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Abstract: In this paper, the problem of identifying a predictor model for an unknown
system is studied. Instead of standard models returning a prediction value as output,
we consider models returning prediction intervals. Identification is performed according
to some optimality criteria, and, thanks to this approach, we are able to provide,
independently of the data generation mechanism, an exact evaluation of the reliability
(i.e. the probability of containing the actual true system output value) of the prediction
intervals returned by the identified models. This is in contrast to standard identification
where strong assumptions on the system generating data are usually required.Copyright
© 2005 IFAC
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1. INTRODUCTION

In this paper, we are interested in deriving predictor
models from data, i.e. models that can be used for
prediction purposes. Prediction is not only important
per se, but it also plays a significant role in many
application endeavors such as predictive control and
signal processing.
Along the standard routes in system identification
(Ljung, 1999; Söderström and Stoica, 1989), the
model is typically obtained by first selecting a para-
metric model structure, and then by estimating the
model parameters using an available batch of obser-
vations. The so obtained identified model may then be
used to predict the future output of the system.
As is obvious, however, the predicted output value
is always an approximation of the actual value the
system output will be, so that crediting the predicted
value with reliability will depend on the prediction
accuracy the application at hand demands. In turn, this
entails that a predicted value is of little use if derived

without a tag certifying its accuracy.
A practical way to assign the accuracy tag is to provide
an interval (or region) of confidence around the pre-
dicted value to which the future output is guaranteed to
belong with a certain probability. In the standard iden-
tification approach, this is typically done a-posteriori
by estimating the level of the noise affecting the model
and by deriving the confidence interval from such an
estimate.
A crucial observation which has been pointed out
many times in the literature is that the confidence (or
probability) of the prediction interval may be difficult
to evaluate if the system generating the observations is
structurally different from the parametric model. This
entails that reliable results on the interval confidence
can be obtained only if strong hypotheses on the struc-
ture and order of the mechanism that generates the
data are made.
In this paper, we follow a novel approach for the con-
struction of predictor models which returns prediction
intervals with guaranteed confidence under general



conditions. In contrast to the standard way of proceed-
ing, we consider from the beginning model structures
returning an interval as output (these models are called
interval predictor models (IPMs) and are strictly con-
nected to set-valued map (Aubin, 1990; Aubin and
Cellina, 1984)). In this way, the model structure is
directly tailored to the final purpose of obtaining a pre-
diction interval. For the selection of the model within
the chosen structure, only the interval models which
are compatible with the observed data (in a sense
rigorously defined in Section 3) are considered, and,
among these, the model returning the smallest possible
prediction interval is chosen.
Through this new approach, we gain a fundamen-
tal advantage: the reliability of the estimated interval
can be quantified independently of the data-generating
mechanism. In other words, we are able to evaluate the
probability with which a future output is guaranteed to
belong to the predicted interval, whatever the system
generating the data is.

The results of the present paper build on previous
work of the same authors (Calafiore and Campi,
2002), (Calafioreet al., 2002) and (Calafiore and
Campi, 2005). Our main contributions here are: i)
identification is developed in a more general frame-
work allowing for the presence of outliers; ii) further-
more, we provide a considerably improved bound on
the number of samples required to attain the desired
reliability.

The paper is structured as follows. In Section 2 inter-
val predictor models are introduced, while the identifi-
cation of these models is presented in Sections 3 and 4.
Section 5 addresses the fundamental problem of eval-
uating the reliability of the identified model. Finally,
some simulation examples are given in Section 6. Due
to space limitations, proofs are omitted.

2. INTERVAL PREDICTOR MODELS

In this section, we introduce the key element of our
approach: models that return an interval as output (In-
terval Predictor Models – IPMs).
Let Φ ⊆ R

n andY ⊆ R be given sets, called respec-
tively the instanceset and theoutcomeset. Then, an
interval predictor model is simply a rule that assigns
to each instance vectorϕ ∈ Φ a corresponding output
interval (or region) inY. That is, an IPM is a set-valued
map

I : ϕ → I(ϕ) ⊆Y. (1)

In (1), ϕ is a regression vector containing explicative
variables on which the system outputy depends, and
I(ϕ) is the prediction interval. For an observedϕ, I(ϕ)
should containy with high (guaranteed) probability.
Throughout the paper we will consider IPMs in a para-
metric from. Precisely, consider a family of functions
mappingΦ intoY parameterized by a vectorq ranging
in some setQ⊆ R

nq

M = {y = M(ϕ,q), q∈ Q⊆ R
nq},

where for a givenq, M is a one-valued mapΦ → Y.
Then, an IPM is obtained by associating to eachϕ ∈Φ
the set of all possible outputs given byM(ϕ,q) asq is
let vary overQ, viz.

I(ϕ) = {y : y = M(ϕ,q) for someq∈ Q}. (2)

Remark 1.Note thaty = M(ϕ,q) should not be con-
sidered as a model family from which a specific model
has to be selected. Instead, this parametric model is
merely an instrument through which an interval map
I(ϕ) is defined.

An example of a parametric IPM is that derived from
standard linear regression functions:

M = {y= ϑ Tϕ +e, ϑ ∈ Θ ⊆ R
n, |e| ≤ γ ∈ R}. (3)

In this case,q = [ϑ T e]T ∈ R
n+1 andQ = Θ× [−γ,γ].

Θ can be e.g. a sphere with centerc and radiusr:

Θ = Bc,r = {ϑ ∈ R
n : ‖ϑ −c‖ ≤ r}, (4)

or, more generally, an ellipsoidal region:

Θ = Ec,P = {ϑ ∈R
n : (ϑ −c)TP−1(ϑ −c)≤ 1}, (5)

whereP is a positive definite matrix.

Note that a parametric IMP as defined in (2) is de-
termined by the setQ whereq is let vary. For such a
reason, parametric IPMs are usually denoted byIQ.
A classof parametric IPM is simply a collection ofIQ,
whereQ belongs to a familyQ of feasible sets.
For instance, for the parametric IPM defined by
(3),(4), Q = Bc,r × [−γ,γ] is univocally determined
by c, r andγ andQ can be obtained considering all
possible combinations of such parameters, i.e.

Q = {Q= Bc,r × [−γ,γ] : c∈R
n, r ∈R,γ ∈R}. (6)

Similarly, whenQ = Ec,P× [−γ,γ] we have

Q = {Q=Ec,P× [−γ,γ] : c∈R
n,P∈S+,γ ∈R}, (7)

whereS+ is the set of positive definiten×n matrices.

3. IPMS IDENTIFICATION

Suppose now that the explicative variableϕ and
the outputy are generated according to some data-
generating mechanism, and that a bunch of observa-
tionsDN = {ϕ(t),y(t)}t=1,...,N is available. From these
data we want to identify an IPM̂IN among a given
class of parametric IPMsIQ, Q∈ Q.
Identification is guided by the following two criteria.
On one hand, we require that̂IN is not falsified by
the observations, i.e. that it isconsistentwith data
according to the following definition.

Definition 1. An IPM I is consistentwith the batch of
observationsDN if y(t) ∈ I(ϕ(t)), for t = 1, . . . ,N.

On the other hand, we wantÎN to be tight and for this
purpose we suppose that a cost criterionµQ is defined,
so that, for each feasibleQ, µQ assesses the magnitude
of the intervals returned byIQ.
For example, consider parametric IPMs defined by



(3),(4). It can be explicitly computed (Calafioreet al.,
2002) thatIQ(ϕ) = [cTϕ − r‖ϕ‖−γ,cTϕ + r‖ϕ‖+γ],
so that, given aϕ, the size of the returned interval
depends onr andγ. Then, as a cost criterion we may
consider

µQ = γ +αr, (8)

whereα is a fixed nonnegative number. If e.g.α =
E[‖ϕ(t)‖], then µQ measures the average amplitude
of IQ.
Similarly, for parametric IPMs defined by (3),(5) we
have that

IQ(ϕ) = [cTϕ −
√

ϕTPϕ − γ,cTϕ +
√

ϕTPϕ + γ],

and as a cost criterion we may consider

µQ = γ +Tr[PW], (9)

whereW is a weighting matrix and Tr[·] means trace.
Combining the consistency requirement with that on
tightness, the identification of̂IN can be then per-
formed solving the following constrained optimization
problem with respect toQ.

Problem 1.(IPM identification).
Find ÎN := IQ̂N

where

Q̂N = arg min
Q∈Q

µQ s.t.y(t) ∈ IQ(ϕ(t)), t = 1, . . . ,N.

Problem 1 may look hard to solve. However, it is
worth noting that for many standard IPM parameter-
izations and cost criteria (e.g IPMs based on linear
regressive models) Problem 1 turns out to be aconvex
optimization problem which can be solved without
much computational effort.
In particular, for parametric IPMs defined by (3),(4)
and forQ andµQ defined in (6) and (8), respectively,
Problem 1 is equivalent to the following linear pro-
gramming problem (note thatQ = Q(c, r,γ) in this
case):

Problem 1.a.(Linear IPM - spherical parameter set).
ÎN = IQ(ĉN,r̂N,γ̂N) where

ĉN, r̂N, γ̂N = argmin
c,r,γ

γ +αr s.t.

r,γ ≥ 0

y(t) ≥ ϕT(t)c− r‖ϕ(t)‖− γ, t = 1, . . . ,N

y(t) ≤ ϕT(t)c+ r‖ϕ(t)‖+ γ, t = 1, . . . ,N.

Similarly (see (Calafioreet al., 2002) for details),
for the IPMs defined by (3),(5) withQ and µQ as
in (7) and (9) Problem 1 becomes a semi-definite
(convex) optimization problem which can be solved
with standard methods, see e.g. (Vandenberghe and
Boyd, 1996).

4. IDENTIFICATION WITH DISCARDED
CONSTRAINTS

It is well known that in many cases there are few data
(the so calledoutliers) whose value is anomalous as

compared to other observations. These data are of no
use to understand the data-generating mechanism. As
is clear, in presence of outliers, requiring consistency
for all the available observations as in Problem 1 may
be unsuitable. Indeed, even a single anomalous da-
tum may adversely affect the final result, introducing
conservatism (untightness) in the identified model. In
this case, a wiser procedure would be to discard “bad
data” from available observations, before performing
the identification.
From an abstract point of view, the IPM identification
with violated constraints can be outlined as follows.
Let k, k ≪ N, be a fixed number and letA be a deci-
sion algorithm through whichk observations are dis-
carded fromDN. The output ofA is the setA (DN) =
{i1, . . . , iN−k} of N− k indexes from{1, . . . ,N} rep-
resenting the constraints still in place. BŷIA

N−k we
denote the identified IPM whenk constraints are re-
moved as indicated byA . That is:

Problem 1′. (Identification with discarded constraints).
Find ÎA

N−k := IQ̂A
N−k

, where

Q̂A
N−k = arg min

Q∈Q
µQ s.t. y(t) ∈ IQ(ϕ(t)), t ∈ A (DN).

Remark 2.As is obvious, note that̂IA
N−0 = ÎN, so that

Problem 1 is a particular case of Problem 1′.

Two main issues now arise: (i) How should the algo-
rithm A be chosen? (ii) Which is the loss in reliability
when ÎA

N−k is used in place of̂IN? Point (ii) will be
addressed in the next Section 5. Point (i) is instead the
subject of the following Section 4.1.

4.1 Choice ofA

In order to achieve the best possible benefit from con-
straints removal, algorithmA should be chosen so as
to discard those constraints whose removal leads to the
largest drop in the optimal cost valueµQ̂A

N−k
. To this

end, one can try to solve Problem 1 for all possible
combinations ofN− k constraints taken out from the
initials N constraints, and then choose that combina-
tion resulting in the lowest value ofµQ. This brute-
force way of proceeding, however, is computationally
very consuming as it requires to solveN!/(N− k)!k!
optimization problems, a truly large number in gen-
eral.
The main aim of this section is to present a better algo-
rithm for solving the problem of constraints removal.
The approach taken here is in the same spirit of (Bai
et al., 2002) and (Matoušek, 1994) where the problem
of constraints removal has been studied in a slightly
different setting.
We first give some relevant definitions. To avoid nota-
tional cluttering, these definitions are given with ref-
erence to a generic constrained optimization problem:

P : min
z∈Z⊆Rd

f (z) s.t.z∈ Zi , i = 1, . . . ,m, (10)

whereZi ⊆ R
d. The following assumption is assumed

to hold for all problems considered in this paper.



Assumption 1.The solution ofP exists and is unique.

Remark 3.The uniqueness requirement in Assump-
tion 1 could be removed at the price of introduc-
ing extra technicalities. We have preferred to assume
uniqueness to ease the reading.

Let w(P) denote the smallest value off (z) attainable
for problemP, viz. w(P) = f (z∗) wherez∗ is the
solution ofP. We have the following definition.

Definition 2.(Support constraints). Thel − th con-
straint Zl is a support constraintfor P if w(P) <
w(Pl ), wherePl is the optimization problem ob-
tained from P by removing thel − th constraint,
namely:

Pl : min
z∈Z⊆Rd

f (z) s.t. z∈Zi , i = 1, . . . , l −1, l +1, . . . ,m.

In other words, a support constraint is a constraint
whose elimination improves the optimal solution. The
following Theorem holds (see (Calafiore and Campi,
2005) for a proof).

Theorem 1.If P is a convex optimization problem
(i.e. f (z) is a convex function ofz andZi is a convex
set for eachi), then the number of support constraints
for P is at mostd.

Finally, for all problems considered in this paper, we
require in the following assumption that the optimal
solution with the sole support constraints in place is
the same as the optimal solution with all constraints
(see Example 1 after the assumption for a degenerate
case where this does not apply).

Assumption 2.Given a problemP as in (10), con-
sider the following optimization problem

Psc : min
z∈Z

f (z) s.t. the support constraints ofP

are satisfied

Then,w(Psc) = w(P).

Example 1.Consider the following optimization prob-
lem:

min
(z1,z2)∈R2

z2 s.t.(z1,z2) ∈ Za∩Zb∩Zc, (11)

whereZa, Zb andZc are as in Figure 1. In this case,
only Za is a support constraint as removingZb or
Zc the optimal solution does not change. However,
considering the optimization problem subject toZa

only leads to a different solution than the original
problem.

Go back now to the problem of optimally removing
k constraints from the initial set of constraints associ-
ated toDN (with a little abuse of notation, we will say
“constraintsDN”). Given a subsetF of DN, we will
denote byw(F) the smallest value ofµQ attainable for
the optimization Problem 1 obtained by substituting
DN with F . We will also denote by sc(F) and by
sci(F), respectively, the set of support constraints and
the i-th support constraint of the problem with the

Za

Zb

Zc

z2

z1

Figure 1. Constraints of the optimization problem (11)

constraintsF . Finally, suppose that Problem 1 is a
convex problem (this is true e.g. for Problem 1.a) so
that |sc(F)| ≤ d, ∀F ⊆ DN, according to Theorem 1
(| · | denotes cardinality).
The following Algorithm A ∗ optimally discardsk
observations. Yet, instead of considering all the pos-
sible combinations ofN − k constraints from theN
initials ones, it only considers a subset of situations.
Precisely, it constructs a tree of optimization problems
as follows: the root is given by Problem 1, with the
initial set of constraintsDN; each problem in the tree is
obtained from a parent problem simply removing one
of the parent problem support constraints. In the end,
one simply has to solve the optimization problems at
level k in the tree (that is withk constraints removed).
Formally, the algorithm goes as follows (here,Dh

N−i
denotes the constraints of theh-th problem at leveli,
while Mi is the number of problems at leveli andX is
a variable that at the end of the algorithm contains the
optimal set ofN−k constraints).

AlgorithmA ∗

0. D1
N := DN; X := D1

N; M0 = 1; i := 0;
1. Mi+1 := 0

FOR h = 1 TO Mi

FOR l = 1 TO |sc(Dh
N−i)|

Mi+1 := Mi+1 +1
Dl+(h−1)·Mi

N−i−1 := Dh
N−i −scl (Dh

N−i)

IF i +1 = k AND w(Dl+(h−1)·Mi
N−i−1 ) ≤ w(X)

THEN X := Dl+(h−1)·Mi
N−i−1

END
END

2. IF i < k THEN i := i +1; GO TO 1.
ELSE A ∗(DN) := X

The following theorem holds true.

Theorem 2.Algorithm A ∗ is optimal in the sense that
it returns a set ofN − k constraints resulting in the
largest drop of the cost valueµQ.

Proof: see (Campiet al., 2005).

In Algorithm A ∗, only support constraints are rele-
vant to building a tree level from the previous one. In
general, given a set of constraintsDh

N−i , in order to



spot which among these the support constraints are,
one has to solve the optimization problems obtained
by removing one by one the constraints inDh

N−i , and
test if the optimal solution changes. In the following
we provide an evaluation of the total number of opti-
mization problems one has to solve to implementA ∗.
In A ∗ the computation of support constraints has to
be repeated for all the problems in the tree, from level
0 to levelk− 1. Since for each problem there are at
mostd support constraints, the number of problems at
level i is at mostdi . Moreover, each of these problems
hasN− i constraints. Thus, a bound to the number of
problems whichA ∗ requires to solve isN+(N−1) ·

d + . . .+(N− k−1) ·dk−1 ≤ N · dk−1
d−1 . Note that this

number is much smaller thanN!/k!(N−k)!.
As an additional remark, since support constraints
have to be active constraints, sc(Dh

N−i) can be deter-
mined by searching among active constraints ofDh

N−i
only. This may significantly reduce the number of
optimization problems to test.

5. RELIABILITY OF IPMS

In this section, we tackle the fundamental issue of
assessing thereliability of the IPM ÎA

N−k, identified
according to Problem 1′ (see Section 4). The reliability
result applies to any algorithmA and, in particular, to
A ∗ discussed at the end of the previous section.
Assume that the observed dataDN are generated as
a realization of a bivariate (strict sense) stationary
process{x(t)} = {ϕ(t),y(t)}, ϕ(t) ∈ Φ ⊆ R

n and
y(t) ∈ Y ⊆ R. Stationarity says that the system is op-
erating in steady-state. Apart from this, no assumption
is made. The system can be e.g. linear corrupted by
noise, nonlinear corrupted by noise, or anything else.

Definition 3. Let I be a given IPM. Thereliability of
I is denoted byR(I) and is the probability that a new
unseen datum(ϕ,y), independent ofDN but generated
according to the same mechanism, is consistent withI ,
i.e.

R(I) = ProbP{y∈ I(ϕ)},

whereP is the probability ofx(t) ∈ R
n+1.

The precise assessment ofR(ÎA
N−k) in the i.i.d. case is

given by the following theorem.

Theorem 3.Assume that{x(t)} = {ϕ(t),y(t)} is an
independent and identically distributed sequence with
unknown probability measureP. Suppose also that
Problem 1′ is aconvexconstrained optimization prob-
lem so that the number of its support constraints is
no greater thand (see Theorem 1), and that the so-
lution of Problem 1′ is unique (if not, suitable tie-
break rules could be used as explained in (Calafiore
and Campi, 2005)).
Then, for anyε ∈ (0,1) andδ such that

δ =
N!

(N−d−k)!d!k!
(1− ε)N−d−k, (12)

it holds that

ProbPN{R(ÎA
N−k) ≥ 1− ε} ≥ 1−δ .

Proof: see (Campiet al., 2005).

Remark 4.Theorem 3 states that, ifN data points are
observed, the reliability of the optimal solution̂IA

N−k
of Problem 1′ is no worse than 1− ε with high prob-
ability greater than 1− δ . As a matter of fact, since
constraints in Problem 1′ are random (they depend
on a realizationx(1), . . . ,x(N) of the data-generating
stochastic process{x(t)}), the resulting optimal inter-
val model̂IA

N−k is random itself. Therefore, its reliabil-

ity R(ÎA
N−k) can be equal to 1− ε for a given bunch of

random observations and not for another. In the theo-
rem, 1− δ refers to the probabilityPN = P× . . .×P

of observing a “bad” multi-samplex(1), . . . ,x(N) such
that the reliability of̂IA

N−k is less than 1− ε.

Remark 5.Note that fork = 0, equation (12) reduces
to

δ =
N!

(N−d)!d!
(1− ε)N−d. (13)

This is the condition guaranteeingR(ÎN) ≥ 1− ε with
probability no less than 1−δ .

Remark 6.It is perhaps worth noticing that, onceN
and δ have been fixed, the reliability of̂IA

N−k is not

simply the reliability of ÎN−k, even thougĥIA
N−k is

obtained through an optimization problem subject to
N − k constraints. The reason for this is that thek
constraints to be removed from the initialN are a
posteriori selected (so as to eliminate the constraints
which lead to untightness). For this reason, we have
R(ÎA

N−k) ≤ R(ÎN−k) as it can be easily verified from
equations (12) and (13).

Remark 7.Theorem 3 can be also used to designe an
IPM identification experiment. Indeed, suppose to fix
ε,δ . Then, equation (12) can be used to determine
the numberN of observations and the numberk of
constraints to be removed so as to identify through
Problem 1′ an IPM ÎA

N−k having reliability 1− ε, with
probability (confidence) 1−δ .

Remark 8.From equation (13), a bound to the number
N of samples required to attain a certain reliability 1−
ε with confidence 1− δ can be explicitly computed.
In fact, after some cumbersome calculations, one can
find that N = ⌊ 2

ε ln 1
β + 2d(1 + 1

ε ln 2
ε )⌋ + 1 (⌊·⌋ =

integer part), i.e. thatN scales basically as1ε ln 1
δ .

This greatly improves with respect to the bound given
in (Calafiore and Campi, 2002). In particular, the
log-dependence onδ allows one to obtain a high
confidence without increasing N very much. A similar
type of complexity bound has been derived in the
context of scenario based optimization in (Calafiore
and Campi, 2004).

Remark 9.(Dependent observations). Theorem 3 can
be extended to the case of non independent observa-
tions. For example, whenDN = {x(t)t=1,...,N} is gen-



erated by anM-dependent stochastic process (Bosq,
1998), it is quite straightforward to prove that Theo-
rem 3 still holds true if equation (12) is substituted
with:

δ =
N!

(N−d)!d!
·

W!
(W−k)!k!

· (1− ε)W−k,

whereW = ⌊(N−d(2M +1))/M⌋.

6. NUMERICAL EXAMPLES

Data were generated asy(t) = u(t)(1+w1(t))+w2(t)
where u(t) = ϕ(t) was the explicative variable and
was aWGN(0,1) (WGN = white gaussian noise),
w1(t) ≈ WGN(0,0.01), andw2(t) was a sequence of
independent random variables taking values 0,+1,
−1 with probability 0.98, 0.01 and 0.01 respectively.
w2(t) merely added outliers to data points.
After collecting 177 observationsu(t),y(t), we sought
an explanatory interval predictor model of the form
(2),(3),(4) withn = 1, i.e.

I(ϕ(t)) = {y(t) : y(t) = ϑu(t)+e,
|e| ≤ γ, ϑ ∈ Bc,r }.

We setµQ = γ + 0.7r (note thatE[|u(t)|] = 0.7), and
solving Problem 1 we got as optimal IPM parame-
ters c = 0.708, r = 0.537, γ = 0.024 andµQ = 0.4.
The so obtained set-valued mapI(ϕ(t)) is depicted

y(t)

4

3

2

1

0

-1 

-2 

-3 

-4 

-3 -2 -1 0 1 2 3 ϕ(t)

Figure 2. Output interval predictor model identified on
the basis of theN = 177 available observations.
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1
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y(t)

3210-1-2-3 ϕ(t)

Figure 3. Optimal interval predictor model withk = 1
discarded observations.

in Figure 2 along with the collected data points. As it
appears, such IPM is untight because of just a single

outlier. For this reason, we discardedk = 1 observa-
tions according to the optimal algorithmA ∗ described
in Section 4, and solving Problem 1′ we found the IPM
depicted in Figure 3. We gotc = 1.013, r = 0.231,
γ = 0.024, andµQ = 0.19. Precisely, discarding one
observation yielded a 50% reduction of the costµQ.
For what concerns the reliability of the identified
IPMs, Theorem (3)a-priori states that, with proba-
bility at least equal to 1− δ = 0.99, R(I) is no less
than 0.9 if no constraints are removed and no less
than 0.873 whenk = 1 constraints are removed (the
reliability loss is evaluated as 0.027).
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