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Abstract— In this paper we consider the problem of estimat-
ing confidence regions for the parameters of ARMA models.
Based on subsampling techniques and building on earlier exact
finite sample results due to Hartigan, we compute the exact
probability that the true parameters belong to certain regions
in the parameter space. By intersecting these regions, a confi-
dence region containing the true parameters with guaranteed
probability is then obtained. All results hold true for a finite
number of data points and no asymptotic theory is used. The
usefulness of the approach is illustrated in a simulation example.

I. INTRODUCTION

It is widely recognised that a model is of limited use
if no certification of its quality is delivered together with
the model itself. In principle, a model can be used as if
it were the true system provided that it is so accurate that
the system-model discrepancy is negligible. However, this
is seldom the case, and the model accuracy should also be
taken into account when the model is used in practice. For
instance, in prediction, the prediction error is formed by two
components: the stochastic fluctuation due to noise and the
systematic error due to model inaccuracy.

To be credited with usefulness, a model uncertainty eval-
uation technique should meet two requirements:

i) It must hold under general conditions;
ii) It should provide tight evaluations of the system uncer-

tainty.

In connection with i), we note that in real situations the
presence of restrictive assumptions is awkward. For example,
assuming a specific distribution of the noise (e.g. that it
is bounded or that it is Gaussian) generates problems at
two different levels: first, the theory looses in applicability;
second, verifying the assumption may be difficult in a given
application. Point ii) is important because loose uncertainty
evaluations generate conservativeness in the belief that the
model is less reliable than it actually is. For example, a robust
controller looses in performance as the level of uncertainty
increases.

Despite the recognised need for model uncertainty evalu-
ation methods, there is a basic lack of methodologies able to
provide guaranteed results. This is mainly due to the inherent
theoretical difficulties encountered in the development of
such methodologies.

One point that needs to be kept in mind is that, in system
identification (e.g. Ljung (1999)), one always uses a finite
number of data points. And, in fact, uncertainty in the model
is due to such a finiteness. Likewise, for the evaluation of
model quality one will only have a finite amount of data
available. Thus, a sound uncertainty evaluation method must
provide results valid when the number of data is finite, and,
possibly, small.

Quite often, uncertainty evaluations are based on the
asymptotic theory of system identification. It is common
experience of theorists and practitioners that this theory -
though applied heuristically with a finite number of data
points - in many situations delivers sensible results. On the
other hand, the correctness of the results is not guaranteed,
and contributions (Bittanti et al (2002)) have appeared that
show that the asymptotic theory may as well fail to be
reliable in certain situations. Moreover, when the available
data is scarce, using asymptotic results makes no sense. Thus,
there is a need for developing techniques that provide results
guaranteed for finite data samples.

In this paper we study ARMA models and develop a
methodology for the evaluation of their accuracy which is
rigorously valid for any size of the data sample. The theory
in this paper calls for the assumptions that the model class
is rich enough to contain the true system. However, this
assumption must be put under the correct light: it is important
to note that this assumption regards the model class used
for model quality assessment, not the model class used for
the actual identification. In fact, the method developed in
this paper does not deliver a nominal model; instead, it
allows us to determine an uncertainty region in the parameter
space. Thus, one can use one model class (possibly of
restricted complexity) for identification, and then assess the
reliability of the obtained model by considering the full-
order model class. As these models are of different orders
the reliability assessment can be suitably performed in the
frequency domain.

The mathematical approach of this paper is inspired by
the work of Hartigan (Hartigan (1969,1970)) in the statis-
tical literature. In Hartigan (1969), Hartigan considered the
problem of estimating a constant from noisy measurements
and introduced the idea that sample estimates based on a
certain group theoretical property exhibit special distribution



characteristics, valid for a finite number of measurements.
Though this idea has generated moderate resonance in the
statistical literature and has not been explored at all by the
identification community, it contains the seed for important
achievements in finite sample-based system identification.
The present paper departs from the original work of Hartigan
in that we consider more general random sequences (and
this allows us to deal with dynamical systems). Yet, the
main underlying idea is still within Hartigan’s framework.
Thus, this paper can also be seen as a contribution in the
direction of fertilizing the area of system identification with
ideas imported from a certain area of the statistical literature.

Our earlier finite sample results (e.g. Weyer and Campi
(2002)) were data independent, in the sense that they were
uniform with respect to the considered class of data generat-
ing systems, and they could essentially be evaluated without
any data. Because of the uniformity, it was realised that the
results could be quite conservative for the particular system
at hand. The approach presented here is data based and uses
data generated by the actual system at hand, and hence avoid
the problems due to uniformity. Finite sample results using
a data based approach has also been developed in Campi
et al (2002), and of course many popular techniques such as
bootstrap are data based. However, few rigorous finite sample
results exists for bootstrap methods.

The paper is organised as follows. In the next section we
give a simple preview example illustrating the main idea in
the approach. In section III we consider ARMA models and
give the algorithm for construction of the confidence region
and the theoretical results giving the probability that the true
parameters belong to the constructed region. A simulation
example demonstrating the usefulness of the method is given
in section III-D before conclusions are given.

II. A PREVIEW EXAMPLE

In this section, a preview example is given that illustrates
the type of results developed. Consider the system

yt + a0yt−1 = wt, (1)

where a0 = 0.2 and {wt} is an independent sequence of
uniformly distributed random variables between −1 and 1.
1026 data points were generated according to (1). Our goal
is to form a confidence regions for a0 from the available data
set.

Rewrite the system as a model with generic parameter a:

yt + ayt−1 = wt.

The predictor and prediction error associated with the model
are

ŷt(a) = −ayt−1, εt(a) = yt − ŷt(a) = yt + ayt−1.

Next we compute the prediction errors εt(a) for t =
1, . . . , 1025 and calculate

ft−1(a) = εt−1(a)εt(a), t = 2, . . . , 1025.
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Fig. 1.

Using the ft−1(a)’s, we want to form empirical estimates
of the correlation E[εt−1(a)εt(a)]. Such estimates however,
need be constructed very carefully. First, we generate a set
G of subsets of I = {1, . . . , 1024} which is a group with
respect to the symmetric difference, i.e. (Ii∪Ij)−(Ii∩Ij) ∈
G, if Ii, Ij ∈ G. The generated group has 2048 elements and
apart from the set I itself and the empty set, each set in G has
512 elements. The sets in G are denoted I1, . . . , I2048. The
incident matrix for a group is a matrix whose (i, j) element
is 1 if j ∈ Ii and zero otherwise. An incident matrix R̄
for the 2047 nonempty sets are generated as follows. Let
R(1) = [1], and recursively compute

R(2n) =





R(n) R(n)
R(n) J − R(n)

0 eT





where J and e are, respectively, a matrix and a vector of all
ones. Then, R̄ = R(1024).

The estimates of the correlation E[εt−1(a)εt(a)] (in fact
a re-scaled version as no normalization is present) are then
given by

gi(a) =
∑

k∈Ii

fk(a), i = 1, . . . , 2048 (2)

(gi(a) = 0 if Ii = ∅). A few gi(a) functions are plotted
in Figure 1. The line with the steepest slope is obtained for
the set I itself. This is natural since I contains twice as
many elements as any other set of the group, and (2) is not
normalised with the number of terms in the summation.

Now, the idea is that for the true a0, εt(a0) = wt is white
noise and it is very unlikely that all the gi(a0) functions but a
few will be less than zero or greater than zero. Grounded on
this idea, we discard the rightmost and leftmost regions where
only 51 functions out of the calculated 2048 are less than
zero or greater than zero. The resulting interval [0.12, 0.24],
is the confidence region for a0. It is a rigorous fact (stated in
Theorem 3.1) that this confidence region has probability 1−
51 ∗ 2/2048 = 0.9502 > 95% to contain the true parameter



value a0. Notice that there is no need to normalise the sums
(2) since we are only interested in whether gi(a) is greater
or smaller than 0.

A verification of the theoretical confidence result was
performed by running the same simulation 1000 times. The
empirical frequency of a0 being in the confidence interval
was 0.956, in good agreement with the theoretical result.

III. CONFIDENCE REGIONS FOR ARMA MODELS

A. Data generating system

The ARMA system that generates the data is given by

A◦(z−1)yt = C◦(z−1)wt,

where

A◦(z−1) = 1 + a◦
1z

−1 + · · · + a◦
nz−n (3)

C◦(z−1) = 1 + c◦1z
−1 + · · · + c◦pz

−p (4)

are stable polynomials with no common factors and {wt} is a
zero-mean white wide-sense stationary sequence of random
variables with spectral density Φw(ω) = λ2

w > 0. Notice
that no a-priori knowledge of the noise level is assumed. In
particular λ2

w does not need to be known.

B. Model structure

The model class is A(z−1, θ)yt = C(z−1, θ)wt, θ ∈ Θ,
where A(z−1, θ) and C(z−1, θ) are the same as in (3) and
(4) except that a◦

i and c◦i are substituted by ai and ci, θ =
[a1 · · · an c1 · · · cp]

T and C(z−1, θ) is stable for any
θ ∈ Θ.

C. Construction of the uncertainty region

We commence by introducing a procedure for the deter-
mination of a certain set Θr. Later on in this section, this
procedure will be integrated in an algorithm which constructs
the parameter uncertainty region Θ̂ by intersecting Θr sets.

Procedure for the construction of Θr

1) Compute εt(θ) = yt−ŷt(θ) = A(z−1, θ)/C(z−1, θ)yt,
where t ranges over a finite interval, say, [1, H];

2) Select an r ≥ 1. For t = 1 + r, . . . , N + r = H ,
compute ft−r(θ) = εt−r(θ)εt(θ);

3) Let I = {1, . . . , N} and consider a collection G of
subsets Ii ⊆ I , i = 1, . . . ,M , forming a group under
the symmetric difference operation (i.e. (Ii ∪ Ij) −
(Ii ∩ Ij) ∈ G, if Ii, Ij ∈ G). Compute gi(θ) =
∑

k∈Ii
fk(θ), i = 1, . . . ,M ;

4) Select an integer q in the interval [1, (M + 1)/2) and
find the region Θr such that at least q of the gi(θ)
functions are bigger than zero and at least q are smaller
than zero.

Remark 3.1: In the procedure, the group G can be
freely selected. Thus, if I = {1, 2, 3, 4}, a suitable group
is G = {{1, 2}, {3, 4}, ∅, {1, 2, 3, 4}}; another one is G =
{{1}, {2, 3, 4}, ∅, {1, 2, 3, 4}}; yet another one is G = all
subsets of I . While the theory presented holds for any choice,

the quality of the result in the uncertainty region assessment
is affected by the choice made. Moreover, the feasible choices
are limited by computational considerations. For example, the
set of all subsets cannot be normally chosen as it is a truly
large set.

The intuitive idea behind this algorithm is that, for θ =
θ◦, the functions gi(θ) assume positive or negative value at
random (ε(t, θ0) is white noise), so that it is unlikely that
almost all of them are positive or that almost all of them are
negative. Since point 4 in the construction of Θr discards
regions where all gi(θ)’s but a small fraction (q should be
taken to be small compared to M , see Theorem 3.1 below)
are of the same sign, we expect that θ◦ ∈ Θr with high
probability. This is put on solid mathematical grounds in the
next theorem.

THEOREM 3.1: Assume that variables wt admit a
density (so that Pr{wt = c} = 0, for any real c) and that they
are symmetrically distributed around zero. Then, the set Θr

constructed above is such that: Pr{θ◦ ∈ Θr} = 1−2q/M =
1 − δr.

Note that by choosing different values of q, 1−2q/M can
take on different values for different choices of r, hence we
have used the notation δr. The proof is given in the appendix.

Remark 3.2: The only reason for requiring that the
variables wt admit a density is to avoid that the functions
gi(θ) defined in point 3 can take on the same value with
nonzero probability. Though this condition can be dropped,
we have preferred to maintain it to avoid unduly complica-
tions.
When the {wt} process is independent and identically but
not symmetrically distributed, we can obtain symmetrically
distributed data by considering the difference between two
subsequent data points.
The noise assumption is mild enough to accomodate a
number of situations. In particular, one can describe possible
outliers by allowing the noise to take on large values with
small probability.

Theorem 3.1 quantifies the probability that θ◦ belongs to
the region Θr. It holds for any finite N and introduces no
conservativeness at all, since such a probability is exactly
equal to 1 − δr. Theorem 3.1 deals only with one side of
the medal in the study of uncertainty evaluation techniques.
A good evaluation method must have two properties: the
provided region must have guaranteed probability (and this
is what Theorem 3.1 delivers); the region must be restricted,
and, in particular, it should concentrate around θ◦ as the
number of data points increases. We next provide a result
that shows how the second property can be fulfilled (again,
the proof is given in the appendix).

THEOREM 3.2: Let εt(θ) = A(z−1,θ)
C(z−1,θ)yt be the

prediction error associated with the considered model class.
Then, θ = θ◦ = [a◦

1 · · · a◦
n c◦1 · · · c◦p]

T is the unique solution



to the set of equations:

E[εt−r(θ)εt(θ)] = 0, r = 1, . . . , n + p. (5)

where E is the expectation operator.
Theorem 3.2 claims that if we simultaneously impose n+p

correlation conditions, then the only solution is the true θ◦.
Guided by this idea, we consider n + p sample correlation
conditions and, correspondingly, apply the ”Procedure for
the construction of Θr” for r = 1, . . . , n + p. As N →
∞, the functions gi(θ) → E[εt−r(θ)εt(θ)], provided that the
number of elements in each set Ii also tends to infinity. (It
is easy to construct groups with this property. Construction
of good groups has been considered in Gordon (1974).) This
means that each region Θr gets smaller and the intersection
of them gives an uncertainty region shrinking around the true
parameter θ◦. This leads to the following algorithm.

Algorithm for the construction of Θ̂

1) For r = 1, . . . , n + p, construct Θr as above.
2) Let Θ̂ = ∩n+p

r=1 Θr.

We conclude this section with a fact which is immediate
from Theorem 3.1. and stated for the sake of completeness.

THEOREM 3.3: Under the assumptions of Theo-
rem 3.1, the set constructed in the ”Algorithm for the
construction of Θ̂” is such that: Pr{θ◦ ∈ Θ̂} ≥ 1−

∑n+p
r=1 δr

where δr is defined in Theorem 3.1.
The inequality in the Theorem is due to that the sets {θ◦ /∈
Θr} may be overlapping for different r’s, see simulation
example in section III-D.

D. Simulation example

Consider the ARMA-system

yt + a0yt−1 = wt + c0wt−1, (6)

where a0 = −0.5, c0 = 0.2 and {wt} is an independent
sequence of zero mean normally distributed random variables
with variance 1. 1026 data points were generated according
to (6). As a model class we used yt + ayt−1 = wt + cwt−1

with associate predictor and prediction error given by

ŷt(a, c) = −cŷt−1(a, c) + (c − a)yt−1,

εt(a, c) = yt − ŷt(a, c) = yt + ayt−1 − cεt−1(a, c).

In order to form a confidence region for (a0, c0) we
calculated

ft−1,1(a, c) = εt−1(a, c)εt(a, c), t = 2, . . . , 1025

ft−2,2(a, c) = εt−2(a, c)εt(a, c), t = 3, . . . , 1026

and then computed

gi,1(a, c) =
∑

k∈Ii

fk,1(a, c), i = 1, . . . , 2048

gi,2(a, c) =
∑

k∈Ii

fk,2(a, c), i = 1, . . . , 2048
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Fig. 2. Confidence region for (a0, c0)

using the same group as in the preview example. Next
we discarded those values of a and c for which zero was
among the 25 largest and smallest values of gi,1(a, c) and
gi,2(a, c). Then according to Theorem 3.3 (a0, c0) belongs
to the constructed region with probability at least 1− 2·2·25

2048 =
0.9512.

The obtained confidence region is the blank area in Figure
2. The area marked with x is where 0 is among the 25
smallest values of gi,1, the area marked with + is where 0 is
among the 25 largest values of gi,1. Likewise for gi,2 with
the squares representing when 0 belongs to the 25 largest
elements and the circles the 25 smallest. The true value
(a0, c0) is marked with a diamond in the middle of the blank
region. As we can see, each step in the construction of the
confidence region excludes a particular region.

IV. CONCLUSIONS

In this paper we have derived an algorithm for construction
of confidence regions for ARMA models. The algorithm is
based on computing empirical correlation functions using
subsamples and discarding regions in the parameter space
where only a small fraction of the empirical functions are
greater/smaller than zero. Building on finite sample results
from Hartigan (1969) we derived bounds, valid for a finite
number of data points, on the probability that the true model
parameters belong to the constructed region. The approach
can be extended to ARMAX systems, and the approach bears
promise for further development of rigorous finite sample
results useful in practical applications.
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APPENDIX

A. Proof of Theorem 3.1

The proof is divided into a few steps in the form of
propositions.

Proposition 1.1: Let {wt} be a sequence of indepen-
dent random variables with symmetric distribution around
zero. Let I = {1, . . . , N}, and let G be a collection of
subsets Ii ⊆ I , i = 1, . . . ,M , forming a group under the
symmetric difference operation (i.e. (Ii ∪ Ij) − (Ii ∩ Ij) ∈
G, if Ii, Ij ∈ G). Pick any Ī ∈ G and an integer r. Then,
the set of variables

{

∑

k∈Ii

wkwk+r, i = 1, . . . ,M

}

(7)

has the same M -dimensional joint distribution as the set of
variables







∑

k∈Ii

wkwk+r −
∑

k∈Ī

wkwk+r, i = 1, . . . ,M







, (8)

provided that the order of the variables is suitably rearranged.
Before providing the proof, we give a simple example

illustrating the idea. Suppose that I = {1, 2, 3, 4}, r = 1,

and G = {{1, 2}, {3, 4}, ∅, {1, 2, 3, 4}}. Take Ī = {1, 2}.
Proposition 1.1 says that (by convention,

∑

k∈∅
wkwk+r =

0):

{w1w2 + w2w3, w3w4 + w4w5, 0,

w1w2 + w2w3 + w3w4 + w4w5} (9)

has the same distribution as

{0, w3w4 + w4w5 − w1w2 − w2w3,

− w1w2 − w2w3, w3w4 + w4w5}.

Proof: Consider the variables

w1w1+r w2w2+r w3w3+r · · · wNwN+r (10)

and re-organize them in the following chains

w1w1+r w1+rw1+2r w1+2rw1+3r · · · (chain 1)
w2w2+r w2+rw2+2r w2+2rw2+3r · · · (chain 2)
...
wrw2r w2rw3r w3rw4r · · · (chain r)

We consider the various chains in turn. Consider first chain
no. 1 and scan its elements from left to right. When an
element belonging to the set {wkwk+r, k ∈ Ī} - say wk̄wk̄+r

- is encountered, introduce the new variable w̃k̄+r = −wk̄+r,
and rewrite the element as −wk̄w̃k̄+r. The next element is
then rewritten as w̃k̄+rw̃k̄+2r with w̃k̄+2r = −wk̄+2r. So
is the next one: w̃k̄+2rw̃k̄+3r, and we proceed this way
until another element in {wkwk+r, k ∈ Ī} - say w¯̄kw¯̄k+r

- is encountered. This element is rewritten as −w̃¯̄kw¯̄k+r
,

where w̃¯̄k = −w¯̄k, interrupting the sequence of sign change.
We proceed scanning the first chain and we start changing
the sign again when we encounter the next element in
{wkwk+r, k ∈ Ī}. The procedure terminates when all ele-
ments in the first chain have been considered. Then, we start
over again with chain no. 2, and then chain no. 3 and so on.
When all chains have been scanned, we reorder all variables
in a sequence, similarly to (10). The resulting sequence is in
fact the same as (10), except that some variables have been
rewritten with a ’˜ ’ and, correspondingly, some signs have
been changed.
Next, we rewrite all elements in (8) with the new notation
(i.e., substituting wt with −w̃t, if wt has been substituted
by −w̃t). It can be seen by inspection that the rewritten
variables in (8) take on the same form as the variables in
(7) (though in a rearranged order) except that some variables
appear with the ’˜ ’. The theorem conclusion is then drawn by
observing that the ’˜’ is immaterial as far as the distributions
is concerned since the wt’s are symmetrically distributed
around zero, so that wt and w̃t = −wt have the same
distribution.

The next proposition proves that the variables in the set
(7) exhibit a precise ordering property.

Proposition 1.2: Let {wt} be a sequence of indepen-
dent random variables with symmetric distribution around



zero and such that Pr{wt = c} = 0, for any t and any real
c. Let I = {1, . . . , N}, and let G be a collection of subsets
Ii ⊆ I , i = 1, . . . ,M , forming a group under the symmetric
difference operation, and pick an integer r.
Then, the set of variables in (7) has the following property:
each variable in the set has the same probability 1/M to be
in the j-th position (i.e. there are exactly j−1 other variables
in the set (7) smaller than the variable under consideration)
and this holds for any choice of j between 1 and M .

Thus, if we consider the situation described before the
proof of Proposition 1.1, it means that the variables in (9)
have the same probability of being in a generic j-th position.
In other words, if we were asked to bet on one of the variables
to be e.g. smaller than all others, our probability of success
would not be affected by the choice we make.

Proof: Pick a variable in the set (7), say
∑

k∈Ī wkwk+r,
Ī ∈ G. This variable is in the j-th position if the inequality

∑

k∈Ī

wkwk+r >
∑

k∈Ii

wkwk+r

is satisfied for exactly j − 1 choices of Ii ∈ G. But, this is
equivalent to say that

∑

k∈Ii

wkwk+r −
∑

k∈Ī

wkwk+r < 0

holds for j − 1 selections of Ii. Now, using Proposition 1.1
we have:

Pr







∑

k∈Ii

wkwk+r −
∑

k∈Ī

wkwk+r < 0

for j − 1 selections of Ii}

= Pr

{

∑

k∈Ii

wkwk+r < 0 for j − 1 selections of Ii

}

showing that the probability of the event on the left hand
side does not depend on the chosen Ī . So, any Ī has the
same probability that

∑

k∈Ī wkwk+r is in the j-th position
and, there being M the possible choices of Ī , the probability
is 1/M .

We now come to the proof of Theorem 3.1. Consider the
event

A =

{

∑

k∈Ii

wkwk+r < 0

for at most q − 1 selections of Ii}∪
{

∑

k∈Ii

wkwk+r > 0 for at most q − 1 selections of Ii

}

= {0 is in the 1-st or 2-nd or · · · or q-th position}
∪ {0 is in the M -th or (M − 1)-th or · · ·

or (M − q + 1)-th position}

In view of Proposition 1.2 (note that 0 is one variable in set
(7)),

Pr(A) = 2q/M. (11)

Note that wt = εt(θ
◦), so that

∑

k∈Ii
wkwk+r = gi(θ

◦)
(recall the definition of gi(θ) in the ”Procedure for the
construction of Θr”). Suppose that the probabilistic outcome
s has been selected in A. Then, either gi(θ

◦) > 0 for at
most q − 1 selection of Ii or it is < 0 for at most q − 1
selection of Ii, so that θ◦ /∈ Θr (recall the construction of
Θr). Vice versa, if s /∈ A, then gi(θ

◦) > 0 for at least q
selection of Ii and it is < 0 again for at least q selection of
Ii, yielding θ◦ ∈ Θr. Using (11), the conclusion is drawn
that Pr{θ◦ ∈ Θr} = 1 − 2q

M
and the proof is completed.

B. Proof of Theorem 3.2

In the proof, we use the following lemma, taken from
Åström and Söderström (1974).

Lemma 1.1: Consider the function

f(z) =
g(z)

Π`
i=1(z − ui)ti

where g is analytic inside and on the unit circle, the numbers
ui are distinct and ti ≥ 1. Assume that

∮

f(z)zk−1dz = 0, k = 1, . . . , q,

where the integration path is the unit circle and q =
∑`

i=1 ti.
Then, f is analytic inside and on the unit circle.

We now turn to the proof of Theorem 3.2. Condition (5)
can be re-written as

0 =

∫ π

−π

Φε(ω)eiωrdω

=

∫ π

−π

∣

∣

∣

∣

A(e−iω, θ)

C(e−iω, θ)

C◦(e−iω)

A◦(e−iω)

∣

∣

∣

∣

2

λ2
weiωrdω

=

∮

znA(z−1, θ)zpC◦(z−1)

zpC(z−1, θ)znA◦(z−1)
·
A(z, θ)C◦(z)

C(z, θ)A◦(z)

λ2
w

i
zr−1dz

=

∮

g(z)

Π`
1(z − ui)ti

zr−1dz = 0, r = 1, . . . , n + p,

where g(z) = znA(z−1,θ)zpC◦(z−1)A(z,θ)C◦(z)
C(z,θ)A◦(z)i

λ2

w

i
is analytic

inside and on the unit circle, the numbers ui are the distinct
zeros of zpC(z−1, θ)znA◦(z−1) and ti is their multiplicity.
Then, by applying Lemma 1.1 with q = n + p, we conclude
that g(z)

Π`
i=1

(z−ui)ti
is analytic inside and on the unit circle. In

turn, this implies that the zeros of zpC(z−1, θ)znA◦(z−1) -
which are all inside the unit circle - are canceled by those of
znA(z−1, θ)zpC◦(z−1). Since znA◦(z−1) and zpC◦(z−1)
have no common factors, this gives C(z−1, θ) = C◦(z−1)
and A(z−1, θ) = A◦(z−1), concluding the proof.
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