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Abstract—In event-based state estimation, the event trigger
decides whether or not a measurement is used for updating
the state estimate. In a remote estimation scenario, this allows
for trading off estimation performance for communication, and
thus saving resources. In this paper, popular event triggers
for estimation, such as send-on-delta (SoD), measurement-based
triggering (MBT), variance-based triggering (VBT), and relevant
sampling (RS), are compared for the scenario of a scalar linear
process with Gaussian noise. First, the analysis of the information
pattern underlying the triggering decision reveals a fundamental
advantage of triggers employing the real-time measurement in
their decision (such as MBT, RS) over those that do not (VBT).
Second, numerical simulation studies support this finding and,
moreover, provide a quantitative evaluation of the triggers in
terms of their average estimation versus communication perfor-
mance.

I. INTRODUCTION

The fundamental problem in event-based state estimation
is to decide, whether a measurement shall be used to update
a state estimate, or not. The corresponding decision rule is
called the event trigger. A prototypical example, which is also
considered in this paper, is shown in Fig. 1. A sensor node
measures the state of a dynamic process and decides (by means
of an event trigger) if a measurement is forwarded to a remote
estimator. That is, it decides whether to use the communication
link and improve the remote estimate, or to save communi-
cation. The cost of communication may stem from blocking
the network for other nodes, or an overdimensioned network.
In other scenarios, taking a measurement may be associated
with the use of energy (e.g. battery-powered sensor nodes)
or computation. In general, event-based estimation aims at
making a compromise between estimation performance and
resource usage by taking or transmitting a measurement only
when necessary.

Since resource-constraint problems are typical in engi-
neering, potential applications for event-based methods are
numerous. Already today, basic event-based protocols (such
as send-on-delta) are commonly used in building automation,
[1], [2]. Recent application examples of event-based control
include servo motor control [3], process plant control [4]–[7],
and control of a laboratory crane [8]. Different methods for
event-based estimation were applied for distributed control of
a multi-body inverted pendulum in [9]–[11].
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Fig. 1. Remote estimation scenario. The sensor node has periodic access to
measurements yk of the process xk . Using an event trigger, the sensor decides
at every step k, whether to forward yk to the remote estimator (which incurs
a communication cost) or not (which degrades estimation performance).

An event-based state estimator typically consists of two
components: the estimation or filtering algorithm, which re-
cursively computes state estimates from a model and the
asynchronously arriving measurements, and the event trigger.
While the question of how to design an optimal filtering algo-
rithm for event-based estimation is interesting (see e.g. [12]–
[15]), we focus on the design and comparison of event triggers
herein. As the filtering algorithm, we simply take a standard
Kalman filter (KF), which is suboptimal in this setting, but
represents a straightforward and often satisfactory solution in
practice (cf. discussion in Sec. II-A).

Several event triggering mechanism have been suggested
for event-based estimation in the last decade. In the following,
we mention some popular triggers to be investigated herein.
The triggers are exemplified on the scalar linear measurement
equation yk = cxk + wk, where xk denotes the state to be
estimated, yk is the measurement, and wk is sensor noise. Note,
however, that all triggers are more general and readily extend
to vector measurements.

Probably the most basic triggering concept is send-on-delta
(SoD) [16], or also termed deadbands [17]. With SoD, the
current measurement yk is sent to the estimator whenever
the difference to the measurement that was sent last, ylast,k,
exceeds a constant threshold δ:

transmit yk ⇔ |yk − ylast,k| ≥ δ. (1)

SoD is a general purpose event trigger because no assumption
or knowledge about the underlying process is required.

If a model of the underlying process is available, one
may predict the evolution of the measurement and use a
prediction ŷk instead of ylast,k in the triggering rule. This idea
is implemented in measurement-based triggering (MBT) [9],
[10], or predicted sampling [18]:

transmit yk ⇔ |yk − cx̂k|k−1| ≥ δ (2)



where x̂k|k−1 is the one-step ahead, model-based prediction
of xk, and ŷk = cx̂k|k−1 thus the measurement prediction.
In order to realize this triggering law, the sensor in Fig. 1
implements a copy of the state estimator. If no process model
for prediction is available, a prediction ŷk can also be obtained
by approximating the derivatives of the signal yk from succes-
sive past measurements. This has been called SoD with linear
predictor [19].

MBT (2) imposes a bound on the measurement prediction
error. Placing a bound on the prediction variance as a measure
of uncertainty instead, yields the variance-based triggering
(VBT) law [20]1:

transmit yk ⇔ Var[yk − cx̂k|k−1] = c2Pk|k−1 + r ≥ δ (3)

with Pk|k−1 the state prediction variance, r the sensor noise
variance, and assuming independence of xk − x̂k|k−1 and wk.

An information-theoretic trigger is employed in relevant
sampling (RS) [21]. The trigger is obtained by comparing the
two state probability density functions (PDFs) that result when
yk is used in the update (fupd), or when it is not (fprior):

transmit yk ⇔ DKL(fupd, fprior) ≥ δ. (4)

Here, DKL is the Kullback-Leibler (KL) divergence, which can
be interpreted as the information loss when the approximation
fprior is used instead of fupd, [22]. In case of Gaussian PDFs
fprior and fupd with respective means x̂k|k−1, x̂upd and variances
Pk|k−1, Pupd, (4) can be rewritten as

DKL(fpost, fprior) =
1
2

( Pupd

Pk|k−1

− log(
Pupd

Pk|k−1

)− 1

+ 1
Pk|k−1

(x̂k|k−1−x̂upd)
2
)

. (5)

While MBT (2) and VBT (3) depend either on the prediction
mean or variance, (5) depends on both.

While several event triggers have been suggested in lit-
erature and some comparisons for their use in control are
available (e.g. [1], [4], [23]), a systematic comparison in the
context of event-based estimation is largely missing. The recent
work [18] is an exception. Therein, the authors compare the
triggers (1) and (2) in terms of their estimation and com-
munication performance for a scalar, continuous-time, stable
process subject to impulse and step disturbances. This paper
provides a comparison of the triggers (1)–(4), as well as two
novel ones to be derived herein. We consider a linear, discrete-
time process (stable and unstable) with stochastic, Gaussian
noise; that is, the classic stochastic estimation framework of
the KF, [24]. In contrast to [18], we consider as the state
estimator a time-varying KF instead of a fixed-gain observer.
For the purpose of this paper, we restrict attention to a scalar
process (as also in [18]), which may be seen as a first step
in the endeavor of understanding the effectiveness of common
triggering mechanisms for estimation.

This paper makes two main contributions toward this goal.
First, we discuss, at a fundamental level, the information that
the decision making agent (i.e. the smart sensor in Fig. 1)
has, when making the transmit decision. For this, we consider
two information structures: the case, where the value of yk is

1The triggering law in [20] is given in a slightly different form, which can
readily be transformed into (3) by redefining the triggering threshold.
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Fig. 2. Estimation-vs-communication graphs used for comparing the effec-
tiveness of two event triggers. Each curve represents the average estimation
error E (e.g. squared error averaged over a time horizon) over the average
communication rate C (normalized such that 0 means no, and 1 means full
communication) for a specific trigger. Each graph is parametrized by the
corresponding triggering threshold δ. In this example, Trigger A is is more
effective than Trigger B.

available at the time of making the triggering decision, and
the case, where it is not. The former corresponds to rules like
MBT or RS, which depend on the real-time measurement yk,
while the latter captures VBT, which does not. The outcome
of this analysis is 1) fundamental understanding of the value
that the measurement yk has for the triggering decision; and
2) a unified framework for deriving different event triggers.
In particular, we show that the triggers (2), (3), and two new
ones, are obtained as (approximate) solutions to optimization
problems respecting one of the two information structures and
representing a trade-off between some measure of estimation
performance and communication cost.

The second main contribution of this work is a quantitative
comparison of all mentioned triggers based on simulation stud-
ies. We propose to use estimation-vs-communication graphs
as shown in Fig. 2 as the method of comparison. These
graphs depict the average estimation error achieved by some
trigger over the average communication rate. Moving along
one of the curves is parametrized by the threshold parameter
δ of the respective trigger. A graph lying below another one
indicates a trigger that is (globally) more effective in making
the transmit decision: for the same communication rate, a
smaller estimation error is achieved on average.

Taken together, this paper makes a fundamental contri-
bution toward understanding what event trigger should be
used for a given event-based estimation problem. Obviously,
this is an important question if one wants to deploy an
event-based approach in practice and get most out of it in
terms of estimation and communication efficiency. While other
scenarios are conceivable, two architectural assumptions in
this analysis are the use of a standard KF as the estimation
algorithm, and the transmission of raw measurements.

Outline: In Sec. II, we introduce the considered process,
the estimation algorithm , and formalize the triggering decision
as an optimization problem. Section III continues with analyz-
ing two information structures (using the actual measurement
in the decision, or not) for solving the triggering problem.
Using the results of this section, the optimal decision problem
from Sec. II is solved in Sec. IV, which yields two novel
event triggers. Section V compares the effectiveness of all
triggers in terms of their estimation-vs-communication graphs
from simulations. The findings of this paper are discussed and
summarized in Sec. VI.



Notation: We use f(x), f(x|y), and f(x|Y) to denote,
respectively, the probability density functions (PDFs) of the
random variable (RV) x, of x conditioned on the RV y, and
of x conditioned on the set of RVs Y . N (x;µ,Σ) denotes
the PDF of a Gaussian random variable (GRV) with mean
µ and variance Σ. For x being distributed according to
f(x) = N (x;µ,Σ), we also write x ∼ N (µ,Σ). E [·] denotes
the expected value, and Var[·] the variance.

II. PROBLEM FORMULATION

Consider a scalar, discrete-time, linear system with mutu-
ally independent Gaussian noise

xk = axk−1 + vk−1 x0 ∼ N (x̄0, X0), vk−1 ∼ N (0, q) (6)

yk = cxk + wk wk ∼ N (0, r), (7)

where a, c, q, r, x̄0, X0 ∈ R with c 6= 0, q ≥ 0, r > 0, X0 ≥ 0.
Without loss of generality, we take c = 1.

The state xk shall be estimated from measurements yk in
a scenario, where using a measurement incurs a cost, such
as in the scenario in Fig. 1. The event trigger is responsible
for making this decision. Let γk ∈ {0, 1} denote the binary
function indicating whether yk is transmitted (γk = 1) or not
(γk = 0). Furthermore, let Ỹk denote the set of triggering
decisions and measurements transmitted until time k; that is,

Ỹk = {γℓ | 1 ≤ ℓ ≤ k} ∪ {yℓ | 1 ≤ ℓ ≤ k, γℓ = 1}. (8)

A. State Estimator

An optimal Bayesian state estimator computes the PDF
of the state xk conditioned on the data Ỹk, f(xk|Ỹk). In
particular, the Bayesian estimator also includes the information
that is contained in the event of not receiving a measurement.
For example, if trigger (2) is used, then γk = 0 implies that
yk ∈ [cx̂k|k−1 − δ, cx̂k|k−1 + δ]. Using this information in a
Bayesian update, however, yields a non-Gaussian posterior and
thus typically results in intractable algorithms. Approximate
algorithms have been suggested in [12]–[15], for example.

Herein, we opt for ignoring the extra information from
γk = 0 in favor of a tractable algorithm. To this end, we treat
the measurements yk contained in Ỹk as if they were obtained
from an a-priori fixed sensor schedule (i.e. the sequence γk
fixed ahead of time). We denote this set of measurements
by Yk and shall compute the artificial distribution f(xk|Yk)
instead of f(xk|Ỹk). While obviously being an approximation
to the true situation, this yields a straightforward estimation
algorithm, since f(xk|Yk) is Gaussian and can recursively be
computed by the standard discrete-time Kalman filter (KF)
[24]. The KF equations read

x̂k|k−1 = a x̂k−1|k−1 (9)

Pk|k−1 = a2 Pk−1|k−1 + q (10)

Lk =
Pk|k−1

Pk|k−1 + r
=

a2Pk−1|k−1 + q

a2Pk−1|k−1 + q + r
(11)

x̂k|k =

{

x̂I
k := x̂k|k−1 if γk = 0

x̂II
k := x̂k|k−1 + Lk(yk − x̂k|k−1) if γk = 1

(12)

Pk|k =

{

P I
k := Pk|k−1 if γk = 0

P II
k := (1− Lk)Pk|k−1 if γk = 1

(13)

with initialization x̂0|0 = x̄0, P0|0 = X0. As per the above
discussion, we have

f(xk|Yk−1) = N (xk; x̂k|k−1, Pk|k−1)

f(xk|Yk) = N (xk; x̂k|k, Pk|k).

In order to distinguish the two paths that the KF can take
in (12) and (13), we use x̂I

k and P I
k to refer to the posterior

update in case of no communication of yk, and x̂II
k and P II

k

for the case of communication. For simplicity, we later refer
to the estimator that updates according to x̂I

k, P I
k as Estimator

I, and the one that updates with and x̂II
k , P II

k as Estimator II.

B. Decision Problem

In this subsection, we formulate the triggering decision as
a one-step optimal decision problem. Solving this optimization
problem shall yield novel triggering rules in Sec. IV and put
previously suggested triggers into context, as is discussed later.

Let Ck be the cost that is incurred when measurement yk
is transmitted. This cost is problem specific and may be as-
sociated to the use of communication bandwidth, computation
resources, or energy, for example. In the following, a constant
cost Ck = C is assumed, albeit the presented results readily
extend to the case of varying costs.

Suppose that the estimation algorithm (9)–(13) has exe-
cuted k − 1 steps on the estimator node (cf. Fig. 1); that
is, the state estimate has been computed with respect to the
data Yk−1. The sensor node, which also implements (9)–(13),
now needs to decide whether or not to transmit the next
measurement yk. If yk is transmitted, the cost C is incurred. If
not, no communication cost C is incurred, but a price is paid
in terms of a deteriorated estimation performance. Namely, the
estimation error then is

eI
k := xk − x̂I

k, with x̂I
k = E [xk|Yk−1] (14)

instead of

eII
k := xk − x̂II

k , with x̂II
k = E [xk|yk,Yk−1]. (15)

Suppose we care to keep the squared estimation error small.
We thus define the estimation cost Ek that is incurred when
yk is not transmitted as

Ek := (eI
k)

2 − (eII
k)

2. (16)

That is, the cost is positive if (eI
k)

2 is larger than (eII
k)

2, which
is to be expected on average.

Ideally, we would like to use the error difference (16)
directly for deciding whether it is worth transmitting yk, or
not. However, Ek cannot be computed by the sensor since the
true state xk is of course unknown, and so are the actual errors
eI
k and eII

k . Instead, we seek a decision law that represents
an optimal trade-off on average when conditioning on the
available data. For this, we consider two different information
structures:

(i) the measurement yk is known for making the transmit
decision at time k;

(ii) the measurement yk is not used for the decision.

Intuitively, one may already suspect that (i) is beneficial (“more
information can’t hurt”), but we shall make this benefit precise



in the following sections. As shall also be seen, case (ii) can
be beneficial if one wants to avoid continuously monitoring
the sensor.

Corresponding to the two cases, we define

Ē
(i)
k := E [(eI

k)
2 − (eII

k)
2 | yk,Yk−1] (17)

Ē
(ii)
k := E [(eI

k)
2 − (eII

k)
2 | Yk−1] (18)

and pose the decision problem as the one-step optimization

min
γk∈{0,1}

γkC + (1− γk)Ēk (19)

where Ēk is either Ē
(i)
k or Ē

(ii)
k . The formal solution can be

written as
γk = 1 ⇔ Ēk ≥ C. (20)

By evaluating Ēk for case (i) and (ii), the corresponding
triggering rules will be obtained in Sec. IV.

III. AVAILABLE INFORMATION FOR MAKING THE

TRANSMIT DECISION

Before computing Ēk in (20) for the two cases (17) and
(18), we first discuss more generally the information that the
agent has available for the transmit decision in both cases (i)
and (ii). This discussion sheds light on the fundamental benefit
of using yk in the triggering decision, and also applies to other
choices of error metric than (16).

Effectively, the triggering agent is to decide at time k
between eI

k and eII
k as the estimation error. The information

available for making this decision can be characterized by the
joint PDF of eI

k and eII
k conditioned on the available data; i.e.

f(eI
k, e

II
k |yk,Yk−1) and (21)

f(eI
k, e

II
k |Yk−1) (22)

for case (i) and (ii), respectively. These two joint PDFs are
computed in the following subsections and interpreted with
regards to the triggering decision.

A. Case (i): Exploiting real-time measurement yk

For computing (21), we rewrite the estimation errors as

eI
k = xk − x̂k|k−1 = zk − wk (23)

eII
k = xk − x̂k|k−1 − Lk(yk − x̂k|k−1)

= (1− Lk)zk − wk (24)

where we used xk = yk−wk and introduced zk := yk−x̂k|k−1

for the KF innovation. Notice that the agent can compute zk
from the data yk, Yk−1; that is, the uncertainty in eI

k and eII
k

when conditioned on yk, Yk−1 solely stems from wk. In the
appendix, we show that the conditional PDF of wk is Gaussian:

f(wk|yk,Yk−1) = N
(

wk;
r

Pk|k−1+r
zk, r −

r2

Pk|k−1+r

)

. (25)

From this, it follows that f(eI
k, e

II
k |yk,Yk−1) is Gaussian

likewise. Using (23), (24), (25), we compute its mean as

E

[

[

eI
k

eII
k

]

∣

∣

∣

∣

∣

yk,Yk−1

]

=

[

zk
(1− Lk)zk

]

−

[

1
1

]

E [wk | yk,Yk−1]

=

[ Pk|k−1+r−r

Pk|k−1+r
zk

Pk|k−1+r−Pk|k−1−r

Pk|k−1+r
zk

]

=

[

Lkzk
0

]

. (26)

eI
k

eII
k

0 Lkzk

√

2P II
k

Fig. 3. Visualization of the conditional PDF f(eI
k, e

II
k|yk,Yk−1) (30).

The PDF is one-dimensional; it is shown in red for one standard deviation
(P II

k )
1/2. The PDF depends on the measurement yk through zk . The light

blue area indicates points where Estimator II is superior to Estimator I,
i.e. (eII

k)
2 < (eI

k)
2.

Similarly, we obtain the variance terms. First,

Var[eII
k |yk,Yk−1] = E

[

(eII
k − E [eII

k |yk,Yk−1])
2
∣

∣yk,Yk−1

]

= E
[

((1− Lk)zk − wk)
2
∣

∣yk,Yk−1

]

= (1− Lk)
2z2k − 2(1− Lk)zkE

[

wk

∣

∣yk,Yk−1

]

+ E
[

w2
k

∣

∣yk,Yk−1

]

=
Pk|k−1r

Pk|k−1+r
= (1− Lk)Pk|k−1 (27)

where we used

E
[

wk

∣

∣yk,Yk−1

]

= r
Pk|k−1+r

zk = (1− Lk)zk (28)

E
[

w2
k

∣

∣yk,Yk−1

]

=
(

E
[

wk

∣

∣yk,Yk−1

])2
+ Var

[

wk

∣

∣yk,Yk−1

]

= (1− Lk)
2z2k + r − r2

Pk|k−1+r
. (29)

Using the result (27), we obtain next

Var[eI
k|yk,Yk−1] = E

[

(eI
k − E [eI

k|yk,Yk−1])
2
∣

∣yk,Yk−1

]

= E
[

((1− Lk)zk − wk)
2
∣

∣yk,Yk−1

]

= (1− Lk)Pk|k−1

and, for the cross-covariance,

E [(eI
k − E [eI

k|yk,Yk−1])(e
II
k − E [eII

k |yk,Yk−1]) | yk,Yk−1]

= E [((1− Lk)zk − wk)
2 | yk,Yk−1] = (1− Lk)Pk|k−1.

In summary,

f(eI
k, e

II
k |yk,Yk−1) = N

([

eI
k

eII
k

]

;

[

Lkzk
0

]

,

[

P II
k P II

k

P II
k P II

k

])

(30)

with P II
k as defined in (13). The PDF (30) characterizes the

information available for making the transmit decision and thus
deciding whether the estimation error on the estimator side
becomes eI

k or eII
k . Notice that the PDF depends on the real-

time measurement yk through zk.

Interpretation: From (30), we see that f(eII
k |yk,Yk−1) =

N (0, P II
k ); that is, the conditional error of Estimator II is

unbiased with variance P II
k . This makes perfect sense: it is

simply the standard KF update incorporating the additional
measurement yk. Given the new measurement yk, the error eI

k

of Estimator I is biased, since the additional information is
not taken into account. The bias corresponds to the correction
term Lkzk that Estimator II would apply.

A visualization of the conditional PDF (30) is shown in
Fig. 3. Some properties can be seen from this:



eI
k

eII
k

0

√

2P I
k

eI
k

eII
k

0 Lkzk

Fig. 4. Conditional PDF f(eI
k, e

II
k|yk,Yk−1) as in Fig. 3 for the special

cases Lk = 0 (LEFT) and Lk = 1 (RIGHT). On the RIGHT, the support of
the PDF reduces to a point, corresponding to the Dirac measure.

• The probability mass of f(eI
k, e

II
k |yk,Yk−1) is concentrated

in one dimension. Estimator II is superior (i.e. (eII
k)

2 <
(eI

k)
2) whenever (eI

k, e
II
k) lies in the light blue area. Since

the larger part of the probability mass is always in this
area, Estimator II will yield a superior estimate with high
probability, as expected. It may so happen, however, that the
concrete representation of the errors (eI

k, e
II
k) is outside the

light blue area, and thus (eII
k)

2 > (eI
k)

2. This corresponds to
a measurement yk with a large noise component wk, which
would impair the prior estimate. In general, the advantage
of Estimator II over Estimator I is larger, the larger the
correction term |Lkzk|.

• From (11), we see that Lk ∈ [0, 1). For increasing mea-
surement noise r and all other parameters constant, Lk

decreases, which lowers the advantage of Estimator II over
Estimator I. This is expected since the measurement carries
“less value” for the estimator because of increased noise.
In the limit as r → ∞, Lk → 0 and Estimator II is just as
good as Estimator I (see Fig. 4 LEFT).

• In contrast, for decreasing r, Lk increases and Estimator II
gains in advantage over Estimator I. In the limit as r → 0,
Lk tends to its maximum 1 (see Fig. 4 RIGHT). In this case,
the knowledge of (eI

k, e
II
k) is exact (the PDF (30) reduces to

a Dirac delta).

B. Case (ii): Without real-time measurement

In this section, we compute (22) and compare the PDF to
the previous case (30). For the estimation errors, we have

eI
k = xk − x̂k|k−1 (31)

eII
k = (1− Lk)(xk − x̂k|k−1)− Lkwk. (32)

The variables (eI
k, e

II
k) are jointly Gaussian. Using conditional

independence of xk − x̂k|k−1 and wk, we find the conditional
mean to be 0, and compute the variance as

Var

[

[

eI
k

eII
k

]

∣

∣

∣

∣

∣

Yk−1

]

=

[

Pk|k−1 (1− Lk)Pk|k−1

∗ (1− Lk)
2Pk|k−1 + L2

kr

]

=

[

Pk|k−1 (1− Lk)Pk|k−1

∗ (1− Lk)Pk|k−1

]

. (33)

Therefore,

f(eI
k, e

II
k |Yk−1) = N

([

eI
k

eII
k

]

;

[

0
0

]

,

[

P I
k P II

k

P II
k P II

k

])

(34)

where P I
k and P II

k are as defined in (13).

eI
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eII
k

0

√
λ1√

λ2

Fig. 5. Visualization of the conditional PDF f(eI
k, e

II
k|Yk−1) (34) (1-sigma

ellipse in red). The direction of the main axis of the ellipse is [(Lk+Sk)/(2−
2Lk), 1] where Sk := (5L2

k−8Lk+4)1/2. The eigenvalues of the covariance
matrix in (33) are λ1 = 0.5(2−Lk + Sk)Pk|k−1 and λ2 = 0.5(2−Lk −
Sk)Pk|k−1. The PDF does not depend on the measurement yk .
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Fig. 6. Conditional PDF f(eI
k, e

II
k|Yk−1) as in Fig. 5 for the special cases

Lk = 0 (LEFT) and Lk = 1 (RIGHT).

Interpretation: In contrast to (30), we see from (34)
that both marginal PDFs f(eI

k|Yk−1) = N (0, P I
k) and

f(eII
k |Yk−1) = N (0, P II

k ) are unbiased; they only differ in their
variance. Since Lk ∈ [0, 1), P II

k = (1 − Lk)P
I
k < P I

k; that is,
the uncertainty of Estimator II is reduced, as expected.

The PDF (34) is visualized in Fig. 5 for general Lk, and
in Fig. 6 for the extreme cases Lk = 0 and Lk = 1. We make
the following observations (cf. observations in Sec. III-A):

• Except for the limiting cases Lk = 0 or 1, the joint
PDF is two dimensional. Most of the probability mass is
in the area where (eII

k)
2 < (eI

k)
2, as is expected since

using yk is generally better than not using it (as far as
estimation performance is concerned). When comparing to
Fig. 3, we see that conditioning on yk effectively reduces
the uncertainty from two to one dimension.

• For r → ∞ and Lk → 0 (cf. Fig. 6 LEFT), the measurement
is of no value. This means that Estimator I is as good
as Estimator II, and also (34) becomes identical to (30)
(cf. Fig. 6 LEFT and Fig. 4 LEFT).

• For r → 0 and Lk → 1 (Fig. 6 RIGHT), the PDF (34)
is again one dimensional. In this case, (eII

k)
2 < (eI

k)
2 with

probability one.

The key difference between the PDFs (30) and (34) is that
the first includes the information carried by the measurement
yk (through zk): the larger zk, the greater the advantage of
Estimator II (cf. Fig. 3) and thus of transmitting yk. The PDF
(34) ignores this information.



IV. OPTIMAL EVENT TRIGGERS

Using the results from the previous section, the errors (17)
and (18) can readily be computed. This yields the optimal
event triggers according to (20).

A. Case (i)

Using the result (30), we obtain

Ē
(i)
k = E [(eI

k)
2 − (eII

k)
2 | yk,Yk−1]

=
(

E [eI
k | yk,Yk−1]

)2
+ Var[eI

k | yk,Yk−1]

−
(

E [eII
k | yk,Yk−1]

)2
− Var[eII

k | yk,Yk−1]

= (Lkzk)
2 + P II

k − 0− P II
k = L2

kz
2
k. (35)

The transmit decision (20) thus becomes

γk = 1 ⇔ L2
kz

2
k = L2

k|yk − x̂k|k−1|
2 ≥ C. (36)

Except for the time-varying weight Lk, this triggering rule cor-
responds to the measurement-based triggering rule (2) (recall
that c = 1 was assumed w.l.o.g.). The communication cost
C has the role of the triggering threshold δ. We thus refer to
trigger (36) as optimal measurement-based trigger (OMBT).

B. Case (ii)

With (34), we compute

Ē
(ii)
k = E [(eI

k)
2 − (eII

k)
2 | Yk−1] = P I

k − P II
k

= LkPk|k−1 = L2
k(Pk|k−1 + r). (37)

The corresponding triggering rule (20) is

γk = 1 ⇔ LkPk|k−1 ≥ C. (38)

From (37), it can be seen that this triggering rule corresponds
to variance-based triggering (3) except for the factor L2

k. We
thus call (38) optimal variance-based trigger (OVBT).

The rule (38) does not depend on yk. Given the decision γk
at time k, the KF variance and gain at time k+1 are determined
according to (10), (11), (13); hence, γk+1 can also be computed
from (38). By continuing this recursion, all triggering decisions
can thus be precomputed off-line from the problem data (a, q,
r, and X̄0) prior to seeing any data. Therefore, it is possible to
precompute the sending sequence and implement it as a time-
based schedule on the sensor, without the need to implement
a copy of the estimator (9)–(13) and the trigger (38) on the
sensor. This may be preferred if the sensor is not equipped with
sufficient computational resources. As is discussed in [20], the
triggering sequence γk is typically periodic with VBT for a
time-invariant system with stationary noise.

V. COMPARISON OF TRIGGER EFFECTIVENESS BASED ON

NUMERICAL EXAMPLES

In this section, the established triggers (1), (2), (3), (4),
and the novel triggers (36), (38) are compared in terms of
their average estimation-vs-communication trade-off, based on
numerical simulations.

A. Method of comparison

For comparing the triggers, we generate estimation-vs-
communication graphs as in Fig. 2 from simulation examples.
For this, the event-based estimation system given by the
process (6), (7) (with specific parameters), the estimator (9)–
(13) and a specific choice of trigger is simulated over a suitable
simulation horizon K. Each simulation is repeated Nsim times,
and average estimation error E and average communication
rate C are computed as follows:

E = avg i=1,...,Nsim
(Ei) with Ei = avg k=1,...,K(e2k) (39)

C = avg i=1,...,Nsim
(Ci) with Ci = avg k=1,...,K(γk) (40)

where avg is the numerical average over the indicated data
points, and ek := xk − x̂k|k is the estimation error. The
pair (E , C) quantifies the average estimation/communication
performance achieved by a specific triggering rule and choice
of threshold δ. Computing (E , C) over a suitable range of δ’s
yields the desired estimation-vs-communication graph.

In this study, we do not pay attention to the specific values
of δ. Accordingly, the concrete values of δ do not appear in
the graphs like Fig. 2. This is motivated by the role of δ in
practice: it is typically used as tuning parameter to obtain
a satisfactory trade-off between estimation performance and
communication (in simulations or experiments). In this sense,
the actual value of δ is irrelevant. This also means that two
triggers t1(yk) ≥ δ1 and t2(yk) ≥ δ2 related by an invertible
transformation g, t1(yk) = g(t2(yk)), will yield the same
estimation-vs-communication graph. This is because

t1(yk) ≥ δ1 ⇔ g(t1(yk)) ≥ g(δ1) ⇔ t2(yk) ≥ g(δ1) (41)

and by choosing δ2 := g(δ1), the rule t2(yk) ≥ δ2 will trigger
if, and only if, t1(yk) ≥ δ1 does. For example, if Lk in
(36) is constant, then (36) is equivalent to (2) as far as their
estimation-vs-communication graph (E , C) is concerned.

While not of interest for the comparison of average values
herein, the actual value of δ can be relevant as a bound
on certain estimation errors. For example, the SoD rule (1)
guarantees that the difference of the current measurement yk
and the last known value ylast,k never exceeds δ. For (3), it is
shown in [20, Corollary 1] that the error variance Pk|k−1 has
a upper bound given in terms of δ.

B. Unstable process

As a first example, we consider an unstable process (6),
(7) with parameters

Example 1: a = 1.01, c = q = r = 1, x̄0 = X0 = 1.

Due to the unstable dynamics, some communication is required
in steady-state to keep the estimation error bounded.

The estimation-vs-communication graphs obtained from
Nsim = 2000 simulations with a horizon K = 1000 for
the considered triggers are shown in Fig. 7. For suitably
small δ, all event-based estimators reduce to the standard
KF receiving a measurement at every time step (full com-
munication case, C = 1). Therefore, all triggering schemes
yield the same estimation performance at C = 1. When
increasing the thresholds δ, communication C reduces and
the estimation error E grows, as expected. In the limit as
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Fig. 7. Average estimation error E over average communication C for
Example 1 and different triggering schemes. The bottom graph shows a detail
of the top one, augmented with +/− one standard deviation of the estimation
error for each graph (i.e. the shaded area corresponds to E ± std(Ei)). The
graph for MBT (magenta) is overlapped with its optimal counterpart OMBT
(red); and, similarly, VBT is hidden by OVBT.

C → 0, E → ∞ because of the unstable process dynamics
in this example. However, the triggering methods differ in the
way that E increases when reducing communication, which
indicates the triggers’ different effectiveness in the estimation-
vs-communication trade-off.

In Fig. 7, we notice that SoD (1) shows the worst per-
formance of all triggers. Because of the unstable process, the
triggering rule is not effective after a while since xk → ∞
implies |yk − yk−1| → ∞, and thus γk = 1 for all k after
some step. All other triggers are based on some quantity of
the estimation error (mean or variance), which is bounded as
long as the communication rate is sufficiently high.

The optimal triggers OMBT (36) and OVBT (38) derived in
Sec. IV essentially yield the same performance as the original
triggers (2) and (3). This indicates a minor effect of the time-
varying scaling L2

k in the triggering rules (36) and (38). In
general, the variance-based triggers (3) and (38) are worse than
the measurement-based triggers (2) and (36). This reflects the
analysis in Sec. III: the variance-based triggers do not exploit
the information from the measurement yk.

In this example, the MBT and OMBT are slightly more
effective than RS (see bottom graph in Fig. 7). Depending on
the choice of problem parameters (noise variances), we have
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Fig. 8. Estimation-vs-communication for Example 2 and four different
triggering schemes. The graphs for the optimal rules (36) and (38) are not
shown since they overlap with those for the triggers (2) and (3), respectively.

observed that this difference may be more pronounced, but
also cases exist where RS is slightly superior.

C. Stable process

As a second example, we consider a stable process:

Example 2: a = 0.98, c = q = r = 1, x̄0 = X0 = 1.

The estimation-vs-communication graphs with K = 200, and
Nsim = 2000 are depicted in Fig. 8.

For this example, SoD performs significantly better com-
pared to the unstable Example 1. Still, MBT and RS, which
are tailored to the estimation problem, are superior. As in the
previous example, OMBT and OVBT are essentially identical
to MBT and VBT.

VI. DISCUSSION AND REMARKS

The evolution of the classic Kalman filter for the linear
Gaussian case with periodic communication is predetermined,
in the sense that variance and filter gains are independent of
any real-time measurement. Therefore, one may be tempted to
think that there is no benefit in using the real-time measure-
ment in the triggering decision for event-based estimation. The
analysis in Sec. III clearly shows that this is a misconception.
Knowing the actual measurement allows for a more informed
decision because the measurement carries some information
about the actual estimation error. Thus, triggers that exploit
the real-time measurement (such as MBT (2) and RS (4)) are
more effective in terms of achieving a better estimation-vs-
communication trade-off than those that do not (VBT (3)). If,
on the other hand, it is desired to offline design a time-based
transmit schedule, VBT is useful, as mentioned in Sec. IV and
extensively discussed in [20].

While SoD (1) is based on the real-time measurement, its
performance in the context of state estimation was found to
be inferior compared to the other triggers in the simulations in
Sec. V. In particular, SoD is ineffective for an unstable process.
This may be expected since SoD is a general purpose trigger,
which requires no assumptions on the underlying process.
All other triggers are based on some quantity related to the



estimation problem (such as estimation error or variance) and
are thus more tailored to the problem at hand.

Using an optimal decision framework, two new event
triggers were obtained in Sec. IV. These optimal triggers (36)
and (38) were found to resemble MBT and VBT, respectively.
In fact, for a constant KF gain, they are equivalent in terms
of their average estimation/communication performance. Even
with varying gains, no significant difference was found in the
scalar simulations in Sec. V. Investigating whether the same
holds for the vector case is future work.

The optimal decision problem (19) discussed herein, is a
one-step problem, while the actually problem of finding an
optimal trade-off between estimation and communication is a
dynamic optimization problem. Clearly, a triggering decision
at some time step will also have an effect on the estimation
performance at future steps due to the underlying dynamics.
Quantifying the sub-optimality of the one-step approximation
to the dynamic problem is an interesting open question.

From the analysis and simulations herein, it may be con-
cluded that measurement-based triggers in the form of (2) or
(36) are effective for event-based state estimation. Relevant
sampling (4) essentially achieved the same performance, while
being computationally slightly more expensive.

APPENDIX

Before computing f(wk|yk,Yk−1) in this section, we first
determine f(yk, wk|Yk−1). From (7),

[

yk
wk

]

=

[

xk + wk

wk

]

=

[

I I
0 I

] [

xk

wk

]

. (42)

Since f(xk|Yk−1) and f(wk|Yk−1) = f(wk) are Gaussian and
independent, f(xk, wk|Yk−1) is jointly Gaussian. From (42),
it follows that f(yk, wk|Yk−1) is also jointly Gaussian. Thus,
it suffices to compute conditional mean and variance:

E

[

[

yk
wk

]

∣

∣

∣

∣

∣

Yk−1

]

=

[

x̂k|k−1 + E [wk]
E [wk]

]

=

[

x̂k|k−1

0

]

(43)

where we used independence of wk and Yk−1, and

Var

[

[

yk
wk

]

∣

∣

∣

∣

∣

Yk−1

]

= E

[

[

yk − E [yk|Yk−1]
wk − E [wk|Yk−1]

]

(. . . )T

∣

∣

∣

∣

∣

Yk−1

]

= E

[

[

(xk−x̂k|k−1)
2+2(xk−x̂k|k−1)wk+w2

k
∗

(xk−x̂k|k−1)wk+w2

k
w2

k

]

∣

∣

∣

∣

∣

Yk−1

]

, (44)

where ∗ is a placeholder for the symmetric entry. For the
individual terms in (44), we have

E [(xk − x̂k|k−1)
2|Yk−1] = Pk|k−1 (45)

E [(xk − x̂k|k−1)wk|Yk−1] = 0 (46)

E [w2
k|Yk−1] = E [w2

k] = r. (47)

In (46), we used conditional independence of xk− x̂k|k−1 and
wk. In summary, we obtain

f(yk, wk|Yk−1) = N

([

yk
wk

]

;

[

x̂k|k−1

0

]

,

[

Pk|k−1 + r r
r r

])

.

It follows from this (cf. [24, p. 39]) that f(wk|yk,Yk−1)
is a GRV with mean and variance as given in (25).
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