. Section 2 contains the main result (Theorem 1),
whose complete proof is reported in a separate section (Section 3). In Section 4 the
main result is extended to problems with non-unique optimal solutions (Theorem 3) and
to problems with convex objective. Section 5 presents numerical examples and appli-
cations to robust linear programming, robust least-squares problems, and semidefinite
programming. Conclusions are finally drawn in Section 6.

2. Randomized approach to uncertain convex programming

Consider (1), and assume that the support � for δ is endowed with a σ -algebra D and
that a probability measure P over D is also assigned. Depending on the situation at
hand, P can have different interpretations. Sometimes, it is the actual probability that
the uncertainty parameter δ takes on value in a certain set, while other times P simply
describes the relative importance we attribute to different instances.

Definition 1 (Violation probability). Let x ∈ X be a candidate solution for (1). The
probability of violation of x is defined as

V (x)
.= P {δ ∈ � : f (x, δ) > 0}

(here, it is assumed that {δ ∈ � : f (x, δ) > 0} is an element of the σ -algebra D). 	

For example, if a uniform (with respect to Lebesgue measure) probability density is

assumed, then V (x) measures the volume of ‘bad’ parameters δ such that the constraint
f (x, δ) ≤ 0 is violated. Clearly, a solution x with small associated V (x) is feasible for
‘most’ of the problem instances in the UCP family. We have the following definition.

Definition 2 (ε-level solution). Let ε ∈ [0, 1]. We say that x ∈ X is an ε-level robustly
feasible solution if V (x) ≤ ε. 	
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Notice that, by the above definition, any ε-level solution is a feasible solution for the
chance-constrained optimization problem (2). Our goal is to devise an algorithm that
returns a ε-level solution, where ε is any fixed small level. To this purpose, we now
formally introduce a randomized convex program as follows.

Definition 3 (Sampled convex program). Let δ(1), . . . , δ(N) be N independent iden-
tically distributed samples extracted according to probability P . The sampled convex
program derived from (1) is

SCPN : min
x∈Rn

cT x subject to x ∈ X

f (x, δ(i)) ≤ 0, i = 1, . . . , N. (6)

	

For the time being, we assume that SCPN admits a unique solution. Clearly, should
SCPN be unfeasible (i.e. ∩i=1,... ,N

{
x : f (x, δ(i)) ≤ 0

} ∩ X = ∅), then RCP would be
unfeasible too. The uniqueness assumption is instead temporarily made for clarity in the
presentation and proof of the main result, and it is removed in the later Section 4.1.

Let then x̂N be the unique solution of problem SCPN . Since the constraints
f (x, δ(i)) ≤ 0 are randomly selected, the optimal solution x̂N is a random variable
that depends on the extraction of the multi-sample δ(1), . . . , δ(N).

The following key theorem pinpoints the properties of x̂N .

Theorem 1. Let x̂N be the (unique) solution to SCPN . Then,

EP N [V (x̂N)] ≤ n

N + 1
, (7)

where n is the size of x, and P N (= P × · · · × P , N times) is the probability measure
in the space �N of the multi-sample extraction δ(1), . . . , δ(N). 	

The proof of Theorem 1, which requires the statement of some preliminary results, is
given in Section 3.2.

An immediate consequence of Theorem 1 is that the average probability of violation
of x̂N is proportional to the size of the optimization variable x, and goes to zero linearly
with the number N of sampled constraints.

From Theorem 1, we also derive the following corollary.

Corollary 1. Fix two real numbers ε ∈ [0, 1] (level parameter) and β ∈ [0, 1] (confi-
dence parameter) and let

N ≥ n

εβ
− 1. (8)

Then, with probability no smaller than 1 −β, the randomized problem SCPN returns an
optimal solution x̂N which is ε-level robustly feasible. 	

Proof. To see that Corollary 1 follows from Theorem 1, notice that

P N {V (x̂N) > ε} ≤ 1

ε
EP N [V (x̂N)] ≤ 1

ε

n

N + 1
,
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where the first inequality is the Markov inequality, while the last one follows from (7).
Then, using (8) we immediately obtain that

P N {V (x̂N) > ε} ≤ 1

ε

n

N + 1
≤ 1

ε

n
n
εβ

− 1 + 1
= β,

which proves the statement. 	

A subtle measurability issue arises regarding the definition of V (x̂N). In fact, with-

out any extra assumptions, there is no guarantee that V (x̂N) is measurable, so that
EP N [V (x̂N)] may not be well-defined. Here and elsewhere, the measurability of V (x̂N)

is taken as an assumption.
We here remark that the ‘sample complexity’ of SCPN (i.e. the number N of random

samples that need to be drawn in order to achieve the desired probabilistic level in the
solution) scales linearly with respect to 1/εβ, and with respect to the number n of decision
variables. For reasonable probabilistic levels, the required number of these constraints
appears to be manageable by current convex optimization numerical solvers.

2.1. Discussion on main result

We next comment more closely on the proposed randomized approach.

2.1.1. Role of probability P . Probability P plays a double role in our approach: on
the one hand, it is the probability according to which the uncertainty is sampled; on the
other hand, it is the probabilistic measure according to which the probabilistic levels of
quality are assessed.

In certain problems, P is the probability of occurrence of the different instances
of the uncertain parameter δ. In other cases, it more simply represents the different
importance we place on different instances. Extracting δ samples according to a given
probability measure P is not always a simple task to accomplish, see [8] for a discussion
of this topic and polynomial-time algorithms for the sample generation in some matrix
norm-bounded sets.

In some applications (see e.g. [7]), probability P is not explicitly known and the
sampled constraints are directly made available as observations. In this connection, it is
important to note that the bound (8) is probability independent (i.e. it holds irrespective
of the underlying probability P ) and can therefore be applied even when P is unknown.

2.1.2. Feasibility vs. performance. Efficient solution techniques for the RCP problem
are known only for certain simple dependencies of f on δ, such as affine, polynomial
or rational. In other cases, one should consider a probabilistic approach, for which the
randomized technique offers a practicable way of proceeding in order to compute a
solution.

Even when solving the RCP problem is possible, the randomized approach can offer
advantages that should be considered when choosing a solution methodology. In fact,
solving RPC gives 100% deterministic guarantee that the constraints are satisfied, no
matter what δ ∈ � is. Solving SCPN leaves instead a chance to the occurrence of δ’s
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which are violated by the solution. On the other hand, SCPN provides a solution (for
the satisfied constraints) that outperforms the solution obtained via RCP. In this context,
fixing a suitable level ε is sometimes a matter of trading probability of unfeasibility
against performance.

Remark 1. In certain problems, allowing even for a tiny probability ε of constraint vio-
lation can change significantly the problem solution and, possibly, result in a significant
improvement of the optimization value for those instances that remain feasible. One
should therefore bear in mind that the optimal objective obtained from a probabilis-
tic approach can be significantly different from the optimal objective obtained from a
robust approach, even if a very small violation probability is imposed in the probabilistic
solution. An extreme example of this situation is the following. Let � = [0, 1], x ∈ R

and

f (x, δ) =
{ 1

α
− x, δ ∈ [0, α]

−x, δ ∈ (α, 1],

with δ uniformly distributed in [0, 1], and where α is a given small positive number,
say α = 10−6. Let further the minimization objective cT x be specified by c = 1. Then,
the RCP problem would yield an optimal objective value equal to 1/α = 106. On the
other hand, setting a violation probability ε > α, the probabilistic problem PCP would
instead yield an optimal objective value equal to zero, since it would neglect the fact
that the constraint is violated for uncertainties lying in a set of measure smaller than ε.
Neglecting a ‘bad set’ of small probability thus resulted in a dramatic improvement in
the attainable performance.

2.1.3. A-priori and a-posteriori assessments. It is worth noticing that a distinction
should be made between the a-priori and a-posteriori assessments that one can make
regarding the probability of constraint violation. Indeed, before running the optimiza-
tion, it is guaranteed by Corollary 1 that if N ≥ n/εβ−1 samples are drawn, the solution
of the randomized program will be ε-level robustly feasible, with probability no smaller
than 1−β. However, the a-priori parameters ε, β are generally chosen not too small, due
to technological limitations on the number of constraints that one specific optimization
software can deal with.

On the other hand, once a solution has been computed (and hence x = x̂N is fixed),
one can make an a-posteriori assessment of the level of feasibility using Monte-Carlo
techniques. In this case, a new batch of Ñ independent random samples of δ ∈ � is
generated, and the empirical probability of constraint violation, say V̂

Ñ
(x̂N ), is com-

puted according to the formula V̂
Ñ

(x̂N ) = 1
Ñ

∑Ñ
i=1 1(f (x̂N , δ(i))) ≤ 0), where 1(·) is

the indicator function. Then, the classical Hoeffding’s inequality, [19], states that

P Ñ {|V̂
Ñ

(x̂N ) − V (x̂N)| ≤ ε̃} ≥ 1 − 2 exp (−2ε̃2Ñ),

from which it follows that |V̂
Ñ

(x̂N ) − V (x̂N)| ≤ ε̃ holds with confidence greater than
1 − β̃, provided that

Ñ ≥ log 2/β̃

2ε̃2 (9)
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test samples are drawn. This latter a-posteriori test can be easily performed using a large
sample size Ñ because no optimization problem is involved in such an evaluation.

2.1.4. Semi-infinite optimization. From a broader perspective, robust convex programs
belong to the class of so-called ‘semi-infinite’ programs, i.e. optimization problems in
which the number of constraints is infinite, see e.g. [16]. In this context, a usual solution
approach consists in ‘discretization’or gridding of the variable δ ∈ � that parameterizes
the constraints, see e.g. [30] and the references therein. As it is well known, the number
of grid points, and hence of constraints, grows exponentially with the dimension of �,
thus making discretization unpractical in high dimensional problems. In this connection,
using random constraint sampling as proposed in this paper has the important advantage
that the required number of constraints as given by (8) is independent of the dimension
of the parameter set �.

2.1.5. Stochastic optimization. We finally remark that the proposed randomized
approach to uncertain convex problems is different in spirit from the classical stochastic
approximation methods used in stochastic programming, [11, 29], though even in the
latter context a scenario-like approach is often used. Indeed, in the classical approach
one seeks to optimize the expectation of a utility function. Since the exact expectation
is hard to compute (and hence to optimize), randomly generated instances (or scenarios,
i.e. our δ’s) are used to construct an empirical version of the expectation, and this is
subsequently optimized. In this paper, we are not interested in optimizing on average;
instead, we seek a solution that is optimal among all solutions that satisfy all but a
few constraint instances. This latter approach is motivated by an extensive literature on
chance-constrained optimization and robust optimization, see e.g. [4, 10, 12, 15, 27].

3. Technical preliminaries and proof of Theorem 1

This section is technical and contains the machinery needed for the proof of Theorem 1.
The reader not interested in the details may skip this section.

3.1. Preliminaries

We start with a a technical lemma.

Lemma 1. Given a set S of p + 2 points in R
p, there exist two points among these, say

ξ1, ξ2, such that the line segment ξ1ξ2 intersects the hyperplane (or one of the hyperplanes
if indetermination occurs) generated by the remaining p points ξ3, . . . , ξp+2. 	

Proof. Choose any set S′ composed of p − 1 points from S, and consider the bundle of
hyperplanes passing through S′.1 If this bundle has more than one degree of freedom,
augment S′ with additional arbitrary points, until the bundle has exactly one degree of

1 A bundle of hyperplanes passing though a set of p − 1 points is simply the collection of all (p − 1)-
dimensional affine subspaces containing the set of points.
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freedom. Consider now the translation which brings one point of S′ to coincide with the
origin, and let S′′ be the translated point set. The points in S′′ lie now in a subspace F
of dimension p − 2, and all the hyperplanes of the translated bundle are of the form
vT x = 0, where v ∈ V , being V the subspace orthogonal to F , which has dimension 2.

Call x1, x2, x3 the translated version of the initial points that were not in S′. Consider
three fixed hyperplanes H1, H2, H3 belonging to the bundle generated by S′′, which pass
through x1, x2, x3, respectively; these hyperplanes have equations vT

i x = 0, i = 1, 2, 3.
Since dim V = 2, one of the vi’s (say v3) must be a linear combination of the other two,
i.e. v3 = α1v1 + α2v2.

Suppose that one of the hyperplanes, say H1, leaves the points x2, x3 on the same
open half-space vT

1 x > 0 (note that assuming vT
1 x > 0, as opposed to vT

1 x < 0 is a mat-
ter of choice since the sign of v1 can be arbitrarily selected). Suppose that also another
hyperplane, say H2, leaves the points x1, x3 on the same open half-space vT

2 x > 0. Then,
it follows that vT

1 x3 > 0, and vT
2 x3 > 0. Since vT

3 x3 = 0, it follows that α1α2 < 0. We
now have that

vT
3 x1 = (α1v1 + α2v2)

T x1 = α2v
T
2 x1

vT
3 x2 = (α1v1 + α2v2)

T x2 = α1v
T
1 x2,

where the first term has the same sign as α2, and the second has the same sign as α1.
Thus, vT

3 x1 and vT
3 x2 do not have the same sign. From this reasoning it follows that

not all the three hyperplanes can leave the complementary two points on the same open
half-space, and the result is proved. 	


We now come to a key instrumental result. Consider the convex optimization program

P : min
x∈Rn

cT x subject to x ∈ Xi , i = 1, . . . , m,

where Xi , i = 1, . . . , m, are closed convex sets. Let the convex programs Pk , k =
1, . . . , m, be obtained from P by removing the k-th constraint

Pk : min
x∈Rn

cT x subject to x ∈ Xi , i = 1, . . . , k − 1, k + 1, . . . , m.

Let x∗ be any optimal solution of P (assuming it exists), and let x∗
k be any optimal

solution of Pk (again, assuming it exists). We have the following definition.

Definition 4 (Support constraints). The k-th constraint Xk is a support constraint for
P if problem Pk has an optimal solution x∗

k such that cT x∗
k < cT x∗. 	


The following theorem holds.

Theorem 2. The number of support constraints for problem P is at most n. 	

Proof. We prove the statement by contradiction. Suppose then that problem P has ns > n

support constraints and choose any (n + 1)-tuple of constraints among these.
Then, there exist n + 1 points (say, without loss of generality, the first n + 1 points)

x∗
k , k = 1, . . . , n + 1, which are optimal solutions for problems Pk , and which lie all in

the same open half-space {x : cT x < cT x∗}. We show next that, if this is the case, then
x∗ is not optimal for P , which constitutes a contradiction.
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Consider the line segments connecting x∗ with each of the x∗
k , k = 1, . . . , n + 1,

and consider a hyperplane H .= {cT x = α} with α < cT x∗, such that H intersects
all the line segments. Let x̄∗

k denote the point of intersection between H and the seg-
ment x∗x∗

k . Notice that, by convexity, the point x̄∗
k certainly satisfies the constraints

X1, . . . , Xk−1,Xk+1, . . . , Xn+1, but it does not necessarily satisfy the constraint Xk .
Suppose first that there exists an index k such that x̄∗

k belongs to the convex hull
co{x̄∗

1 , . . . , x̄∗
k−1, x̄∗

k+1, . . . , x̄∗
n+1}. Then, since x̄∗

1 , . . . , x̄∗
k−1, x̄

∗
k+1, . . . , x̄∗

n+1 all sat-
isfy the k-th constraint, so do all points in co{x̄∗

1 , . . . , x̄∗
k−1, x̄

∗
k+1, . . . , x̄∗

n+1} and hence
x̄∗
k ∈ co{x̄∗

1 , . . . , x̄∗
k−1, x̄

∗
k+1, . . . , x̄∗

n+1} satisfies the k-th constraint. On the other hand,
as it has been mentioned above, x̄∗

k satisfies all other constraints X1, . . . , Xk−1,Xk+1,

. . . , Xn+1, and therefore x̄∗
k satisfies all constraints. From this it follows that x̄∗

k is a
feasible solution for problem P , and has an objective value cT x∗

k = α < cT x∗, showing
that x∗ is not optimal for P . Since this is a contradiction, we are done.

Consider now the complementary case in which there does not exist a x̄∗
k ∈

co{x̄∗
1 , . . . , x̄∗

k−1, x̄
∗
k+1, . . . , x̄∗

n+1}. Then, we can always find two points, say x̄∗
1 , x̄∗

2 ,

such that the line segment x̄∗
1 x̄∗

2 intersects at least one hyperplane passing through the
remaining n − 1 points x̄∗

3 , . . . , x̄∗
n+1. Such couple of points always exist by virtue of

Lemma 1. Denote with x̄∗
1,2 the point of intersection (or any point in the intersection,

in case more than one exists). Notice that x̄∗
1,2 certainly satisfies all constraints, except

possibly the first and the second. Now, x̄∗
1,2, x̄

∗
3 , . . . , x̄∗

n+1 are n points in a flat of dimen-
sion n − 2. Again, if one of these points belongs to the convex hull of the others, then
this point satisfies all constraints, and we are done. Otherwise, we repeat the process,
and determine a set of n − 1 points in a flat of dimension n − 3.

Proceeding this way repeatedly, either we stop the process at a certain step (and then
we are done), or we proceed all way down until we determine a set of three points in
a flat of dimension one. In this latter case we are done all the same, since out of three
points in a flat of dimension one there is always one which lies in the convex hull of the
other two.

Thus, in any case we have a contradiction and this proves that P cannot have n + 1
or more support constraints. 	


We are now ready to present a proof for Theorem 1.

3.2. Proof of Theorem 1

Consider N + 1 independent random variables z(1), . . . , z(N+1) taking value in � with
probability P and consider the following N + 1 instances of SCPN :

SCPk
N : min

x∈Rn
cT x subject to x ∈ X

f (x, z(i)) ≤ 0, i = 1, . . . , k − 1, k + 1, . . . , N + 1.

For k = 1, . . . , N + 1, let x̂k
N be the optimal solution of problem SCPk

N , and notice that
x̂k
N is such that f (x̂k

N , z(i)) ≤ 0, for i = 1, . . . , k − 1, k + 1, . . . , N + 1, but it does not
necessarily hold that f (x̂k

N , z(k)) ≤ 0. Define

V̄N
.= EP N [V (x̂N)], (10)
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and, for k = 1, . . . , N + 1, let

vk
.=

{
1, if f (x̂k

N , z(k)) > 0
0, otherwise,

i.e. the random variable vk is equal to one if x̂k
N fails to satisfy the constraint

f (x̂k
N , z(k))≤0, and it is zero otherwise. Let also

ˆ̄V N
.= 1

N + 1

N+1∑
k=1

vk. (11)

We have that

EP N+1 [vk] = EP N

[
EP [vk|z(1), . . . , z(k−1), z(k+1), . . . , z(N+1)]

]

= EP N

[
P {z(k) ∈ � : f (x̂k

N , z(k)) > 0}
]

= EP N [V (x̂k
N )]

= V̄N ,

which yields

EP N+1 [ ˆ̄V N ] = V̄N . (12)

The key point is now to determine an upper bound for EP N+1 [ ˆ̄V N ].
To this purpose, we proceed as follows. Fix a realization z̄(1), . . . , z̄(N+1) of variables

z(1), . . . , z(N+1). We show that, for any choice of z̄(1), . . . , z̄(N+1) it holds that

ˆ̄V N(z̄(1), . . . , z̄(N+1)) ≤ n

N + 1
. (13)

Thus, by taking expectation we still have

EP N+1 [ ˆ̄V N ] ≤ n

N + 1
. (14)

and this concludes the proof in view of (10) and (12).
To show (13), consider the convex problem involving all the N + 1 constraints

SCPN+1 : min
x∈Rn

cT x subject to x ∈ X

f (x, z̄(i)) ≤ 0, i = 1, . . . , N + 1,

and let x̂N+1 be the corresponding optimal solution. Also consider the optimal solutions
x̂k
N , k = 1, . . . , N + 1, of programs SCPk

N , k = 1, . . . , N + 1, obtained by removing
one by one the constraints f (x, z̄(i)) ≤ 0. Now, from Theorem 2 we know that at most
n of the constraints when removed from SCPN+1 will change the optimal solution and
improve the objective. From this it follows that there exist at most n optimal points x̂k

N

such that the constraint f (x̂k
N , z(k)) ≤ 0 is violated. Hence, at most n of the vk’s can be

equal to one, and from (11) equation (13) follows. 	
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4. Extensions

4.1. Problems with multiple optimal solutions

In this section we drop the assumption that the optimal solution of SCPN is unique.
Consider problem SCPN (6). If more than one optimal solution exists for this prob-

lem, we assume that a solution selection procedure (tie-break rule) is applied in order to
single out a specific optimal solution x̂N . The selection rule goes as follows.

Rule 1. Let ti (x), i = 1, . . . , p, be given convex and continuous functions. Among the
optimal solutions for SCPN , select the one that minimizes t1(x). If indetermination still
occurs, select among the x that minimize t1(x) the solution that minimizes t2(x), and so
on with t3(x), t4(x), . . . . We assume that functions ti (x), i = 1, . . . , p, are selected so
that the tie is broken within p steps at most. As a simple example of a tie-break rule, one
can consider t1(x) = x1, t2(x) = x2, . . . . 	


From now on, for any convex optimization problem considered, by optimal solution
we mean either the unique optimal solution, or the solution selected according to Rule 1,
in case the problem admits more than one optimal solution. The following theorem
extends Theorem 1 to the present setting.

Theorem 3. The result in Theorem 1 holds also in case when SCPN has multiple optimal
solutions, provided that x̂N is selected according to Rule 1. 	

Proof. The proof follows the same line as the one for Theorem 1 except that Definition 4
and Theorem 2 need suitable amendments. Precisely, we now have:

Definition 5 (Support constraints). The k-th constraint Xk is a support constraint for P
if problem Pk has an optimal solution x∗

k such that x∗
k �= x∗. 	


Definition 5 is a generalization of Definition 4 since, in the case of single optimal
solutions, x∗

k �= x∗ is equivalent to cT x∗
k < cT x∗.

The statement of Theorem 2 remains unaltered with the above definition of support
constraint (this needs a proof - see below) and then all other parts of the proof of
Theorem 1 goes through to prove Theorem 3. Hereafter, we sketch a proof of Theorem 2
in the present context.

As in the original proof of Theorem 2, suppose that there are n + 1 support con-
straints and let x∗

k , k = 1, . . . , n + 1, be the optimal solutions for the corresponding Pk

problems. We show that x∗ /∈ co{x∗
1 , . . . , x∗

n+1}, and therefore a (n − 1)-dimensional
hyperplane separating x∗ from x∗

1 , . . . , x∗
n+1 can be constructed (this part is new and

the separating hyperplane replaces H in the original proof).
Suppose, for the purpose of contradiction, that x∗ ∈ co{x∗

1 , . . . , x∗
n+1}, and hence

x∗ can be written as x∗ = ∑
i∈I⊂{1,... ,n+1} αix

∗
i , 0 < αi ≤ 1,

∑
i∈I αi = 1. Note

that cT x∗
i ≤ cT x∗, ∀i ∈ I . If cT x∗

i < cT x∗, for some i ∈ I , we then have: cT x∗ =
cT

∑
i∈I αix

∗
i = ∑

i∈I αic
T x∗

i < cT x∗, which is impossible, and therefore cT x∗
i =

cT x∗,∀i ∈ I . In turn, t1(x∗
i ) ≤ t1(x

∗),∀i ∈ I . If t1(x∗
i ) < t1(x

∗), for some i ∈ I , we then
have: t1(x

∗) = t1(
∑

i∈I αix
∗
i ) ≤ ∑

i∈I αi t1(x
∗
i ) < t1(x

∗), which is again impossible,
and therefore t1(x

∗
i ) = t1(x

∗), ∀i ∈ I . Proceeding in a similar way for t2(x), . . . , tp(x),
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we conclude that, for any i: cT x∗
i = cT x∗, t1(x∗

i ) = t1(x
∗), . . . , tp(x∗

i ) = tp(x∗), but
this is impossible since then t1(x), . . . , tp(x) would not give a tie-break rule. Thus, we
have a contradiction and x∗ /∈ co{x∗

1 , . . . , x∗
n+1}.

Consider now a (n−1)-dimensional hyperplane H separating x∗ from x∗
1 , . . . , x∗

n+1
(and not touching x∗) and construct x̄∗

1 , . . . , x̄∗
n+1 similarly to the original proof of

Theorem 2. In the original proof of Theorem 2, we have proven that a point, say x̄∗,
exists in H that satisfies all constraints. A bit of inspection of that proof reveals that x̄∗
is in fact in the convex hull of x̄∗

1 , . . . , x̄∗
n+1: x̄∗ ∈ co{x̄∗

1 , . . . , x̄∗
n+1}. We conclude the

proof by showing that such x̄∗ would outperform x∗ in the P problem so that x∗ would
not be the optimal solution of P . Since this is a contradiction, we then have that no n+1
support constraints can exist.

Let x̄∗ = ∑
j∈J⊂{1,... ,n+1} βj x̄

∗
j , 0 < βj ≤ 1,

∑
j∈J βj = 1. Begin by observing

that cT x̄∗
j ≤ cT x∗, ∀j ∈ J . Indeed, x̄∗

j = αx∗
j + (1 − α)x∗ with 0 < α ≤ 1, so that

cT x̄∗
j = cT (αx∗

j + (1 − α)x∗) = αcT x∗
j + (1 − α)cT x∗ ≤ cT x∗. If cT x̄∗

j < cT x∗ for

some j ∈ J , we then have: cT x̄∗ = cT
∑

j∈J βj x̄
∗
j = ∑

j∈J βj c
T x̄∗

j < cT x∗ and x̄∗

outperforms x∗. If cT x̄∗
j = cT x∗, ∀j ∈ J , one proceeds to consider t1(x), t2(x), . . . .

Following a similar rationale, one then concludes that x̄∗ outperforms x∗ at some step
for, otherwise, the tie between x∗ and the x∗

j ’s would not be broken by t1(x), . . . , tp(x).
This concludes the proof. 	


4.2. Problems with no solution

Notice that even if problem RCP attains an optimal solution, a further technical diffi-
culty may arise when a randomized problem instance SCPN has no solution. This may
happen when the set ∩i=1,... ,N

{
x : f (x, δ(i)) ≤ 0

}∩X is unbounded in such a way that
the optimal solution ‘escapes’ to infinity, while the original problem is constrained to a
set ∩δ∈� {x : f (x, δ) ≤ 0} ∩ X such that the optimal solution is attained. In this case,
Theorem 3 still holds with a little modification, as explained below.

Suppose that a random extraction of a multi-sample δ(1), . . . , δ(N) is rejected when
no optimal solution exists, and another extraction is performed in this case. Then, on
average on the accepted multi-samples, V (x̂N) is no larger than n

N+1 . In formal terms,
this involves considering conditional probability as precisely stated in the next theorem.

Theorem 4. Let �N
E ⊆ �N be the set where a solution of SCPN exists. If P N(�N

E ) > 0,
the result in Theorem 3 generalizes to the following result:

EP N [V (x̂N) ∩ 1(�N
E )]

P(�N
E )

≤ n

N + 1
(15)

(note that when �N
E = �N as assumed in Theorem 3, we recover the statement of

Theorem 3). Moreover, in this case Corollary 1 still holds, provided that 1−β is intended
as a lower bound on the conditional probability P N({V (x̂N) ≤ ε} ∩ �N

E )/P N(�N
E ).

(the measurability of �N
E is taken as an assumption). 	


Proof. We sketch here how the proof of Theorem 3 can be amended to cope with the
present setting. Let �N+1

E ⊆ �N+1 be the set where a solution of the problem with
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N + 1 constraints exists, and note that �N
E × � ⊆ �N+1

E for, if N constraints avoid
escape to infinity of the solution, this is still true after adding one more constraint. Next,
with the symbols having the same meaning as in the proof of Theorem 1, let

v′
k

.=
{

1, if f (x̂k
N , z(k)) > 0 or x̂k

N does not exist
0, otherwise,

and let vk
.= v′

k · 1(�N+1
E ), 1(·) being the indicator function. It is then not difficult to

adapt the proof of Theorem 1 to conclude that

n

N + 1
P N+1(�N+1

E ) ≥ EP N+1

[
1

N + 1

N+1∑
k=1

vk

]

= EP N+1 [vN+1] = P N+1(�N+1
E ∩ (A ∪ B)),

with A
.= {f (x̂N+1

N , z(N+1)) > 0}, B .= {x̂N+1
N does not exist}. Since �N+1

E ∩(A∪B) =
((�N

E × �) ∩ A) ∪ (�N+1
E − (�N

E × �)), we then have

n

N + 1
P N+1(�N+1

E ) ≥ P N+1((�N
E × �) ∩ A) + P N+1(�N+1

E − (�N
E × �)). (16)

Finally, we have:

EP N [V (x̂N) ∩ 1(�N
E )] = P N+1((�N

E × �) ∩ A)

≤ n

N + 1
P N+1(�N+1

E )

−P N+1(�N+1
E − (�N

E × �)) (using (16))

≤ n

N + 1
P N+1(�N

E × �)

= n

N + 1
P N(�N

E ),

from which statement (15) follows. The corresponding extension of Corollary 1 is easily
obtained, following similar steps as in the proof of Corollary 1. 	


4.3. Problems with a convex cost

Consider the robust convex program

min
x∈Rn

s(x) subject to x ∈ X
f (x, δ) ≤ 0, ∀δ ∈ �,

where s(x) is a convex and continuous function. As it is well known, this problem is
equivalent to the following program in epigraphic form, having linear cost

min
x,γ

γ subject to x ∈ X
f (x, δ) ≤ 0, ∀δ ∈ �

s(x) − γ ≤ 0.
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Theorem 1 can be applied to this latter program to conclude that N ≥ n+1
εβ

−1 constraints
suffice to obtain an ε-level solution with probability 1−β (note that we have n+1 since
the problem now has n + 1 variables: [γ xT ]T ∈ R

n+1).
However, we observe that this epigraphic reformulation is not necessary for the

application of Theorem 1. As a matter of fact, the same reasoning as in the proof of
Theorem 1 can be directly applied to the initial program with convex cost, to conclude
that N ≥ n

εβ
− 1 constraints are still sufficient in this case.

5. Applications and numerical examples

5.1. Robust linear programs

To illustrate the theory, we consider first a very specialized family of robust convex
programs, namely robust linear programs of the form

min
x∈Rn

cT x subject to A(δ)x ≤ b, ∀δ ∈ �, (17)

with A(δ) ∈ R
p,n and X = R

n. For particular uncertainty structures (for instance, when
A(δ) is affine in δ, and the set � is the direct product of ellipsoids) the above problem
can be recast exactly as a convex program with a finite number of constraints and deci-
sion variables, and therefore efficiently solved by standard numerical techniques, see
[5]. However, if the dependence of A on δ is not affine, and the uncertainty set � has a
generic structure, only approximated (conservative) solutions can be obtained through
relaxation.

For comparison purposes, we discuss here an example for which an exact solution
can be computed via standard methods. In particular, we assume that each row aT

i (δ) of
A(δ) belongs to an ellipsoid, i.e.

ai(δ) = âi + Eiδi, ‖δi‖ ≤ 1, i = 1, . . . , m,

where âi ∈ R
n is the center of the ellipsoid, Ei = ET

i ∈ R
n,n is the ‘shape’ matrix, and

δ = [δT
1 · · · δT

m]T ∈ R
mn. Then, we notice that the constraint aT

i (δ)x ≤ bi holds for all
δ ∈ � if and only if

max
‖δi‖≤1

âT
i x + δT

i Eix ≤ bi,

which in turn holds if and only if âT
i x + ‖Eix‖ ≤ bi. Therefore, the robust linear pro-

gram (17) has in this case an exact reformulation as the following second order cone
program

min
x∈Rn

cT x subject to âT
i x + ‖Eix‖ ≤ bi, i = 1, . . . , m. (18)

On the other hand, to pursue the randomized approach, we assume that each vector δi

is uniformly distributed over the ball ‖δi‖ ≤ 1, and, for fixed ε, β, we determine N
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according to (8) and draw N samples δ(i), . . . , δ(N) of δ. The randomized counterpart
of (17) is therefore given by the linear program

min
x∈Rn

cT x subject to A(δ(i))x ≤ b, i = 1, . . . , N.

To make a simple example, let us consider the following numerical data

A(δ) =




−1 0
0 −1
1 0
0 1


 + 0.2




δT
1

δT
2

δT
3

δT
4


 , ‖δi‖ ≤ 1, i = 1, . . . , 4,

and b = [
0 0 1 1

]T , c = [−1 −1
]
. For this data, the exact robust solution computed

according to (18), is x∗ = [0.7795 0.7795]T , with corresponding optimal objective
cT x∗ = −1.5590. For the randomized counterpart, we selected probabilistic levels
ε = β = 0.01, which requires N = 19, 999 randomized constraints. The resulting lin-
ear program was readily solved on a PC using Matlab LP routine, yielding the solution
x̂N = [0.7798 0.7795]T , resulting in the objective value cT x̂N = −1.5594.

5.2. Robust least-squares problems

We next consider a problem of robust polynomial interpolation borrowed from [14]. For
given integer n ≥ 1, we seek a polynomial of degree n−1, p(t) = x1+x2t+· · ·+xnt

n−1,
that interpolates m given points (ai, yi), i = 1, . . . , m, with minimal squared interpo-
lation error, that is it minimizes ‖Ax − y‖2, where

A =




1 a1 · · · an−1
1

...
...

...

1 am · · · an−1
m


 , x =




x1
...

xn


 , y =




y1
...

ym


 .

If the data values (ai, yi) are known exactly, this problem is a standard least-squares
problem. Now, assume that the interpolation points are not known exactly. For instance,
we assume that the yi’s are known exactly, while there is interval uncertainty on the
abscissae

ai(δ) = ai + δi, i = 1, . . . , m,

where δi are assumed to be uniformly distributed in the intervals [−ρ, ρ], i.e.

� = {δ = [δ1 · · · δm]T : ‖δ‖∞ ≤ ρ}.
We then seek an interpolant that minimizes the worst-case squared interpolation error,
i.e.

x∗ = arg min
x∈Rn

max
δ∈�

‖A(δ)x − y‖2, (19)
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where

A(δ) =




1 a1(δ) · · · an−1
1 (δ)

...
...

...

1 am(δ) · · · an−1
m (δ)


 .

Clearly, the min-max problem (19) can be cast in standard robust convex programming
format as

min
x,γ

γ subject to ‖A(δ)x − y‖2 ≤ γ, ∀δ ∈ �. (20)

Due to the non-linear nature of the uncertainty entering the data matrix, it is not known
how to solve problem (20) exactly in polynomial time, but it is possible to efficiently min-
imize an upper bound on the optimal worst-case residual via semidefinite programming,
as it is shown in [14].

Considering the numerical data

(a1, y1) = (1, 1), (a2, y2) = (2, −0.5), (a3, y3) = (4, 2),

with uncertainty level ρ = 0.2 and n = 3, the semidefinite relaxation approach of
[14] yielded a sub-optimal solution with worst-case (guaranteed) residual error equal to
1.1573.

To apply our randomized approach, we assumed uniform distribution for the uncer-
tain parameters, and selected probabilistic levels ε = β = 0.1, which requires N = 399
random samples of δ. The randomized counterpart of (20) can then be expressed as the
following semidefinite program

min
x,γ

γ subject to

[
γ (A(δ(i))x − y)T

(A(δ(i))x − y) I

]
� 0, i = 1, . . . , N. (21)

Problem (21) was easily solved on a PC using standard software, and yielded the solution
x̂N = [3.7539 − 3.5736 0.7821]T , with corresponding residual equal to 0.6993. This
residual makes a ∼ 40% improvement over the one resulting from the deterministic
semidefinite relaxation approach. Of course, this improvement comes at some cost: the
computed residual is not guaranteed against all possible uncertainties, but only for most
of them.

Since we used a relatively small number of samples to determine the randomized
solution, we proceed with an a-posteriori Monte-Carlo test in order to determine a
more precise estimate of the violation probability for the computed solution. Running
this a-posteriori test with Ñ = 106 on the solution x̂N resulted in an estimated vio-
lation probability V̂

Ñ
(x̂N ) = 0.0042. Moreover, by the Hoeffding bound (9), we are

99.99% confident that the actual violation probability is close to the estimated one, up
to ε̃ = 0.002. To summarize the results, the randomized program (21) yielded a solution
which provides a ∼ 40% performance improvement in the residual error with respect to
the semidefinite robust relaxation method, at the expense of a maximum ∼ 0.6% risk of
constraint violation.
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5.3. Solving semidefinite programs using linear programming

In this latter example, we show an application of the randomized methodology to a prob-
lem where the semi-infinite constraints do not arise in consequence of actual uncertainty
in the problem data, but are artificially introduced by a suitable reformulation of the
problem. Consider a standard formulation of a semidefinite program

SDP: min
x∈Rn

cT x subject to F(x) � 0,

where F(x) = F0 +∑n
i=1 xiFi , Fi = FT

i ∈ R
m,m. Clearly, the linear matrix inequality

constraint F(x) � 0 can be reformulated as a semi-infinite (or robust) constraint of the
form

zT F (x)z ≤ 0, ∀z : ‖z‖ = 1.

The above constraint actually represents an infinite set of linear constraints on the prob-
lem variable x:

[zT F1z · · · zT Fnz]




x1
...

xn


 ≤ −zT F0z, ∀z : ‖z‖ = 1,

and therefore SDP can be represented as a robust linear program. This type of represen-
tation and its consequences in relation to bundle solution methods have been recently
studied in [21].

Now, assuming that the z’s are sampled according to some probability distribution
(for instance, uniform over the surface of the unit hyper-sphere), we can state the ran-
domized counterpart of SDP as

SDPN : min
x∈Rn

cT x subject to [z(i)T F1z
(i) · · · z(i)T Fnz

(i)]x

≤ −z(i)T F0z
(i), i = 1, . . . , N,

which is indeed a linear program in n variables and N constraints.
We remark that in the present case one wants to solve a deterministic problem, while

the randomized approach results in a solution that fails in general to satisfy the deter-
ministic constraint F(x) � 0. Indeed, for purely deterministic problems, such as the one
at hand, one cannot argue that ‘bad sets’ are negligible simply because the probability of
violating the constraints is small. As a consequence, the randomized approach yields in
this case only a lower bound on the optimal objective value of the original problem, and
the former value can be far away from the latter one in some cases, see also Remark 1.
Moreover, this issue may become more apparent in high dimensional cases. The random-
ized technique can however work satisfactorily for small dimensional problems, and it
is here reported mainly for the purpose of illustration of our probabilistic methodology.

As a simple example, let us consider the problem of minimizing the largest eigenvalue
of a symmetric matrix A(x) of the form

A(x) = A0 + x1A1 + · · · + xqAq, Ai = AT
i ∈ R

m,m,
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which corresponds to the SDP

min
x∈Rq ,λ

λ subject to A(x) � λI. (22)

For the following numerical data

A0 =




18 −1 4 −3 −2

−1 −2 −5 14 −5

4 −5 16 12 −1

−3 14 12 −4 −3

−2 −5 −1 −3 −16




, A1 =




−12 −17 0 1 −7

−17 8 4 −2 3

0 4 0 −3 1

1 −2 −3 −6 2

−7 3 1 2 −14




,

A2 =




−14 6 −5 3 −3

6 −6 14 3 −3

−5 14 12 −3 12

3 3 −3 −8 1

−3 −3 12 1 −6




, A3 =




8 5 7 −5 5

5 18 −5 −3 −12

7 −5 −10 14 3

−5 −3 14 −14 −14

5 −12 3 −14 18




,

the solution of (22) using a standard SDP solver yielded an optimal objective λ∗ =
20.8026 with corresponding x∗ = [0.5765 0.0037 − 0.2673]T .

For the randomized problem, we assumed uniform distribution for z, and selected
probabilistic levels ε = β = 0.01, which (since the number of optimization variables
is n = q + 1 = 4) requires N = 39, 999 sampled constraints. Notice that the uniform
samples on the surface of the unit hyper-sphere can be easily generated as z = ξ/‖ξ‖,
where ξ is normal with zero mean and unit variance. Solving the linear program SDPN

yielded the optimal objective λ̂∗ = 20.7269, which is indeed a lower bound on λ∗, with
corresponding x̂N = [0.5424 − 0.0124 − 0.3050]T . The resulting matrix A(x̂N) has a
maximum eigenvalue λmax = 20.8455.

Remark 2. Let us take a closer look at the above numerical example. The randomized
approach yields a solution (x̂N , λ̂∗) that does not satisfy the constraint A(x̂N)−λ̂∗I � 0,
since it is only probabilistically guaranteed in the linear program reformulation. Thus,
λ̂∗ is a lower bound for the optimal value of the original problem. Then, the largest
eigenvalue λmax of A(x̂N) has been determined and, by construction, λmax does satisfy
relation A(x̂N) − λmaxI � 0. So, the final result is that by the randomized approach we
have determined a sub-optimal – but close to optimal – solution to the original problem.

	


6. Conclusions

In this paper, the concept of ε-level solution for an uncertain convex problem has been
introduced. This concept is based on the assumption that the ‘instance parameter’ δ that
parameterizes the constraint family is a random variable. In this case, we have proven
that a randomized version SCPN of the uncertain problem returns a solution which is
feasible for ‘most’ of the constraints in the family (i.e. an ε-level solution) with high
probability, provided that a sufficient number N of samples is drawn.
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In contrast to the NP-hardness of generic robust and chance-constrained convex pro-
grams, this paper shows that, if a small risk of failure is accepted, the uncertain convex
problem can be solved efficiently in the ε-level sense by a randomized algorithm, no
matter the way in which the uncertainty enters the data, and irrespective of the structure
of the uncertainty set �.
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