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Abstract: The ‘scenario approach’ is an innovative technology that has been introduced to
solve convex optimization problems with an infinite number of constraints, a class of problems
which often occurs when dealing with uncertainty. This technology relies on random sampling of
constraints, and provides a powerful means for solving a variety of design problems in systems
and control. The objective of this paper is to illustrate the scenario approach at a tutorial level,
focusing mainly on algorithmic aspects. Specifically, its versatility and virtues will be pointed
out through a number of examples in model reduction, robust and optimal control.
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1. INTRODUCTION

Many problems in systems and control can be formulated
as optimization problems, Goodwin et al. [2005]. Here,
we focus on optimization problems of convex type, Boyd
and Vandenberghe [2004]. Convexity is appealing since
‘convex’ - as opposed to ‘non-convex’ - means ‘solvable’ in
many cases. This observation has much influenced the sys-
tems and control community in recent years, as witnessed
by an increasing interest in convex LMIs (Linear Matrix
Inequalities) reformulations of a number of classical prob-
lems (Apkarian and Tuan [2000], Apkarian et al. [2001],
Boyd et al. [1994], Vandenberghe and Boyd [1996], Gahinet
[1996], Scherer [2005, 2006]), a process also fostered by the
development of ever more effective convex optimization
solvers (Boyd and Vandenberghe [2004], Grant et al. [2006,
2007]).

In practical problems, an often-encountered feature is
that the environment is uncertain, i.e. some elements
and/or variables are not known with precision. A common
approach to counteract uncertainty is to robustify the
design as a min-max optimization problem of the type

min
ξ

max
δ∈∆

ℓδ(ξ), (1)

where ℓδ(ξ) (here assumed to be convex) represents the
cost incurred when the design parameter value is ξ and for
the instance δ of the uncertainty affecting the system. In
the min-max approach, one tries to achieve the best per-
formance which is guaranteed for all possible uncertainty
instances in ∆.

⋆ This work was supported by MIUR (Ministero dell’Istruzione,
dell’Università e della Ricerca) under the project Identification and

Adaptive Control of Industrial Systems.

The min-max problem (1) is just a special case of a robust
convex optimization program, Ben-Tal and Nemirovski
[1998, 1999], Ghaoui and Lebret [1997, 1998], where a
linear objective is minimized subject to a number of convex
constraints, one for each instance of the uncertainty:

RCP : min
γ∈Rd

cT γ (2)

subject to: fδ(γ) ≤ 0, ∀δ ∈ ∆,

where fδ(γ) are convex functions in the d-dimensional
optimization variable γ for every δ within the uncertainty
set ∆. Precisely, Problem (1) can be re-written in form (2)
as follows:

min
h,ξ

h (3)

subject to: ℓδ(ξ) − h ≤ 0, ∀δ ∈ ∆,

where γ = (h, ξ), cT γ = h, and fδ(γ) = ℓδ(ξ) − h in this
case. Note that, given a ξ, the slack variable h represents
an upper bound on the cost ℓδ(ξ) achieved by parameter
ξ when δ ranges over the uncertainty set ∆. By solving
(3) we seek that ξ that corresponds to the smallest upper
bound h.

More often than not, the uncertainty set ∆ is a con-
tinuous set containing an infinite number of instances.
Problems with a finite number of optimization variables
and an infinite number of constraints are called semi-
infinite optimization problems in the mathematical pro-
gramming literature, Boyd and Vandenberghe [2004]. Re-
portedly, these problems are difficult to solve and are even
NP-hard in many cases, Ben-Tal and Nemirovski [1998,
2002], Blondel and Tsitsiklis [2000], Braatz et al. [1994],
Nemirovski [1993], Stengel and Ray [1991], Tempo et al.
[2005], Vidyasagar [2001]. In other words, though convex
is easy, robust convex is difficult.

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 381 10.3182/20080706-5-KR-1001.3546



In Calafiore and Campi [2005, 2006], an innovative technol-
ogy called ‘scenario approach’ has been introduced to deal
with semi-infinite convex programming at a very general
level. The main thrust of this technology is that solvability
can be obtained through random sampling of constraints
provided that a probabilistic relaxation of the worst-case
robust paradigm of (2) is accepted. Such probabilistic re-
laxation consists in being content with robustness against
the large majority of the situations rather than against all
situations. The good news is that in the scenario approach
such large majority is under the control of the designer and
can be made arbitrarily close to the set of ‘all’ situations.

When dealing with problems in systems and control, the
scenario approach permits to tackle situations where more
standard approaches fail due to computational difficulties,
and opens up new resolution avenues that get around
traditional stumbling blocks in the design of devices in-
corporating robustness features.

The objective of the present paper is to introduce and
illustrate at a tutorial level the scenario approach. The
presentation will be user-oriented, with the main focus on
algorithmic aspects, and will primarily consist of a number
of examples in different contexts of systems and control to
show the versatility of the approach.

Structure of the paper

After describing in Section 2 the scenario approach along
with the concept of probabilistic relaxation of the RCP
solution, we move to illustrating some possible applications
of the approach to systems and control in Section 3. In
particular, problems from robust control, optimal control,
and model reduction are respectively treated in Sections
3.1, 3.2, and 3.3. Some final conclusions are drawn in
Section 4.

2. THE SCENARIO APPROACH

The scenario approach presumes a probabilistic descrip-
tion of uncertainty, that is uncertainty is characterized
through a set ∆ describing the set of admissible situations,
and a probability distribution Pr over ∆. Depending on
the problem at hand, Pr can have different interpreta-
tions. Sometimes it is a measure of the likelihood with
which situations occur, other times it simply describes the
relative importance we attribute to different uncertainty
instances. A probabilistic description of uncertainty is
gaining increasing popularity within the control commu-
nity as witnessed by many contributions such as Barmish
and Lagoa [1997], Calafiore and Campi [2006], Calafiore
et al. [2000], Fujisaki et al. [2003], Khargonekar and Tikku
[1996], Kanev et al. [2003], Lagoa [2003], Lagoa et al.
[1998], Oishi and Kimura [2003], Polyak and Tempo [2001],
Ray and Stengel [1993], Stengel and Ray [1991], Tempo
et al. [1997, 2005], Vidyasagar [1997, 2001].

The scenario approach goes as follows. Since we are unable
to deal with the wealth of constraints fδ(γ) ≤ 0, ∀δ ∈ ∆,
we somehow naively concentrate attention on just a few of
them by extracting at random N instances or ‘scenarios’
of the uncertainty parameter δ according to probability
Pr. Only the constraints corresponding to the extracted
δ’s are considered in the scenario optimization:

SCENARIO OPTIMIZATION

Extract N independent identically distributed sam-
ples δ(1), . . . , δ(N) according to probability Pr and
solve the scenario convex program:

SCPN : min
γ∈Rd

cT γ (4)

subject to: fδ(i)(γ) ≤ 0, i = 1, . . . , N.

Contrary to the RCP in (2), SCPN is a standard convex
finite (i.e. with a finite number of constraints) optimization
problem and, consequently, a solution can be found at low
computational cost via available solvers, provided that N
is not too large. That is sampling has led us back to an
easily solvable program.

Since SCPN is less constrained than RCP, its optimal
solution γ∗N is certainly super-optimal for RCP, that is
cT γ∗N ≤ cT γ, γ being the optimal RCP solution. On
the other hand, an obvious question to ask is: what is
the degree of robustness of γ∗N , being this latter based
on a finite number of constraints only? Precisely, what
can we claim regarding the satisfaction or violation of
all the other constraints, those we have not taken into
consideration while optimizing? The following theorem,
which is at the core of the scenario approach, shows that
γ∗N actually satisfies all unseen constraints except a user-
chosen fraction that tends rapidly to zero as N increases.

Theorem 1. (Calafiore and Campi [2006]). Select a ‘viola-
tion parameter’ ǫ ∈ (0, 1) and a ‘confidence parameter’
β ∈ (0, 1).
If

N ≥
2

ǫ
ln

1

β
+ 2d+

2d

ǫ
ln

2

ǫ
, (5)

then, with probability no smaller than 1 − β, γ∗N satisfies
all constrains in ∆ but at most an ǫ-fraction, i.e. Pr(δ :
fδ(γ

∗
N ) 6≤ 0) ≤ ǫ. ⋆

Let us read through Theorem 1 in some detail. If we neglect
the parts associated with β, then, the theorem simply says
that the solution γ∗N is robust against uncertainty in ∆ up
to a desired level ǫ. Moreover, ǫ can be made small at will
by suitably choosing N . This means that, in the scenario
approach, although the requirement to be robust against
all situations is renounced, the right to decide which level
of robustness is satisfactory is retained.

As for the probability 1 − β, one should note that γ∗N is
a random quantity because it depends on the randomly
extracted constraints corresponding to δ(1), δ(2), . . . δ(N).
It may happen that the extracted constraints are not
representative enough of the other unseen constraints (one
can even stumble on an extraction as bad as selecting N
times the same constraint!). In this case no generalization
is certainly expected, and the portion of unseen constraints
violated by γ∗N is larger than ǫ. Parameter β controls the
probability that this happens and the final result that γ∗N
violates at most an ǫ-fraction of constraints holds with
probability 1 − β.
In theory, β plays an important role and selecting β = 0
yields N = ∞. For any practical purpose, however, β has
very marginal importance since it appears in (5) under
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the sign of logarithm: We can select β to be such a small
number as 10−10 or even 10−20, in practice zero, and still
N does not grow significantly.

To allow for a more immediate understanding, a pictorial
representation of Theorem 1 is given in Figure 1.

∆

∆N

≤ε

≤β

satisfaction
set

γN*

bad set

(δ
(1)
,δ
(2)
,...,δ

(N)
)

R
d

Fig. 1. A pictorial representation of Theorem 1.

In the figure, the N samples δ(1), . . . , δ(N) extracted from
∆ are represented as a single multi-extraction (δ(1), . . . ,
δ(N)) from ∆N . In ∆N a ‘bad set’ exists: If we extract a
multi-sample in the bad set, no conclusions are drawn. But
this has a very tiny probability to occur, 10−10 or 10−20.
In all other cases, the multi-sample maps into a finite
convex optimization problem that we can easily solve. The
corresponding solution automatically satisfies all the other
unseen constraints except for a small fraction ǫ.

Remark 1. Theorem 1 is a generalization theorem in that
it shows that the solution γ∗N obtained by looking at
a finite number of constraints generalizes to cope with
unseen constraints. Generalization always calls for some
structure linking seen situations to unseen ones, and it
is worth noticing that the only structure required in
Theorem 1 is convexity. As a consequence, Theorem 1
applies to all convex problems (e.g. linear, quadratic or
semi-definite involving LMIs) with no limitations and it
can be used in the more diverse fields of systems and
control theory. ⋆

Remark 2. In Theorem 1, an explicit expression for the
multisample size N is provided in (5). This makes the
result in Theorem 1 more readable. Actually, the value of
N returned by (5) can be conservative, and Theorem 1 has
been improved in Alamo et al. [2007, 2008]. A final word
on the computational complexity of the scenario approach
has been written in Campi and Garatti [2007], There, it is
shown that the same result as in Theorem 1 holds if N is
chosen so as to satisfy:

d−1
∑

i=0

(

N

i

)

ǫi(1 − ǫ)N−i ≤ β, (6)

instead of (5). For each fixed ǫ and β, (6) gives N which
is smaller than the value obtained through (5). Moreover,
in Campi and Garatti [2007] it is shown that (6) provides
a tight evaluation of N which is also the best possible one
since inequality (6) becomes an equality for a whole class
of problems, those called fully-supported in Campi and
Garatti [2007]. ⋆

3. APPLICATION TO SYSTEMS AND CONTROL
PROBLEMS

The aim of this section is to show the versatility of the sce-
nario approach by introducing a number of paradigms in
systems and control where applying the scenario approach
opens up new routes in problem solvability.
For a more effective presentation and to help readability,
the introduction of such paradigms is made through simple
– yet not simplistic – examples.

3.1 Paradigm 1: robust control

Consider the following ARMA (Auto-Regressive Moving-
Average) system

yt+1 = ayt + but + cwt + dwt−1, (7)

where ut and yt are input and output, and wt is aWN(0, 1)
(white noise with zero mean and unitary variance) distur-
bance; a, b, c, and d are real parameters, with |a| < 1
(stability condition) and b 6= 0 (controllability condition),
whose value is not precisely known.

We assume that wt is measurable, and the objective is to

ARMA

System
Compensator

wt

ytut

Fig. 2. The feed-forward compensation scheme.

design a feed-forward compensator with structure

ut = k1wt + k2wt−1

that minimizes the asymptotic variance of yt, see Figure 2.

If the system parameters a, b, c, and d were known,
an optimal compensator would be easily found. Indeed,
substituting ut = k1wt + k2wt−1 in (7) gives

yt+1 = ayt + (c+ bk1)wt + (d+ bk2)wt−1, (8)

from which the expression for the asymptotic variance of
yt is computed as

E[y2
t ] =

(c+ bk1)
2 + (d+ bk2)

2 + 2a(c+ bk1)(d+ bk2)

1 − a2
.

(9)
Hence, the values of k1 and k2 minimizing E[y2

t ] are seen
to be

k1 = −
c

b
and k2 = −

d

b
, (10)

resulting in E[y2
t ] = 0.
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On the other hand, the system parameter values are not
always available in practical situations. More realistically,
the parameters are only partially known, and they take
value in a given uncertainty set ∆. In our example, this
means that the compensator parameters k1 and k2 have
to be designed according to some robust philosophy, e.g.
the min-max approach:

min
k1,k2

max
a,b,c,d∈∆

E[y2
t ] = min

k1,k2

max
a,b,c,d∈∆

ℓ(a,b,c,d)(k1, k2), (11)

where

ℓ(a,b,c,d)(k1, k2) =
(c + bk1)2 + (d + bk2)2 + 2a(c + bk1)(d + bk2)

1 − a2

(compare with (1)). For any value of a, b, c, d with |a| < 1
and b 6= 0, function ℓ(a,b,c,d)(k1, k2) is convex in k1, k2

(actually, it is a paraboloid).

The problem with solving (11) is that the uncertainty set
∆ where the system parameters a, b, c, d range depends on
the particular problem at hand and can be complicated.
In general, problem (11) cannot be solved analytically, and
standard numerical methods can fail to solve it.
In this case, the scenario approach represents a viable way
to find an approximate solution to (11) with guaranteed
performance.

As an example, suppose that the uncertainty set ∆ is
parameterized by (θ1, θ2) ∈ [−1/3, 1/3]2 as follows:

∆ = {a, b, c, d : a = 0.45 + 0.5 · (1 − e−8·103(θ2
1+θ2

2)),
b = 1 + θ22,
c = 0.2 + (θ2 + sin(θ2) + 0.1) · sin(2πθ2),
d = 0.5 + θ21 cos(θ2),
(θ1, θ2) ∈ [−1/3, 1/3]2}.

The nominal values for θ1 and θ2 are θ̄1 = 0 and θ̄2 = 0
corresponding to ā = 0.45, b̄ = 1, c̄ = 0.2, and d̄ = 0.5.

According to the scenario approach with ǫ = 0.01 and
β = 10−10, we extracted N = 2901 values of a, b, c and d
from ∆ (say ai, bi, ci and di, i = 1, . . . , 2901) by uniformly
sampling N values for θ1 and θ2 from [−1/3, 1/3]2.
The resulting scenario optimization problem with 2901
constraints is:

min
k1,k2,h

h

subject to: ℓ(ai,bi,ci,di)(k1, k2) ≤ h, i = 1, . . . , 2901.

This problem has a linear objective and quadratic con-
straints, and was easily solved by the CVX solver for
Matlab, Grant et al. [2006, 2007]. We obtained k∗1 = −0.50,
k∗2 = −0.53 and h∗ = 1.16.

According to Theorem 1, with probability 1 − β = 1 −
10−10 (in practice with probability 1) the compensator
ut = k∗1wt + k∗2wt−1 guarantees E[y2

t ] = ℓ(a,b,c,d)(k
∗
1 , k

∗
2) ≤

h∗ = 1.16 for all plants in the uncertainty set ∆ but a
small fraction of size at most ǫ = 0.01.
Evidence of this robustness property can be found in
Figure 3, where we plotted ℓ(a,b,c,d)(k

∗
1 , k

∗
2) as a function

of the re-parametrization θ1, θ2 of a,b, c, and d.

We also compared the robust compensator k∗1 , k
∗
2 with

the nominal one k̄1 = −0.2, k̄2 = −0.5 (i.e. the optimal
compensator as in (10) for the nominal system ā = 0.45,
b̄ = 1, c̄ = 0.2, d̄ = 0.5).
Figure 4 depicts the output obtained when both com-

−0,33 0 0,33−0.33

0

0.33 
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Fig. 3. ℓ(a,b,c,d)(k
∗
1 , k

∗
2) as a function of θ1 and θ2.

pensators k∗1 , k
∗
2 and k̄1, k̄2 were applied to the nominal

system.
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´�

´�

�

�
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´�

´�

�

�

�

Fig. 4. Output of the nominal system when the compen-
sator k∗1 , k

∗
2 is applied (figure on the left), and when

the nominal compensator k̄1, k̄2 is applied (figure on
the right).

Not surprisingly, the performance of compensator k∗1 , k
∗
2

applied to the nominal system is worse than that of
compensator k̄1, k̄2, being the latter optimal in this case.
Yet, noise rejection remains quite good for k∗1 , k

∗
2 .

When we consider other plants in the uncertainty set, the
performance of the nominal compensator gets worse than
the safe-guard level h∗ attained by the robust compensator
k∗1 , k

∗
2 .

� �� ��� ��� ���

´�

´�

�

�

�

� �� ��� ��� ���

´�

´�

�

�

�

Fig. 5. Output of the system a = 0.33, b = 1.04, c =
0.60, and d = 0.10 when the compensator k∗1 , k

∗
2 is

applied (figure on the left), and when the nominal
compensator k̄1, k̄2 is applied (figure on the right).

This is e.g. the case in Figure 5 where the system obtained
by setting θ1 = −0.21, θ2 = −0.32 was considered. This
shows the robustness features of the scenario design.

The applicability of the scenario methodology to robust
control goes far beyond the simple noise rejection problem
here considered, and, indeed, scenario design can be ap-
plied to many other paradigms in robust control such as
robust stabilization, robustH2 design, LPV control, robust
pole assignment, etc. See Calafiore and Campi [2006] for
further details.
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3.2 Paradigm 2: control ‘by simulation’

Consider a discrete time linear system with scalar input
and scalar output, ut and yt, described by the following
equation:

yt = G(z)ut + dt, (12)

where G(z) is a stable transfer function and dt is an
additive stochastic disturbance.

Denote by D the set of possible realizations of disturbance
dt. Our objective is to design a feedback controller

ut = C(z)yt, (13)

such that the disturbance is optimally attenuated for every
realization in D, while avoiding saturation of the control
input due to actuator limitations.

The effect of the disturbance dt is quantified through the

finite-horizon 2-norm
∑M

t=1 y
2
t of the closed-loop system

output and the goal is choosing C(z) which minimizes the
worst-case disturbance effect

max
dt∈D

M
∑

t=1

y2
t , (14)

while maintaining the control input ut within a saturation
limit usat:

|ut| ≤ usat, ∀t = 1, 2, . . . ,M, ∀dt ∈ D. (15)

Fig. 6. The IMC parameterization.

This constrained optimization problem is now re-formulated
as a robust convex optimization program by adopting the
Internal Model Control (IMC) parametrization, Morari
and Zafiriou [1989],

C(z) =
Q(z)

1 +G(z)Q(z)
(16)

of the closed-loop stabilizing controllers, where G(z) is the
system transfer function andQ(z) is a free-to-choose stable
transfer function (see Figure 6). The IMC parametrization
of the controller is particularly convenient, since the maps
from dt to ut and to yt are affine in Q(z):

ut = Q(z)dt (17)

yt = [G(z)Q(z) + 1]dt. (18)

Consequently, if Q(z) is linearly parameterized, e.g. a
multi-lagged structure such as

Q(z) = q0 + q1z
−1 + q2z

−2 + · · · + qkz
−k, (19)

the cost (14) and the constraints (15) are convex in q :=
[q0 q1 . . . qk]T ∈ R

k+1.

The control design problem can now be precisely formu-
lated as the following robust convex optimization program:

min
q,h∈Rk+2

h (20)

subject to:

M
∑

t=1

y2
t ≤ h, ∀dt ∈ D, (21)

|ut| ≤ usat, ∀t = 1, 2, . . . ,M, ∀dt ∈ D, (22)

where the slack variable h represents an upper bound on

the output 2-norm
∑M

t=1 y
2
t for any realization of dt (see

(21)). Such an upper bound is minimized in (20) under
the additional constraint (22) that ut does not exceed the
saturation limits.

The constraints (21) and (22) can be made more explicit
as a function of q. As detailed below, when Q(z) is e.g.
given by (19), we have that

min
q,h∈Rk+2

h (23)

subject to: qTAq +Bq + C ≤ h, ∀dt ∈ D

|φT
t q| ≤ usat, t = 1, 2, . . . ,M, ∀dt ∈ D,

where A, B, C, and φt are suitable matrices determined
based on dt.
Indeed, by (17), (18), and the parametrization of Q(z) in
(19), the input and the output of the controlled system
can be expressed as

ut = φT
t q

yt = ψT
t q + dt,

where φt and ψt are vectors containing delayed and filtered
versions of disturbance dt:

φt =









dt

dt−1

...
dt−k









and ψt =









G(z)dt

G(z)dt−1

...
G(z)dt−k









. (24)

Then,
∑M

t=1 y
2
t can be expressed as

∑M
t=1 y

2
t = qTAq +

Bq + C, where

A =

M
∑

t=1

ψtψ
T
t , B = 2

M
∑

t=1

dtψ
T
t , C =

M
∑

t=1

d2
t (25)

are matrices that depend on dt only.

The implementation of the scenario optimization in our
control set-up requires to randomly extract a certain num-

berN of disturbance realizations d
(1)
t , d

(2)
t , . . . , d

(N)
t and to

simulate on a computer the system behavior with the ex-
tracted realizations as input (simulation-based approach).
Only these extracted realizations dt (‘scenarios’) are con-
sidered in the scenario optimization:

min
q,h∈Rk+2

h (26)

subject to: qTA(i)q +B(i)q + C(i) ≤ h, i = 1, . . . , N,

|φ
(i)
t

T
q| ≤ usat, t = 1, 2, . . . ,M, i = 1, . . . , N,

where A(i), B(i), C(i), and φ
(i)
t are as in (25) and (24) for

dt = d
(i)
t .

We now report the results achieved when G(z) = 1
z−0.8 ,

and the stochastic disturbance dt is sinusoidal with fre-
quency π

8 , i.e.
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dt = α1 sin(
π

8
t) + α2 cos(

π

8
t),

where α1 and α2 are independent random variables uni-
formly distributed in [− 1√

2
, 1√

2
].

As for the IMC parametrization Q(z) in (19), we choose
k = 1: Q(z) = q0 + q1z

−1.

A control design problem (20)–(22) is considered with
M = 300, and for three different values of the saturation
limit usat: 2, 0.8, and 0.2.

In the scenario approach we let ǫ = 0.05 and β =
10−10. Correspondingly, the smallest N satisfying (6) is
N = 570. Let (q∗, h∗) be the solution to (26) with N =
570. Then, with probability no smaller than 1 − 10−10,
the designed controller with parameter q∗ guarantees the
upper bound h∗ on the output 2-norm

∑300
t=1 y

2
t over all

disturbance realizations, except for a fraction of them
whose probability is smaller than or equal to 0.05. At the
same time, the control input ut is guaranteed not to exceed
the saturation limit usat except for the same fraction of
disturbance realizations.
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Fig. 7. Pole-zero map and Bode plots of the sensitivity
function for usat =2.

In Figures 7, 8, and 9, we report the Bode plots of the
transfer function F (z) = 1+Q(z)G(z) between the distur-
bance d and the controlled output y (sensitivity function),
for decreasing values of usat (2, 0.8, 0.2).
When the saturation bound is large (usat = 2), the out-
come of the design is a controller that efficiently attenuates
the sinusoidal disturbance at frequency π

8 by placing a pair

of zeros approximately equal to e±iπ/8 in the sensitivity
transfer function. As usat decreases, the control effort
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Fig. 8. Pole-zero map and Bode plots of the sensitivity
function for usat =0.8.
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Fig. 9. Pole-zero map and Bode plots of the sensitivity
function for usat =0.2.
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required to neutralize the sinusoidal disturbance exceeds
the saturation constraint, and a design with damped zeros
is automatically chosen.
The values of the cost max

d
(i)
t

:i=1,2,...,N

∑300
t=1 y

2
t = h∗ for

usat = 2, 0.8, and 0.2, are respectively equal to 0.75, 3.61,
and 90.94. As expected, h∗ increases as usat decreases,
since the saturation constraint on ut becomes progressively
more stringent.
Note that, when the saturation bound is equal to 2, the sce-
nario solution coincides with the solution that one would
naturally conceive without taking into account the satura-
tion constraint. However, when the saturation constraint
becomes more stringent, the design is more tricky.

Before closing this section, it is perhaps worth noticing
that the paradigm of disturbance rejection with limitations
on the control action here developed can be extended to
more general control settings including reference tracking
with constraints of different kinds in a straightforward
manner.

3.3 Paradigm 3: model reduction

In many application contexts, a model of the system
under consideration is available for simulation purposes
(simulator). In most cases this simulator is derived from
first principles and with the ideal objective of resembling
the system behavior in all operating conditions, which may
result in a complex nonlinear model of high dimension and,
possibly, described through PDEs.
Due to its intrinsic complexity, using the simulation model
in design problems is difficult, if not impossible. A typical
way around this problem is to first derive a simpler low-
dimensional model that best fits the system behavior in
the operating conditions of interest, and then perform the
design based on this model. The performance of the so-
obtained design can be eventually verified on the simulator
prior to implementation.

The term ‘model reduction’ refers to the area of systems
theory that studies the problem of deriving a ‘reduced’
model of a system. Normally, the model reduction problem
is tackled by examining the structure of the system and by
trying to simplify such a structure so as to also preserve
some relevant characteristics of the initial system.

An alternative way to go consists in running a set of
experiments and in measuring the system response to some
input signals of interest. A reduced model of predefined
structure is then tuned so as to resemble the observed sys-
tem behavior. When a simulator of the system is available,
this approach to model reduction becomes particularly
attractive since one can run a number of experiments on
the simulator rather than on the real system. An important
point we want to make here is that the scenario approach
allows to assess how many experiments are needed to
obtain a reduced model with guaranteed performance,
and that this number does not depend on the system
complexity but only on the complexity of the model to
be tuned, see also Bittanti et al. [2007] for more comments
on this point.

More formally, given a simulator S and a class of models
parameterized by θ ∈ R

k, suppose that the accuracy of
model Mθ in reproducing the output of S when fed by

the input signal ut is quantified by a cost function Jut
(θ).

For example, Jut
(θ) can be taken as the 2-norm of the

error signal S[ut]−Mθ[ut] between the output S[ut] of the
simulator to input ut and the output Mθ[ut] of the model
with parameter θ: Jut

(θ) = ‖S[ut] −Mθ[ut]‖2. Then, the
worst-case accuracy achieved by Mθ over the set U of
input signals ut of interest is given by

max
ut∈U

Jut
(θ)

and the best model is Mθ⋆ , where θ⋆ is obtained by solving
the min-max optimization problem:

min
θ

max
ut∈U

Jut
(θ). (27)

As discussed in Section 1, the min-max problem (27) can
be rewritten as the robust optimization problem:

min
θ,h∈Rk+1

h (28)

subject to: Jut
(θ) ≤ h, ∀ut ∈ U,

with ut representing the uncertainty parameter taking
value in the possibly infinite uncertainty set U .

If the cost Jut
(θ) is convex as a function of θ (this is, e.g,

the case when Mθ is linearly parameterized in θ), then
the scenario approach can be applied to (28). This involves

extracting N input signals u
(i)
t , i = 1, 2, . . . , N , from U ,

and running N experiments where in each experiment

the simulator S is fed by input u
(i)
t and output S[u

(i)
t ]

is measured. If N is chosen so as to satisfy (6) with
d = k + 1 for some given ǫ and β, the obtained scenario
solution (θ⋆

N , h
⋆
N ) is such that the reduced model Mθ⋆

N

has guaranteed accuracy h⋆
N over all input signals ut ∈

U except at most an ǫ-fraction, and this holds with
probability at least 1−β. If the achieved accuracy level h⋆

N
is unsatisfactory, one can opt to head for a more complex
reduced model.

It is important to note that the number N of experiments
is determined independently of how complex the simulator
is, and that this number depends only on the complexity
of the reduced model to be designed, through the size k of
its parameterization θ. This approach to model reduction
actually does not require any knowledge on the structure of
the simulator, since the simulator is only used to generate
data.

4. CONCLUSIONS

In this paper, we provided an overview on the so-called
scenario approach with specific focus on systems and
control applications. The approach basically consists of the
following main steps:

- reformulation of the problem as a robust (with infinite
constraints) convex optimization problem;

- randomization over constraints and resolution (by
means of standard numerical methods) of the so-
obtained finite optimization problem;

- evaluation of the constraint satisfaction level of the
obtained solution through Theorem 1.

The versatility of the scenario approach was illustrated
through simple examples of systems and control design.

More details both on theoretical aspects and applications
can be found in the technical literature.
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In particular, the theory of the scenario approach has been
developed in the last four years in Calafiore and Campi
[2003b, 2004, 2006], Campi and Garatti [2007].
As for applications, robust control is treated in Calafiore
and Campi [2003b, 2004, 2006], with reference among oth-
ers to robust stabilization, robust H2 design, LPV (Linear
Parameter Varying) control, and robust pole assignment.
The main reference for control by simulation is Prandini
and Campi [2007], while model reduction is a new appli-
cation framework currently underway, here presented for
the first time.
It is, perhaps, worth mentioning that another setting in
the systems and control area where the scenario approach
proved powerful (and which was not illustrated in this
paper since it would have led us too far afield) is the identi-
fication of interval predictor models, i.e. models returning
a prediction interval instead of a single prediction value.
The main references are Calafiore and Campi [2003a],
Calafiore et al. [2005].
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