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a b s t r a c t

An Interval Predictor Model (IPM) is a rule by which some observable variables (system inputs) are
mapped into an interval that is used to predict an inaccessible variable (system output). IPMs have
been studied in Campi et al. (2009), where the problem of fitting an IPM on a set of observations
has been considered. In the same paper, upper-bounds on the probability that a future system output
will fall outside the predicted interval (misprediction) have also been derived in a stationary and
independent framework. While these bounds have the notable property of being valid independently
of the unknown mechanism that has generated the data, in general the actual probability distribution
of the misprediction does depend on the data generation mechanism and, hence, these bounds may
introduce conservatism when applied to a specific case. In this paper, we study the reliability of an
important class of IPMs, called minimax layers, and show that this class exhibits the special property
that the probability distribution of the misprediction is known exactly and is universal, i.e., is always
the same irrespective of the data generation mechanism. This result carries important consequences
on the use of minimax layers in practice.

© 2019 Published by Elsevier Ltd.

1. Introduction

An Interval Predictor Model (IPM) is a rule I(·) that assigns
to a vector of explanatory variables x ∈ Rp (system inputs) an
interval I(x) ⊆ R, which is used to predict the system output.
Often, the rule I(·) is constructed from observations: one collects
a set of input–output data, (xt , yt ), t = 1, . . . ,N ,1 and identifies
an IPM guided by the following two principles: (i) the IPM is
consistent with the data-set, that is, points in the data-set are
correctly described by the IPM, (ii) the IPM width is minimized so
as to obtain small and informative prediction intervals. In Campi,
Calafiore, and Garatti (2009), the reliability of interval predictors
identified along the above described scheme have been studied
in a stationary and independent framework as specified by the
following assumption.

✩ M.C. Campi and A. Carè were partly supported by the H&W 2015 program
of the University of Brescia under the project ‘‘Classificazione della fibrillazione
ventricolare a supporto della decisione terapeutica’’ (CLAFITE). The material in
this paper was not presented at any conference. This paper was recommended
for publication in revised form by Associate Editor Adrian George Wills under
the direction of Editor Torsten Soderstrom.
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Assumption 1 (Stationarity and Independence). The process
(xt , yt ), t = 1, 2, . . ., with xt ∈ Rp and yt ∈ R is i.i.d. (independent
and identically distributed). Its (unknown) distribution at any
time t is denoted with P.2 ⋆

Under this assumption the reliability of an IPM I(·) is formally
defined in Campi et al. (2009) as

η(I) = P{y ∈ I(x)},

where (x, y) are distributed according to P. The closer η(I) to
1, the more reliable the predictor. When this definition is ap-
plied to the IPM Î that is identified from the data-set (xt , yt ),
t = 1, 2, . . . ,N , one should note that η(Î) becomes a random
variable because Î depends on the observed data (xt , yt ). Being
a random variable, η(Î) is characterized by its probability distri-
bution, and one would like this distribution to concentrate near
the value 1 (high reliability). The main result proven in Campi
et al. (2009), and then refined in Calafiore (2010) and Campi and
Garatti (2011), is that (PN refers to data (xt , yt ), t = 1, 2, . . . ,N ,

2 Stationarity (that is, the distribution of (xt , yt ) is the same for any t) says
that the system is invariant in time. Independence, instead, rules out the pres-
ence of inter-time correlations. However, the results in Campi et al. (2009) are
approximately applicable to correlated processes provided that the correlation
pattern is estimated and compensated for according to a deconvolution process,
see Campi et al. (2009) for more discussion.
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by which Î has been constructed)

PN
{η(Î) < 1 − ϵ} ≤ β, (1)

where β (confidence parameter) goes to zero exponentially fast
with N , and can therefore be made very small (e.g., 10−6) for
data sample sizes N of practical interest. When β is so small to be
negligible, one can think of 1− ϵ as a ‘‘practically certain’’ lower-
bound for η(Î). Importantly, β does not depend on P (i.e., the data
generation system).

1.1. The result of this paper

Result (1) is valid for any data generation mechanism.
Nonetheless, in general, the distribution of η(Î) does depend
on the specific data generation mechanism and, therefore, the
bound in (1) can be conservative for a specific data generation
mechanism. In contrast, in this paper our goal is to investigate
classes of IPMs for which the reliability η(Î) is independent of
the data generation mechanism and can therefore be evaluated
without conservatism. It turns out that the class of minimax
layers which is well-known from the statistical literature (see
Section 2.3) does have this property. This result is established and
discussed in full extension in this article.

In more specific terms, minimax layers are obtained from lin-
early parameterized regression models by fitting the parameters
according to a minimax criterion and then considering the small-
est layer around the so-obtained model that contains the data
points (all of them, or all but the exception of some of them). The
main result of this paper is that, under very general assumptions,
the distribution of the reliability η(Î) for minimax layers is always
the same independently of the data generation mechanism. In
other words, the value of PN

{η(Î) < 1 − ϵ} does not depend on
how data are generated and, hence, it becomes a quantity known
to the user who can employ it to certify the reliability of the
prediction (e.g., by building exact confidence intervals for η(Î)).
We express this fact by saying that the reliability is universal.
Another fundamental fact also proved in this paper is that the
reliability distribution does not depend on the type of regressors
(e.g., polynomial or trigonometric) that are used in the model. At a
conceptual level, this result implies a separation principle: while
the chosen regressors do impact on the width of the minimax
layer, the reliability distribution is not influenced by them. Hence,
any prior knowledge on the data generation mechanism can be
used to properly design the regressors and, moreover, one can
adjust the regressors by a-posteriori evaluating the layer width
while the reliability is kept under control by the theoretical
results established in this paper.

1.2. Discussion on related literature

The present paper is in the vein of the IPM theory introduced
in Campi et al. (2009). Interval predictor models as descriptive
tools existed before (Campi et al., 2009), and the reader can
consult the theory of differential inclusions, set-valued dynamical
systems and set prediction, (Jaulin, Kieffer, Braems & Walter,
2001; Jaulin, Kieffer, Didrit & Walter, 2001; Kieffer, Jaulin, &
Walter, 2002; Milanese, Norton, Piet-Lahanier, & Walter, 2013;
Walter & Pronzato, 1997). For a philosophical discussion on the
probabilistic viewpoint as compared to bounding approaches (see
e.g. Milanese et al. (2013)), the reader is instead referred to
the position paper (Campi, Csáji, Garatti, & Weyer, 2012). See
also Calafiore (2010), Crespo, Giesy, and Kenny (2014), Crespo,
Kenny, and Giesy (2015, 2016) and Lacerda and Crespo (2017) for
other recent contributions on IPMs, and Patelli, Broggi, Tolo, and
Sadeghi (2013) and Carè, Garatti, and Campi (2014) for a software
and a fast algorithm.

The theoretical framework of this paper is grounded on the
scenario approach of Calafiore and Campi (2006), Campi and
Garatti (2008, 2018) and Garatti and Campi (2013). In the ter-
minology of the scenario approach, Lemma 1 in Appendix A of
the present paper states that estimating a minimax layer is a
fully supported problem (see Definition 3 in Campi and Garatti
(2008)). This is key to establishing the fundamental result here
proved that the distribution of the reliability of minimax layers
does not depend on the data generation mechanism and on the
regressors. Moreover, in this paper we also introduce IPMs with
tunable width and guarantee their reliability in the spirit of the
results in Carè, Garatti, and Campi (2015). Part of the material
here presented appeared in preliminary form in the conference
paper (Garatti & Campi, 2009): specifically, when Theorem 1 of
this paper is applied to describe the reliability of the widest layer
(ℓ = 1 in Theorem 1) the main theorem of Garatti and Campi
(2009) is recovered. Importantly, Theorem 1 of the present paper
lends itself to be used as a rigorous quantitative tool for the
selection of the layer width, which is not possible from the result
in Garatti and Campi (2009).

Minimax layers are grounded on the minimax criterion of best
fit, also known as L∞ criterion. We shall provide some references
about the L∞ criterion of best fit in Section 2.3 after rigorously
defining the construction of minimax layers.

1.3. Structure of the paper

Minimax layers are formally introduced in the next Section 2.
In Section 3, we focus on the universal reliability of minimax
layers and provide a complete description of the corresponding
reliability distribution. Conclusions are drawn in Section 4. All of
the technical proofs are provided in Appendix A.

2. Minimax layer IPMs

We consider linearly parameterized regression models of a
variable y ∈ R on a p-dimensional vector of explanatory variables
x ∈ Rp. Precisely, given q regressor functions fj : Rp

→ R,
j = 1, . . . , q, the regression model is given by

ŷ(x) =

q∑
j=1

θjfj(x) = f (x)T θ, (2)

where f (x) := [f1(x) · · · fq(x)]T is the vector of regressor func-
tions and θ = [θ1 · · · θq]

T is the vector of tunable parameters.
As a simple example, (2) encompasses affine models in x, that is
ŷ(x) = θ1x(1) + θ2x(2) + · · · + θpx(p) + θp+1, where superscript (i)
indicates the ith component of vector x.

Given a batch of N independent and identically distributed
(i.i.d.) observations (xt , yt ), t = 1, . . . ,N , the regression model
is tuned according to the minimax, or L∞, criterion of best fit,
which amounts to selecting the parameters θj so as to minimize
the maximum deviation of the observed yt ’s from ŷ(xt ), namely,

min
θ=[θ1 ··· θq]T

max
t=1,...,N

⏐⏐⏐yt − f (xt )T θ
⏐⏐⏐. (3)

The optimal solution of (3) is denoted by θ∗
= [θ∗

1 · · · θ∗
q ]

T ,
and the optimal value is h∗

:= maxt=1,...,N |yt − f (xt )T θ∗
|. The

layer of vertical height 2h∗ centered around the fitted model
ŷ(x) := f (x)T θ∗ is called the minimax layer (also known as the
Chebyshev layer), see Fig. 1. The minimax layer provides a rule
I : x → I(x) ⊂ R, where, to each x, there corresponds the interval
I(x) given by the intersection of the vertical line departing from
x with the minimax layer, i.e.,

Î(x) = [f (x)T θ∗
− h∗, f (x)T θ∗

+ h∗
]. (4)

This rule defines a so-called Interval Predictor Model (IPM), Campi
et al. (2009).
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Fig. 1. The minimax layer and the corresponding interval prediction for a given
x̄.

2.1. Minimax ℓ-th layer IPMs

Theminimax layer described above is not the only IPM that can
be of interest and other layers can be defined based on the fitted
function ŷ(x) = f (x)T θ∗; for instance, one can consider layers
that include some but not all of the observations. More formally,
consider the set of values vt = |yt − f (xt )T θ∗

|, t = 1, . . . ,N , sort
them in descending order with no repeats so that v(1) > v(2) > · · ·

and define h∗

ℓ to be the ℓ-th highest value, i.e., h∗

ℓ = v(ℓ). Note that,
with this notation, h∗

1 = h∗. The minimax ℓ-th layer IPM (or, for
short, just the ℓ-th layer) is defined by the rule

Îℓ(x) = [f (x)T θ∗
− h∗

ℓ, f (x)
T θ∗

+ h∗

ℓ] (5)

(note that Î1(x) = Î(x)). While the minimax layer (ℓ = 1) includes
all the observations, for ℓ > 1 the ℓ-th layer is not consistent with
all of them, i.e., yt /∈ Îℓ(xt ) for some values of t ∈ {1, . . . ,N}, and
it is a remarkable fact, proved in Appendix A (see Lemma 1 and
the discussion thereafter) that, under very mild assumptions, the
ℓ-th layer is inconsistent with precisely ℓ + q − 1 observations.
The fact that the ℓ-th layer Îℓ(x) is thinner than Î(x) comes at the
price of a loss in reliability. As we shall see, an exact evaluation
of this loss for all the values of ℓ is possible under very general
conditions.

2.2. Notation

The reliability of the minimax ℓ-th layer (5) is defined as
P{(x, y) such that

⏐⏐y − f (x)T θ∗
⏐⏐ ≤ h∗

ℓ}, and it will be indicated
by η(Îℓ) or just ηℓ for short.

2.3. Some historical remarks on L∞ regression

L∞ regression has a long history, see e.g. Harter (1975). It
was introduced by Euler (1749), some half a century before least
squares regression, although a first resolution method for particu-
lar cases was given only in the late 18th century by Laplace (1783,
1793), and then extended to a more general framework in the
early 19th century by Fourier (1824). Since then, L∞ regression
has been further developed by many authors, notably by Cheby-
shev (1854) and Haar (1918). A surge of renewed interest for this
method started in the 1950s, partly spurred by the development
of linear programming techniques to compute the L∞ regres-
sion solution, (Appa & Smith, 1973; Armstrong & Kung, 1979;
Barrodale & Phillips, 1975; Karst, 1958; Planitz & Gates, 1991;
Wagner, 1959; Zhang, 1993). See Arthanari and Dodge (1993),
Birkes and Dodge (1993) and Cheney (1999) for comprehensive
presentations of L∞ regression. Paper Harter (1982) points out
that the minimax method is a valuable alternative to least squares
provided that the causes of variability of y are well-captured by
the explanatory variables x.

3. The universal reliability of minimax layers

Before stating the main theorem, we prove some prelimi-
nary results of independent interest that are instrumental to the
derivation of the main theorem.

3.1. Existence and uniqueness of θ∗

The existence of θ∗ immediately follows by the observation
that the function to be minimized, maxt=1,...,N |yt − f (xt )T θ |, is
non-negative and piecewise-linear.

Uniqueness is more involved and is proven under the follow-
ing conditions.

Condition 1. The probability P according to which observations
are generated admits density p(x, y). ⋆

Condition 2. For any θ ∈ Rq, θ ̸= 0, relationship f (x)T θ = 0 holds
at most on a zero Lebesgue measure set. ⋆

Condition 2 says that the functions fj(x) are linearly indepen-
dent on nonzero Lebesgue measure sets, and this corresponds
to requiring that none of the regressor functions is superflu-
ous over a set having nonzero Lebesgue measure. For example,
this condition is not satisfied when the regressor functions are
n + 2 polynomials of degree at most n, so that one regressor
function is certainly a linear combination of the others. How-
ever, standard choices of regressor functions satisfy the condition
(e.g., monomials of different degrees, orthonormal trigonometric
terms, etc.).

Since (x, y) admits density, x also does, that is, the marginal
probability Px of x is absolutely continuous with respect to the
Lebesgue measure, so that Condition 2 implies that

Px

{
f (x)T θ = 0

}
= 0, ∀θ ∈ Rq, θ ̸= 0. (6)

Uniqueness of the solution of (3) follows from (6), as estab-
lished in the following proposition (the proof of which is in
Appendix A.1).

Proposition 1. Problem (3) with N ≥ q admits with probability 1
a unique solution if and only if (6) holds. ⋆

3.2. The probability distribution of ηℓ

The following theorem is the main result of this paper and
states that the minimax layer (ℓ = 1) and minimax ℓ-th layers
(ℓ > 1) have universal reliability.

Theorem 1. Let N ≥ q + 1, and assume that Conditions 1 and 2
hold. For any given ℓ ∈ {1, . . . , n}, where n is the number of distinct
values in the set {|yt − f (xt )T θ∗

|, t = 1, . . . ,N}, the probability
distribution of ηℓ ∈ [0, 1] is

Fηℓ
(z) := PN

{ηℓ ≤ z} =

q+ℓ−1∑
i=0

(
N
i

)
(1 − z)izN−i. (7)

Note that Fηℓ
(z) does not depend on the probability P according

to which data are generated, nor does it depend on the regression
functions fj used. ⋆

In the theorem, PN
= P× · · · × P refers to the product proba-

bility distribution of the N observations (x1, y1), . . . , (xN , yN ). The
proof is given in Appendix A.2; in the following we discuss the
significance of the theorem.

In words, Theorem 1 says that ηℓ is a random variable with
a Beta distribution with parameters (N − q − ℓ + 1, q + ℓ),
irrespective of the probability with which (xt , yt ) are extracted
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Fig. 2. fη1 (z) for q = 7 and N = 50 (dash-dotted line), N = 150 (dashed line),
N = 250 (solid line).

and of the functional form of the regressors fj. The property that
the distribution of ηℓ does not depend on the distribution of
the observations can be phrased by saying that ‘‘ηℓ is a pivotal
random variable’’. Note that, differently from results like (1) that
are available in the IPM literature, Eq. (7) does not only provide
a bound, it assigns the exact probability distribution of ηℓ.3
From Eq. (7) one can compute the probability density of ηℓ, which
is

fηℓ
(z) :=

d
dz

Fηℓ
(z) = (q + ℓ)

(
N

q + ℓ

)
(1 − z)q+ℓ−1zN−q−ℓ.

Its expectation

E[ηℓ] =

∫ 1

0
zfηℓ

(z) dz =
N − q − ℓ + 1

N + 1
(8)

is the mean value of the reliability ηℓ.
The probability density function of η1 is graphically visualized

for different values of N in Fig. 2. As it appears, the distribution
of η1 tends to concentrate near 1 as N increases. By using this
density, one can quantify exactly the reliability of the minimax
layer for any finite N without availing of any knowledge of the
data generation mechanism. For an approximate evaluation one
can use Lemma 1 in Alamo, Tempo, Luque, and Ramirez (2015),
so obtaining

PN
{η1 ≤ z} =

q∑
i=0

(
N
i

)
(1 − z)izN−i

≤ eq
(
1 − z
e

+ z
)N

,

which reveals that, for any fixed z, PN
{η1 ≤ z} tends to zero

exponentially fast as N increases.

3 For a more specific comparison with the results of Campi and Garatti (2011),
note that equality (7) holds for the class of IPMs considered in this paper,
while the results in Theorem 2.1 of Campi and Garatti (2011) are valid in wider
generality. It can be observed that the distribution η1 as computed in the present
paper achieves exactly the bound given in Campi and Garatti (2011), Theorem
2.1 (equation (3) with k = 0). Hence, this paper proves that the bound in Campi
and Garatti (2011) is tight for the class of IPMs at hand in this paper. On the
other hand, the bound in Campi and Garatti (2011) is looser than (7) when
the IPM is allowed not to be consistent with some of the data points (ℓ > 1
in this paper; k > 0 in Campi and Garatti (2011)), as it is clear from the extra
binomial coefficient term in equation (3) of Campi and Garatti (2011). Moreover,
the construction in this paper and in Campi and Garatti (2011) are different: ℓ

in this paper determines the width reduction of the minimax layer around the
fitted model ŷ(x), while the parameter k in Campi and Garatti (2011) accounts
for the removal of data points from the data-set according to a generic scheme,
see Campi and Garatti (2011) for more details.

Fig. 3. Polynomial regression model and corresponding minimax layer. (θ∗
=

[−0.7233, −2.1691, 4.3338, 7.2844, −6.9323, −5.6068, 3.3085], h∗
= 0.5536).

Besides characterizing the minimax layer, Theorem 1 also
quantifies the loss in reliability incurred for reducing the width of
the minimax layer by taking larger values of ℓ. By inspecting (7),
one observes that q and ℓ only appear one summed to the other
in the upper limit of the summation, so that increasing ℓ to ℓ+1
has the same effect as increasing by one the size of the parameter
vector θ . In particular, it holds that E[ηℓ+1] = E[ηℓ] −

1
N+1 .

In the following, we provide an example and additional com-
ments to help gain insight in all these results.

3.3. An example

Let y ∈ R and x ∈ R,4 and suppose that N = 250 independent
points (x1, y1), . . . , (x250, y250) are available.5

A polynomial regression model y(x) = θ1 + θ2x+ · · · + θ7x6 is
tuned according to the L∞ criterion:

min
θ=[θ1 ··· θ7]T

max
t=1,...,250

⏐⏐yt − (θ1 + θ2xt + · · · + θ7x6t )
⏐⏐, (9)

and the corresponding minimax layer is shown in Fig. 3.
What is the confidence we have in the claim that a next, still

unseen, point falls in the layer with probability at least 90%? This
question is the same as asking for the probability that η1 ≥ 0.9,
and the answer can be found in Theorem 1: this probability is
equal to 1 −

∑7
i=0

(250
i

)
(1 − 0.9)i0.9250−i

≈ 1 − 10−5. In other
words, it is extremely likely that the obtained minimax layer
contains at least 90% of the probability mass with which data
are generated. From Eq. (8) we also see that the mean value of
the reliability η1 for minimax layers constructed based on (9)
is exactly 250−7

250+1 ≈ 0.968. Knowing the exact distribution of η1
as given by Theorem 1 makes it possible to compute an upper-
bound to the reliability η1 as well, and therefore to provide an
exact confidence interval for η1. For example, it holds true that
PN

{η1 ≤ 0.996} =
∑7

i=0

(250
i

)
(1 − 0.996)i0.996250−i

≈ 1 − 10−5,
from which PN

{η1 ∈ [0.9, 0.996]} ≈ 1 − 2 · 10−5.
Upon inspection of Fig. 3, it appears that the constructed

layer is not tight around the data points and in fact the layer
contains wide empty portions. Considering instead a trigonomet-
ric regression model, we can set out to solve the minimization

4 We consider a toy example with x ∈ R to allow visualization of the results.
5 For the sake of completeness, we let the reader know that the points (xt , yt )

were generated according to the equation

yt = −e−15(xt−0.2)2
+ nt ,

where the xt ’s are i.i.d., uniformly distributed over [−1, 1], and the nt ’s are de-
fined by nt = 0.09 log

(
1+ut
1−ut

)
, with ut independently and uniformly distributed

over [−1, 1].
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Fig. 4. Trigonometric regression model and corresponding minimax layer.
(θ∗

= [−0.2311, −0.2818, −0.3758, −0.1876, −0.1037, −0.1839, −0.0144],
h∗

= 0.3936).

problem

min
θ=[θ1 ··· θ7]T

max
t=1,...,250

⏐⏐ yt − (θ1 + θ2 sin(πxt ) + θ3 cos(πxt ) +

· · · + θ6 sin(3πxt ) + θ7 cos(3πxt ))
⏐⏐.

The obtained layer is in Fig. 4, and it more tightly wraps the
observations (which is also clear from the optimal value h∗

=

0.3936 against the optimal value with a polynomial regression
that was h∗

= 0.5536). As already noted, Theorem 1 holds
irrespective of the chosen regression functions, so that we can
make in this case the same claims as before; in particular that
a layer constructed around the trigonometric regression model
satisfies condition η1 ≥ 0.9 with probability 1 − 10−5.

In closing, we note that in this toy example data (xt , yt ) are in
R2, should x be of higher dimension, all the considerations here
exposed would remain the same since the results in this paper
do not depend on the dimension of x but only on the number of
regressor functions used.

3.4. A-posteriori selection of the regressor functions

The example in the previous section shows that the layer
width h∗ depends on the chosen regressor functions. In selecting
the regression functions, one uses the prior information available
on the problem. Moreover, the value of h∗ becomes known to
the user at the end of the optimization procedure. This suggests
that one can try different choices of regressor functions and
a-posteriori select the one that gives the highest accuracy, that is,
the lowest value of h∗. For instance, in the example of Section 3.3,
the user can inspect the result represented in Fig. 3 against that
in Fig. 4 and decide in favor of the second construction since
it provides a tighter description of the observations. This way
of proceeding, however, involves a choice that requires some
attention as explained in what follows. The fact that a polynomial
layer like the one in Fig. 3 is reliable at level 90% with confidence
1 − 10−5 means that in one experiment out of 105 the layer has
reliability less than 90%. Similarly, a trigonometric layer like the
one in Fig. 4 has reliability less than 90% in one out of 105 cases.
If one layer is chosen from the two types of layers after that they
have been constructed from data, it is possible that, every time a
layer (either polynomial or trigonometric) with reliability below
90% is constructed, this layer is chosen by the user. This fact
may increase above 10−5 the probability of selecting a layer with
reliability below 90%. This probability, however, can be taken
under control by a rigorous union bound: if a polynomial layer
can have reliability below 90% with probability 10−5, and so does

Fig. 5. Trigonometric regression model and corresponding minimax 19-th layer
(h∗

19 = 0.3032). We recall that the minimax ℓ-th layer is not consistent with
ℓ + q− 1 observations, and therefore in this case 25 data points lie outside the
layer.

a trigonometric layer, then both layers certainly have reliability
not less than 90% with probability at least 1−2 ·10−5 and, hence,
whichever criterion is used to select the layer, with probability
1 − 2 · 10−5, the chosen layer has the desired level of reliability.

More in general, many regression models can be compared
and one of them can be chosen while preserving high confidence.
Suppose e.g. that we insist to have confidence 1 − 10−5 that the
reliability is at least 90% while choosing an IPM from a set of
100 IPMs. Using Theorem 1, one can draw the conclusion that
this result can be achieved by an increase of the number of
observations from 250 (as it was in the example in Section 3.3)
to 309. In fact, formula (7) in Theorem 1 ensures that, with 309
observations, a given IPM is guaranteed to have reliability η1 ≥

0.9 with probability 1 − 10−7. Thus, the probability that none of
the 100 candidate IPMs has reliability less than 90% is at least
1 − 100 · 10−7

= 1 − 10−5. The fact that the confidence can
be increased from 1 − 10−5 to 1 − 10−7 and yet the number of
observations remains moderate is due to the fact that the Beta
distribution is thin-tailed. This can be expressed by saying that
confidence is cheap.

3.5. A-posteriori selection of ℓ

The user might be willing to accept a reduction in reliability to
favor accuracy, i.e., to obtain a thinner layer. To this end, minimax
ℓ-th layers can be built for various values of ℓ and the reliability
of the chosen one can be taken under control by the same union
bound argument that was used in Section 3.4. For example, we
have seen that the construction of the minimax layer in Fig. 4 is
reliable at level 90% with confidence 1−10−5. The 19-th layer for
the same data-set is shown in Fig. 5 and is reliable at level 80%
with confidence 1 − 10−5. Thus, with probability 1 − 2 · 10−5 it
holds that the construction in Fig. 4 returns a layer with reliability
at least 90% and, simultaneously, the construction in Fig. 5 returns
a layer with reliability at least 80%. Therefore, an a-posteriori
selection leaves the user with a confidence of 1 − 2 · 10−5 that
the reliability is either 90% or 80% depending on the choice.

4. Conclusions

In this paper we have shown that minimax layers form a
class of Interval Predictor Models that achieve universal reliability,
i.e., their reliability has the same probability distribution inde-
pendently of the data generation mechanism under very general
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assumptions. We have discussed the implications of this univer-
sal reliability property in terms of complete separation between
accuracy and reliability. We have also shown that a union bound
argument allows one to guarantee the reliability of a model that
is selected a-posteriori among several ones. Future work will con-
centrate on improving the union bound so as to possibly remove
any conservatism in it contained. Moreover, one can devise more
sophisticated schemes to generate various models to choose from.
For example, a regularization approach similar to Campi and Carè
(2013) can be employed in order to slim down the number of
regressors, while the theory here developed can be used to keep
control on the reliability of the chosen layer.

Appendix A. Proofs

A.1. Proof of Proposition 1

(if) Suppose that (6) holds, so that the probability that the vector
f (x) = [f1(x) · · · fq(x)]T belongs to a given subspace of Rq of
dimension less than q is zero. We show that this implies that the
condition

for every choice of q different indexes t1, t2, . . . , tq
from 1, . . . ,N, the vectors f (xt1 ), f (xt2 ), . . . , f (xtq )

are linearly independent (A.1)

holds with probability 1. Since (A.1) is the well-known Haar’s
condition for the uniqueness of the solution of (3) (see Ch-
eney, 1999; Haar, 1918), the ‘‘if’’ part of the proposition is then
established.

To show (A.1), note that (6) implies that the probability that
f (xt1 ) = 0, i.e. that f (xt1 ) falls at the origin, is zero. Hence,
f (xt1 ) ̸= 0 with probability 1, and consider the 1-dimensional
subspace containing f (xt1 ). The probability that f (xt2 ) belongs to
this subspace is zero again by (6), so that f (xt1 ) and f (xt2 ) form a
subspace of dimension 2 with probability 1. Proceeding the same
way with all the q vectors f (xt1 ), f (xt2 ), . . . , f (xtq ), we arrive to
the conclusion that (A.1) holds with probability 1.

(only if) Suppose instead that (6) does not hold, that is,
Px{f (x)T θ = 0} > 0 for some given θ ̸= 0. Then, there is
a non-zero probability that f (xt )T θ = 0 for all t = 1, . . . ,N .
In this case, denoting by θ∗ a solution to (3), we have that
maxt=1,...,N |yt − f (xt )T (θ∗

+ θ )| = maxt=1,...,N |yt − f (xt )T θ∗
|, i.e.

θ∗
+ θ attains the same optimal value as θ∗. This shows that the

solution is not unique with non-zero probability. □

A.2. Proof of Theorem 1

Preliminary results.
To establish the result, we have to enlarge our viewpoint and,

instead of considering minimax problems with N independent
observations, we need to consider any number M , M ≥ q +

1, of independent observations (x1, y1), . . . , (xM , yM ) generated
according to P:

min
θ

max
t=1,...,M

|yt − f (xt )T θ |. (A.2)

Throughout this part on preliminary results, (θ∗, h∗) denotes the
(unique with probability 1) solution and optimal value of (A.2).

Definition 1 (Observation of Support). An observation (xk, yk),
k ∈ {1, 2, . . . ,M}, is of support for (A.2) if

min
θ

max
t∈{1,...,M}

t ̸=k

⏐⏐⏐yt − f (xt )T θ
⏐⏐⏐ < min

θ
max

t=1,...,M

⏐⏐⏐yt − f (xt )T θ
⏐⏐⏐,

i.e., if its removal improves the solution. ⋆

Thanks to convexity, it is clear that an observation of support
(xk, yk) must be also active, that is, |yk − f (xk)T θ∗

| = h∗. In
the present setup, it also holds true with probability 1 that an
active observation is of support, so that with probability 1 the
observations of support coincide with the active observations.

To show this, suppose that there is an observation, say
(xM , yM ), that is active but not of support. Because it is active,
it holds that

|yM − f (xM )T θ∗
| = h∗. (A.3)

On the other hand, (θ∗, h∗) is with probability 1 also the solution
and the optimal value of the problem

min
θ

max
t=1,...,M−1

|yt − f (xt )T θ |, (A.4)

because (A.4) attains the same optimal value of (A.2) since
(xM , yM ) is not of support and the solution to (A.4) is unique with
probability 1 (note that M − 1 ≥ q). Thus, (θ∗, h∗) depends on
(x1, y1), . . . , (xM−1, yM−1) only. For any given xM there are just
two values of yM such that (A.3) holds true and since (xM , yM )
is independent of (x1, y1), . . . , (xM−1, yM−1), and thereby of θ∗,
the probability that yM takes one of these two values is zero,
because (xM , yM ) is generated according to P, a probability that
has density. This gives the sought result that the probability that
(xM , yM ) is active but not of support is zero.

To proceed, we need the following lemma.

Lemma 1. For any M ≥ q + 1, the number of observations of
support for (A.2) is q + 1 with probability 1. ⋆

Proof of Lemma 1. We first show that the number of observa-
tions of support can be less than q + 1 with probability zero
only.

With probability 1 we have that

h∗
= min

θ
max

t=t1,...,td

⏐⏐⏐yt − f (xt )T θ
⏐⏐⏐, (A.5)

where (xt1 , yt1 ), . . . , (xtd , ytd ) are the observations of support.
Indeed, with probability 1 the observations of support are the
active observations and these latter alone determine the so-
lution (θ∗, h∗) to (A.2) by convexity. Consider now data-sets
(x1, y1), . . . , (xM , yM ) for which d, the number of observations of
support, is less than q + 1. Since θ has dimension q and d ≤ q,
θ has at least as many components as there are observations
of support. Hence, Eq. (A.5) implies that h∗

= 0 whenever
f (xt1 ), . . . , f (xtd ) are linearly independent, a situation that occurs
with probability 1 (see the proof of Proposition 1). On the other
hand, h∗ is also given by h∗

= maxt=1,...,M |yt − f (xt )T θ∗
|, so that

h∗
= 0 implies that

yt = f (xt )T θ∗, for all t = 1, . . . ,M. (A.6)

The first part of the proof is now completed by showing that
(A.6) can happen with probability zero only. To this end, suppose
that the observations of support are the first d observations; then,
θ∗ in (A.6) depends on observations (x1, y1), (x2, y2), . . . , (xd, yd)
only. The next observation (xd+1, yd+1) (this observation is in the
set of M observations since M ≥ q+1 > d) is independent of the
first d observations, and thereby of θ∗, and has to satisfy the rela-
tion in (A.6), that is, yd+1 = f (xd+1)T θ∗. For any value of xd+1, only
one value of yd+1 satisfies this relation, and this happens with
probability zero only because (xd+1, yd+1) is generated according
P, a probability that has a density.

We next show that the number of observations of support
cannot be more than q + 1.

For the sake of contradiction, suppose that the number of
observations of support is greater than q + 1, and consider the
following M + 1 regions in Rq+1:

Ft =
{
(θ, h) ∈ Rq+1

: |yt − f (xt )T θ | ≤ h
}
,
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for t = 1, . . . ,M , and

FM+1 =
{
(θ, h) ∈ Rq+1

: h < h∗
}
.

For any choice {t1, t2, . . . , tq+2} of q + 2 indexes from the set
{1, 2, . . . ,M + 1}, we have that⋂
t=t1,...,tq+2

Ft ̸= ∅. (A.7)

Indeed, if {t1, t2, . . . , tq+2} ∈ {1, 2, . . . ,M}, then (θ∗, h∗) is a point
in

⋂
t=t1,...,tq+2

Ft and hence (A.7) holds. Suppose instead that one
of the indexes t1, t2, . . . , tq+2 is M + 1, say tq+2 = M + 1. Then,
we certainly have minθ maxt=t1,...,tq+1 |yt − f (xt )T θ | < h∗ because
at least one observation of support is missing in the list of q + 1
observations with respect to which max is taken (recall that we
have supposed that the number of observations of support is
greater than q+1). This means that

⋂
t=t1,...,tq+1

Ft contains a point
(θ̄ , h̄) with h̄ < h∗. But then, this point is also in FM+1 and (A.7)
remains proven in this case too.

Since (A.7) holds and since all sets Ft , t = 1, . . . ,M + 1, are
convex, resorting to Helly’s theorem (see e.g. Rockafellar, 1970)
now yields⋂
t=1,...,M+1

Ft ̸= ∅.

This last relation means that we can find a point (θ∗∗, h∗∗) which
is simultaneously in all Ft , t = 1, . . . ,M , so that it satisfies
|yt − f (xt )T θ∗∗

| ≤ h∗∗, t = 1, . . . ,M , and that is also in FM+1, so
that h∗∗ < h∗. But then this (θ∗∗, h∗∗) would outperform (θ∗, h∗),
the optimal solution, and this is a contradiction. This concludes
the proof of the lemma. □

As a consequence of the previous results, with probability 1
there are exactly q+ 1 observations, those of support, that lie on
the boundary of the optimal minimax layer (|yt − f (xt )T θ∗

| = h∗)
and that univocally determine it. All other M − (q + 1) obser-
vations, which are not of support, are strictly inside the optimal
layer, and, since they are generated independently of the observa-
tions of support, and thereby of θ∗, Condition 1 straightforwardly
gives the following property.

Proposition 2 (Non-Degeneracy Property). The probability that for
some t, τ ∈ {1, . . . ,M}, t ̸= τ , |yt − f (xt )T θ∗

| = |yτ − f (xτ )T θ∗
|

and (xt , yt ), (xτ , yτ ) are not both of support for (A.2) is zero. ⋆

This non-degeneracy property, together with the fact that all
the observations of support attain the same value, entails that
the number of distinct values in {|yt − f (xt )T θ∗

|, t = 1, . . . ,M},
which is the number of distinct minimax ℓ-th layer IPMs that can
be obtained, is equal to M − q with probability 1. When M = N ,
this gives n (see the statement of Theorem 1) equal to N − q.

Main derivations.
In this part of the proof, (θ∗, h∗) denotes the solution and

optimal value of (3).
Fix a value of ℓ ∈ {1, . . . ,N − q}. Let E[ηk

ℓ] be the kth
order moment of the reliability ηℓ. The proof of Theorem 1 is
based on evaluating E[ηk

ℓ], for k = 1, 2, . . ., and then deducing
the probability distribution Fηℓ

of ηℓ from the resulting moment
problem.

By definition, ηℓ is the probability that, for fixed (θ∗, h∗

ℓ),
one more observation falls in the minimax layer so that, by
the independence of observations, ηk

ℓ is the probability that k
more observations fall in the layer. Thus, letting (xN+1, yN+1), . . . ,
(xN+k, yN+k) be k extra observations, ηk

ℓ can be written as

ηk
ℓ = Pk

{
(xN+1, yN+1), . . . , (xN+k, yN+k) such that⏐⏐yt − f (xt )T θ∗

⏐⏐ ≤ h∗

ℓ, t = N + 1, . . . ,N + k
}

.

Now, we compute the expectation of ηk
ℓ when θ∗ and h∗ vary

in dependence of the first N random observations (x1, y1), . . . ,
(xN , yN ) that are used to construct the layer. With the notation
znm = (xm, ym), (xm+1, ym+1), . . . , (xn, yn) and Zn

m = R(p+1)
× · · · ×

R(p+1)
= R(p+1)·(n−m+1)

= domain for znm, it holds that

E[ηk
ℓ] =

∫
ZN1

ηk
ℓ dPN (A.8)

=

∫
ZN1

Pk
{
zN+k
N+1 such that

⏐⏐yt − f (xt )T θ∗
⏐⏐ ≤ h∗

ℓ,

t = N + 1, . . . ,N + k
}
dPN

= [IA = indicator function of set A]

=

∫
ZN1

[∫
ZN+k
N+1

I{|yt−f (xt )T θ∗|≤h∗
ℓ
,t=N+1,...,N+k} dPk

]
dPN

=

∫
ZN+k
1

I{|yt−f (xt )T θ∗|≤h∗
ℓ
,t=N+1,...,N+k} dPN+k.

Now, let S = {t1, . . . , tN} be a generic subset of N indexes from
{1, 2, . . . ,N+k} and let S be the family of all possible choices of S
(S contains

(N+k
N

)
elements). Moreover, define S̄ = {1, 2, . . . ,N +

k} − S.
Due to the i.i.d. nature of the observations, each group of

N observations has identical statistical properties as any other
group. Therefore, if we indicate by θ∗

S and h∗

S the optimal solution
and the optimal value of problem

min
θ

max
t∈S

⏐⏐⏐yt − f (xt )T θ
⏐⏐⏐,

and by h∗

ℓ,S the ℓ-th highest value in the set {|yt − f (xt )T θ∗

S |, t ∈

S}, we have that∫
ZN+k
1

I{|yt−f (xt )T θ∗|≤h∗
ℓ
,t=N+1,...,N+k} dPN+k (A.9)

=

∫
ZN+k
1

I{
|yt−f (xt )T θ∗

S |≤h∗
ℓ,S ,t∈S̄

} dPN+k, ∀S ∈ S.

From (A.8) and (A.9) we obtain that

E[ηk
ℓ] (A.10)

=
1(N+k
N

) ∑
S∈S

∫
ZN+k
1

I{
|yt−f (xt )T θ∗

S |≤h∗
ℓ,S ,t∈S̄

} dPN+k

=
1(N+k
N

) ∫
ZN+k
1

∑
S∈S

I{
|yt−f (xt )T θ∗

S |≤h∗
ℓ,S ,t∈S̄

} dPN+k.

The computation of E[ηk
ℓ] is now completed by showing that the

integrand in (A.10) is with probability 1 constant and equal to(N+k−(q+ℓ)
k

)
so that

E[ηk
ℓ] =

(N+k−(q+ℓ)
k

)(N+k
N

) , k = 1, 2, . . . (A.11)

For fixed observations (x1, y1), . . . , (xN+k, yN+k), the quantity∑
S∈S I{

|yt−f (xt )T θ∗
S |≤h∗

ℓ,S ,t∈S̄
} counts the number of choices of S

such that the ℓ-th layer constructed from the observations with
indexes in S contains all the remaining observations with indexes
in S̄. These choices of S are those such that (θ∗

S , h∗

S ) is equal to
the solution and optimal value (θ∗

S∪S̄
, h∗

S∪S̄
) of the problem with

all N + k observations,

min
θ

max
t=1,...,N+k

⏐⏐⏐yt − f (xt )T θ
⏐⏐⏐, (A.12)

and h∗

ℓ,S is equal to h∗

ℓ,S∪S̄
, which is defined as the ℓ-th highest

value in the set {|yt − f (xt )T θ∗

S∪S̄
|, t = 1, . . . ,N + k}. The event
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that (θ∗

S , h∗

S ) = (θ∗

S∪S̄
, h∗

S∪S̄
) and h∗

ℓ,S = h∗

ℓ,S∪S̄
happens if and only

if S̄ does not contain any of the observations such that

|yt − f (xt )T θ∗

S∪S̄ | ≥ h∗

ℓ,S∪S̄, (A.13)

i.e., the observations of support for (A.12), which are all needed
to determine (θ∗

S∪S̄
, h∗

S∪S̄
), and the observations strictly inside

the minimax layer that are needed to determine h∗

ℓ,S∪S̄
. Using

Lemma 1 and Proposition 2, we immediately conclude that with
probability 1 (A.13) is satisfied by q + ℓ observations in S ∪ S̄.
Thus, the subset of k indexes S̄ has to be chosen from a set of
N + k− (q+ ℓ) indexes, and the number of choices is

(N+k−(q+ℓ)
k

)
.

Thus∑
S∈S

I{
|yt−f (xt )T θ∗

ℓ,S |≤h∗
ℓ,S ,t∈S̄

} =

(
N + k − (q + ℓ)

k

)
with probability 1, and (A.11) remains proven.

To conclude the proof, note now that E[ηk
ℓ] can also be written

as
∫ 1
0 zk dFηℓ

(z), where Fηℓ
is the probability distribution of ηℓ.

Hence, (A.11) becomes∫ 1

0
zk dFηℓ

(z) =

(N+k−(q+ℓ)
k

)(N+k
N

) , k = 1, 2, . . . (A.14)

The distribution function

Fηℓ
(z) =

q+ℓ−1∑
i=0

(
N
i

)
(1 − z)izN−i

(which gives dFηℓ
(z) = (q+ℓ)

( N
q+ℓ

)
(1−z)q+ℓ−1zN−q−ℓ dz) satisfies

the infinite system of Eqs. (A.14) and the theorem statement is
finally proved by noting that (A.14) defines a so called moment
problem that admits a unique solution (see e.g. Corollary 1, §12.9,
Chapter II of Shiryaev, 1996). □
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