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SUMMARY

In this paper we study the design of a new two-degree-of-freedom filter for the internal model control
(IMC) method. The new filter alleviates some disadvantages of the standard IMC filter when the IMC
method is applied to unstable plants that do not have non-minimum-phase zeros. We show that by
employing the new filter, the resulting system has a flatter frequency response, better stability robustness,
and little overshoot in the step response. Furthermore, one of its design parameters can be related directly
to the closed-loop bandwidth and the other parameter can be used to control the recovery time after an
overshoot has occurred in the step response. These features are important in the application of the IMC
method to a new approach of adaptive robust control. Examples are given in the paper to illustrate the
new filter design.
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1. INTRODUCTION

Recently, it has been shown that the internal model control (IMC) method ' is a simple and
effective technique for designing the underlying control law in a new approach to adaptive
robust control when the plant is stable.?? In such an approach it is desired to design a closed-
loop system with a specified bandwidth in the face of model uncertainties. In essence the
approach starts with designing a controller such that the nominal closed-loop system has a
small bandwidth. The performance of the corresponding actual closed-loop system when the
reference input is a step function is monitored. If the performance robustness of the closed-
loop system is ascertained while the nominal closed-loop bandwidth is smailer than the
specified one, a new controller wilt be designed such that it results in an increase of the nominal
closed-loop bandwidth. It is obvious that, in this connection, it is desirable to have a single
design parameter which can be interpreted as the nominal closed-loop bandwidth. In the case
of stable plants, the IMC method is found to have the desirable attribute that we have just
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mentioned. However, if the plant is unstable, the aforementioned single design parameter can
no longer be interpreted as the nominal closed-loop bandwidth even if the plant does not have
non-minimum-phase zeros. This poses a problem if the IMC method is to be used in the new
adaptive robust control method when the plant is unstable.

Motivated by the problems discussed above, we study in this paper the design of a new filter
for the IMC method. To the best of the authors’ knowledge, controllers that explicitly assumed
the IMC structure were first defined in Reference 4 where internal model control for scalar
discrete-time systems was proposed. The last paper also established the relation of internal
model control to other control schemes. A multivariable extension of Reference 4 was given
in Reference 5 and since then, numerous articles have appeared in major control conferences
and journals. These research efforts have culminated in the book ! that contains the work prior
to 1989. A recent survey paper on model predictive control® covers a historical review of
controllers with the IMC structure and the related process control design methodologies dating
back to 1957.7 Recently it was shown in Reference 8 that the LQG controller may be
implemented using the IMC structure. This enables the role of control and Kalman filter gain
and return difference matrices to be determined in robustness analysis.

This paper is structured as follows, After briefly reviewing the IMC method in Section 2, we
introduce the new filter in Section 3. In this same section, the frequency response and the time
response of the new filter are also studied. This analysis points out the improvement achievable

- with the new filter, as compared with the standard one, in reducing peak overshoot in the step
response of the control system. Finally, the robust stability property of the new filter is
discussed in Section 4.

2, STANDARD IMC FILTER FOR UNSTABLE PLANTS

In this section we shall first briefly outline the IMC method of designing robust control system
as a two-stage design method, where the second stage is concerned with the design of a low-
pass filter (the interested reader is referred to Reference 1 for a comprehensive treatment of
the topic). We will then show that, when the method is applied to an unstable plant, the
parameter which was interpreted as the nominal closed-loop bandwidth in the stable plant case
can no longer be treated simply as such. Furthermore we shall show that the resulting nominal
closed-loop frequency response tends to have large resonant peak, which has adverse effects
on the transient response as well as the stability robustness of the system.

2.1. IMC design method

We are concerned with the design of a controller, X, situated within a control loop which
involved a partially known plant, G, as shown in Figure 1.

Let G be a model of the plant, G. The IMC method parametrizes the controller, X, in terms
of a stable transfer function, , as shown in the IMC structure given in Figure 2.

By comparing Figure 1 and Figure 2, we immediately notice that the design of the controller

__ 0
e

is equivalent to the design of its parametrization Q. The associated nominal closed-loop
transfer function is easily evaluated as GQ. Since the plant G is only partially known in terms
of its model G, any practical design method must take into account the discrepancies between
G and G. In the IMC design method, the design of Q is carried out in two stages by specializing

FE]
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=}

Figure 2. IMC structure

Q as the product of two transfer functions
Q=0F

such that O and F can be designed separately. In the first stage, the transfer function Qis
designed with respect to the model G such that, if G = G, the objective

leld={ e as
1]

is minimized, where e is the error signal resulting from some known reference input r and
known disturbance . At this stage, one is not concerned with the mode! uncertainties involved
in G andfor the properness of the resulting controller as these will be taken care of in the
second stage by designing an appropriate IMC filter, F. The design of the H:-optimal
controller  is summarized in the next theorem, for which a proof is given in Reference 1.

Theorem 2.1

Suppose that & has no poles on the imaginary axis, except those at the origin, and has no
zeros on the imaginary axis. Let & have k poles at p1, ..., Px in the open right-half-plane and
a pole of multiplicity { at the origin. Define

—S5+pi
Be= —5 §]
¢ 11=I 1 §+p; (
and factor & into an all-pass factor G, (which contains all the zeros of G in the open right-half-
plane) and a minimum-phase factor Gn (which includes all the poles of G in the open right-
half-plane and at the origin} such that

G = Gl
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Factor the generalized input v = r ~ d similarly,
U= Unmly
Without loss of generality, assume that the open right-half-plane poles of the input v are the
first &' poles p; of the plant in the open right-half—plane* and define accordingly
-5+ p,
o = 2)
R;EI r S+ P i (

Assume further that v has at least / poles at the origin.t The controller (J which minimizes
the objective ‘ :

lelg= | ewrar=5- [ et do=pa - 6@l

is given by
Q = B6(GuBvww) ' {(B&Ga) ™' Buvm)» : Q)

where the operator [ }+ denotes that after a partial fraction expansion of the operand all terms
involving the poles of G are omitted.

In the second stage of designing the O controller, the IMC filter F is chosen to be a rational
function that satisfies the following requirements:

(i) The controller Q = OF is proper.
(ii) The closed-loop system is internally stable,
(iii) The output tracks the reference input asymptotically.

Also, in choosing F, we seek to cope with errors between the true plant G and its estimate &
used for design. Assume that G and v have q distinct poles D1y .os Dy in the open right-half-
plane and at the origin (counting poles which appear in both & and v only once). Then, it was
shown in Reference 1 that conditions (i), (ii) and (iii} are satisfied if ¥ is given by

dg-157 '+t ais+an,

P =y

3 A > 0, arbitrary )]

with the g coefficients ap, a, .oy g1 chosen such that
Fis)=1 at s=p1,...,0q 3

and the integer m is sufficiently large so as OF is proper.

The objective of this filter is to secure properness of the controller, by the choice of m, and
to detune the H;-optimal controller, by the choice of a suitable X, such that the closed-loop
system can tolerate the high-frequency model uncertainties associated with the model G.
Typically, small values of A are associated with small closed-loop bandwidths, and it is in such
a situation that high-frequency model uncertainties are most easily tolerated.

* As noted in Reference 1, this assumpiion is needed to make a meaningful problem.
1 As noted in Reference 1, this assumption is needed in order that the closed-loop system can handle plant input
disturbance satisfactorily.

-
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Remarks

@ For the situation where the model G is minimum-phase, if the input v is a step function,
it can be shown easily that

¢-6"

regardless of whether the plant is stable or not. Furthermore, if the plant is stable, a

suitable IMC filter is
k m
Fis)=[—=—] : =
(5) (s )\) mazn

where n is the relative degree of G, and A > 0 is chosen sufficiently small.

@ For the above simple situation, F becomes the nominal closed-loop transfer function.
Thus M can be interpreted as the nominal closed-loop bandwidth with a —3m dB
attenuation.

@ For cases where G is non-minimum-phase but stable, if the input v is a step function, it
can be shown that the nominal closed-loop transfer function is FG, where Fis still given
by

o (25

Since the all-pass factor Ga. does not affect the magnitude of the nominal closed-loop
frequency response, the interpretation of h as the nominal closed-loop bandwidth still
applies in this case.

@ We will show in Section 2.2 that A can no longer be simply related to the nominal closed-
loop bandwidth if ¢ is unstable, even if it does not have non-minimum-phase zeros.

2.2. Problems with the standard IMC filter

In the following our main objective is to show that in the case of an unstable plant, the
design parameter \ in the standard IMC filter can no longer enjoy the simple interpretation
as the nominal closed-loop bandwidth even if the plant does not have non-minimum-phase
zeros and the reference input is a step function. A simple example will suffice to illustrate the
problem.

Consider an unstable plant, G, which is described by the simple minimum-phase unstable
model ‘

a -
i
s5—p

Gis) = p>0

For a unit step reference input, we can use Theorem 2.1 to obtain

-1
=2

In order that the controller Q = OF is proper, we would reguire the standard IMC filter, F,
to have a relative degree of one. Furthermore, it is necessary that the conditions specified by
equation (5) be satisfied; that is, the two conditions

Foy=1
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and
F(p)=1

Therefore, the filter must have two free parameters in the numerator. Hence F has the
following structure :

F(s)= —:‘:;:T;"

Simple calculations show that
(24 2N)s + A\
(s+ Y
Since the nominal closed-loop transfer function is T= QG, where @= G™'F, it is evident that

F is the nominal closed-loop transfer function with a double pole at — X and a simple zero at
— Ao +2N).

Fi{s)=

Remark
® Notice that, since p > 0, the zero of F is always between the origin and one half the
location of its double pole. .

The asymptotic log-magnitude diagrams for the cases where A =p and A = 10p are shown,
respectively, in Figure 3 and Figure 4.

4B
0]
siope slope
=20dB/decad, =-20dB/decade
0. ' : \ \
6.Ip 3 A=p Ip ip ©
=101

Figure 3. Asymptotic plot of 20 log| F| for h=p

dB
10,
slope slope
P =20dB/decad, =-204B/decade
P 4.76p A=I¢p 21 Iogp @
-101

Figure 4. Asymptotic plot of 20 log | F| for A= 10p
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Remarks

® The frequency responses of F always involve a resonant peak at w= \.

® For the case where )\ = p, the nominal closed-loop bandwidth is approximately 3\,

@ For A\ » p, the nominal closed-loop bandwidth is approximately 2A.

@ The nominal closed-loop bandwidth in general depends on both p and \. Therefore A of
the standard IMC filter cannot be related directly to the nominal closed-loop bandwidth.
This may cause difficulty in its use for the controller design stages of an adaptive
controller that increases the nominal closed-loop bandwidth progressively.

It is well known from classical control theory® that a large resonant peak in the frequency
response of a transfer function is correlated with large peak overshoot in its time response. It
can be shown that the time response of a closed-loop system which involves an unstable plant
always has overshoot.!® The use of an inappropriate filter in the IMC design method, in this
case the standard IMC filter, can aggravate the situation.

Furthermore, robustness considerations allow us to conclude that the sufficient condition for
robust stability,

G-G =
—E—T

may be violated in the range of frequency where the resonant peak occurs. Therefore the use
of the standard IMC filter in the case of unstable plant may worsen the stability robustness
of the closed-loop system.

The above discussions naturally prompt the need to consider a new IMC filter design that
can possibly alleviate the abovementioned problems.

<1

3. IMPROVED IMC FILTER DESIGN FOR SIMPLE UNSTABLE PLANTS

For the sake of simplicity and ease of explanation, we shall consider in this section the simple
case where the plant is minimum-phase with simple unstable pole or a pair of unstable
complex-conjugate poles. Extensions to more general cases will be discussed in Section 5.

3.1. Minimum-phase plants with simple unstabie pole

For a plant described by a minimum-phase model G with a simple unstable pole located at
p, we consider a filter of the form

p(s+a) .
(s+y)(s+ N5+ 10)\)’"'

In equation (6), m has to be selected in order to meet the properness requirement (i) of
Section 2.1 and the constants x and o are chosen by imposing the two interpolation constraints
F({0) =1 and F(p)=1. The filter poles \ and y are free parameters which can be selected
without any concern for nominal stability or asymptotic tracking of the reference input. It is
worth noticing that the presence of the pair of parameters » and v, as opposed to the single
parameter M in the standard IMC filter, constitutes the main new feature of the proposed filter
{6). As will be shown later, by suitably selecting the values of A and y (using a systematic
procedure), one can improve both time response and robust stability as compared to the
standard IMC filter. The key is the following.

F(s)= y>0,A>0 (6)
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Theorem 3.1

Consider the filter F(5) of equation (6), parametrized by 4 > 0 and A > 0, with x and o to
be chosen so that F(0) = F(p)=1. If v and A are chosen so that

YEp L) )

then ee =+, and

- K _
O =y ion” ®

Furthermore, for w € [y, A], there holds approximately,

Fiii) =a TN - )

T 1+ (GufN)

- Proaf. Using the fact that v < p and F(0) = F(p), we have

o _ pPta
YA(LOAY™ ™ p(p + N)(p + 10A)"

and then if A » p,

=
g
5

= R
It
b~

or
yp=al{p-y)=up

from which the first result is evident,
Next, using the fact that F(p)=1, it follows from

e A
FO) = s+ o7
that
p=(p+N)@+ 108)"
Therefore,
(p+ M)+ 100"
o) = s 100"
and
Flio) ~ L2+ N@ + 100"

(jo + M) (w + 100)™

Now for we€ [v, A}, we have jw + 10A = 10X\, This, together with p + 10A = 10X, allows us to
write

N el 019
Fie) 1+ (jofr) .

Equation (8) points out two main properties enjoyed by filter (6) under the conditions y <€ p
and A3» p:
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1. Parameter h is the filter bandwidth. _
2. The frequency response is almost flat and does not present a large resonant peak at any
frequency.

Remarks

® In the case of minimum-phase plants, application of Theorem 2.1 gives @ =G~ ! and

hence, the closed-loop transfer function of the nominal closed-loop system, T= QFG,
coincides with that of the filter. The flatness of the filter frequency response (property 2)
is then particularly significant both for good transient response and robust stability. .
Simulation examples which illustrate these points will be given in the next section.

® As is well known,!! in the case of unstable plants, the requirement that the nominal
closed-loop transfer function T is stable translates into integral constraints on the
sensitivity function 1 — 7. For instance, provided that the open-loop transfer function has
a relative degree greater than or equal to two, the sensitivity function must satisfy the
following equation

-]

L logia] 1 - T(jw}| dw = 7{logia €} 3 Re{pi} (10)

where the sum in the right-hand side is computed over the set of unstable ‘poles p; of the
open-loop transfer function. If the sensitivity function is kept small over a large range
in the low-frequency region, then the contribution due to this frequency region to the
integral in the left-hand side of equation (10) is negative with large absolute value.
Consequently, in order to satisfy equation (10) 1 — T, and in turn T itself, must be large
in some other frequency range. This produces undesirable resonant peak in the frequency
response of T. Roughly speaking, the zero at —o and the pole at —+ in filter (6) form
" a dipole that shifts the magnitude of the sensitivity function to a value slightly greater

than zero. As the dipole is located near the origin, this effect starts at very low frequency
and is maintained up to a frequency near . This allows the negative contribution to the
integral in the left-hand side of equation (10} to be kept small, and hence prevents the
resonant peak from occurring in the closed-loop frequency response.

® It cannot be over-emphasized that the improvement of filter (6} over the standard IMC
filter can only be achieved if A @ p.

® Notwithstanding the last remark, it should be realized that there is no limit to the
achievable flatness in the frequency response of the new filter once the condition A & p
is satisfied. This is in contrast with the standard IMC filter where it is impossible for the
resonant peak in its frequency response to go below a certain threshold no matter how
large \ is.

® Property 1 is particularly important for the use of the filter in the design of an- adaptive
robust controller via the approach discussed in Reference 3. As a matter of fact, in such
a design procedure, it is most convenient to relate the bandwidth of the closed-loop
system to a single design parameter of the controller. This allows one to easily design,
step by step, a controller with progressively increasing bandwidth.

For easy comparison the frequency responses of the standard IMC filter and the new filter,
associated with the design of controllers for a minimum-phase unstable plant

9=
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are shown in Figure 5 for different values of bandwidth. For the same filters, the step responses
are displayed in Figure 6.

We shall next give some guidelines for the selection of parameters A and vy. In the case of
unstable plants it is well known that transicnt response considerations lead to the conclusion
that the bandwidth of the closed-loop system cannot be made arbitrarily small. '° In particular,
to keep the overshoot in the step response below 40 per cent, such a bandwidth has to be about

five times the value of the real unstable pole. This translates to the following lower bound on A:

A2 5p
Recall that in Theorem 3.1, we have shown that

£ l+(p!)\)
AU =T G

in the range of frequency w € [v, A]. As a consequence, the initial part of the step response of

0 , & ——/’/—\
(i} -1 \
3 2

il -0

-sof - -x
=|aﬂ T 10 (L] i (1 W-¥ -t Im 1w 1]

radfeec ndfeec
(a) Standard IMC Filter with Bandwidth=10 rad/sec (b) New Filker with Bandwidthw=10 rad/sec
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8
st
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25k -5t
e o ™ e w i T o e e
rad focc: railfnec
{<) Standard IMC Filier with Bandwidth=20 rad/sec (d) New Filier with Bandwidib=20 rad/scc

Figure 5. Frequency responses of standard IMC filter and new filter with y=0-5
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Figure 6. Step responses of standard IMC filter and new filter with y=0-3

the filier is mainly governed by the following approximate transfer function of F:

1+ (pt)\)

1+ (sfa)
that is, the initial step response tends to the value 1 + (pf\) with the time constant 1f\. Then,
in the long run, the step response recovers to the value of one owing to the fact that F(0)=1.
From the above considerations, the conclusion can be drawn that

overshoot in the unit step response -—-%

This result can be seen as a ‘rule of thumbd’ in the selection of the value of A,

As far as the parameter -y is concerned, its value should be selected close to zero to hold the
frequency response of the filter flat. Since the dominant mode of the transient response is
exp(— v¢) when v < p (while 7 € \) and the step response of the closed-loop system involving
an unstable plant always has an overshoot, it is clear that 1]y is the dominant time constant
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in the recovery to the steady-state value after the overshoot has occurred in the step response.
Therefore it is important to emphasize that the requirement of a fast recovery after the
overshoot has occurred in the step response may be in conflict with the condition that v € p
and a trade-off could be necessary.

3.2. Minimum-phase plants with a pair of unstable complex-conjugate poles

The general philosophy in the design of the filter is similar to the case of a single unstable
pole with some minor modifications. '
Consider a filter of the form

_ uls + oy ){s + @2)
(s + s+ R)(s + 100)7

The constant m will be chosen so as to satisfy the properness requirement about the controller
and g, o, o will be selected to meet the interpolation constraints, namely F{@)=1, F(p)=1,

F

a [
10 —18
3 - g-»
-xl -
-a @

Yo 101 10 1ot e = 10 e To° o

rmlfecc Tadferc
(a) Standard IMC Filter with Bandwidth=10 rad/sec (b} New Filter with Bandwidthe=i() rad/ssc

) -20}
.25} -5
. radfiee
{c) Standard IMC Filter with Bandwidth=20 rad/sec {d} New Filter with Bandwidth=20 rad/sec

Figure 7. Frequency responses of standard IMC filter and new filter with y=0-3
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and F(p*) =1, where p and p* are the unstable poles of the plant. The main difference from
the case of a single unstable pole is in the selection of y. Again, a flat frequency response can
be achieved by choosing v sufficiently small. Indeed, considerations analogous to those for the
single-pole case lead to the conclusion that the absolute value of the two zeros will be close
to y so that the overall effect of the two zeros at —a: and — o and the double pole at —~
will cancel, However, unlike the case of a single pole, the zeros have to satisfy the additional
constraint that the phase angles of Fat p and p* must be equal to zero. It can be shown that,
under this condition, if the value of v is selected to be too small, the two zeros can be very
close to the imaginary axis or even be in the right-half-plane (non-minimum-phase ciosed-loop
system). In Table I a lower bound for y as a function of X is given such that the real part of
the zeros is not greater than — /2, when the unstable poles of the plant are located within a
semicircle of unit radius centred at the origin.

In Figure 7 the frequency responses of the proposed filter associated with the design of
controllers for a minimum-phase unstable plant,

s+1
G(s)= 5——
() s2—5+1

are compared with those resulting from the standard IMC filter for different values of the
bandwidth. The corresponding step responses arc displayed in Figure 8.

4, ROBUSTNESS ENHANCEMENT THROUGH THE NEW FILTER

In the last section, we have shown that for a minimum-phase unstable plant, the application
of the new filter to IMC design results in a closed-loop system where the frequency response
and step response are better than those obtained when the standard IMC design is employed.

0.9

0.8+

0.7t

06

0.5

units

Q.41

0.3k

10-2 1077 102 10 102 103

Figure 9. Magnitude of the muktiplicative model uncertainties
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We shall show in this section, by simulation, that in the presence of model uncertainties,
employing the new filter in the IMC design of ¢ontroiler for a minimum-phase unstable plant
can produce a closed-loop system that has superior robustness properties than those achieved
when the standard IMC filter is used.

The minimum-phase unstable plant which we are considering is represented by the transfer
function

(1054 D©-025+ 1)
G) = Ho0s— 1) (s + @25 + 1)

Suppose that we ar¢ given a model with the transfer function
105+ 1

Gis) = (1005 - DG+ D

Nominal Closed-loop Frequency Response Acmal Closed-loop Unit Step Response

n - % 08
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(1) Using Standard IMC Filter {b) Using Stendard IMC Filier
Nominal Closed-loop Freguency Response : Actual Closed-loop Unit Step Response
T e 1z
1
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-]
= 'i 06
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1]
T v s s w w w e s
B e
{c) Using New Filier (d) Using New Filter

Figure 10. Frequency and step responses when bandwidth is 1 radfs and v is 0-3
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then the multiplicative model uncertainties is

G—G= _ 0-18s
G 0-2s+1

The magnitude of the multiplicative model uncertainties is shown in Figure 9. Notice that it
is smaller than unity for ail frequencies and hence, as long as the magnitude of the closed-loop
frequency response is bounded by unity, the system is robustly stable. However, since the plant
is unstable, it is inevitable that the frequency response of the closed-loop system displays a
resonant effect. We have noticed in Section 3 that the resonant peak is quite significant in the
case where the standard IMC filter is used in the controller design. This may cause the closed-
loop system to have poor stability robustness. We have observed that the resonant peak can
be reduced by employing the new filter proposed in Section 3.

Nominal Closed-loop Frequency Response Actual Closed-loop Unit Siep Responss
5 ™ 18 -
of— 21 B
-5 X1
=10 4 1.2
-15 113
g " g
-0 aat
-5 4 L0113
- [:X]
BT . 02
-4 I_ A + . 1 e Reetr] 1] .
|- e i L] a 1 ] 1 1 5 ] 7 ] a w
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Nominal Closad-loop Frequency Response Actual Closed-loop Uit Step Response
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10! il Ly 1ot ] ' 2 3 4 s & ? ] L] 10
radfeec e
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Figure 1. Frequency and step responses when bandwidth is 10 radfs and v is 03
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. Nominal Closed-lioop Frequency Response . Actual Closed-loop Unit Step Responss
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Figure 12. Frequency and step responses when bandwidth is 30 radfs and 4 is 0-3

We use the model G to design the controller by the IMC design method, such that the
nominal closed-loop system has a bandwidth of 1 radfs, 10 rad/s, and 30 radfs. We first use
the standard IMC filter in each of these designs, then we repeat each of these designs by
employing the new filter. The results are compared in Figure 10, Figure 11, and Figure 12.
Figure 10 shows that, even in the presence of model uncertainties, the new filter allows us to
make a trade-off between overshoot and settling time in the step response. More importantly,
Figures 11 and 12 show that, when the nominal closed-loop bandwidth is increased, stability
and performance deteriorated very quickly in the case where the standard IMC filter is used.
This is in great contrast with the case where the new filter is employed, which shows that
stability and performance are largely maintained.

5. CONCLUSIONS

The internal modei control {(IMC) approach to the design of controllers for linear time-
invariant unstable planis has been critically reviewed in this paper. It has been shown that, if
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the standard filter proposed in Reference ! is used in the IMC design, the corresponding
closed-loop frequency response always involves a resonant peak. This reflects into overshoot
in the step response of the control system and worsens its robust stability characteristics. We
have shown that these disadvantages are not inherent in the control problem and may be
alleviated by introducing a new two-degree-of-freedom filter.

The basic idea behind the new filter can be summarized as follows. If A is the desired closed-
loop bandwidth, a pole of the filter is placed at — A. Then a number of filter poles equal to
the number of unstable poles of the plant is placed at — v, where — v, when compared to the
unstable poles, is very close to the origin. It turns out that the zeros selected in the IMC design
procedure so as to take care of nominal stability and reference tracking constraints ‘almost
cancel’ these poles. As a consequence, they do not affect significantly the filter transfer
function. Finally a suitable number of filier poles are located far into the negative real axis in
order to meet the properness requirement of the controller. In this way, a filter and a closed-
loop system characterized by a flat frequency response is obtained. Another significant
advantage of the new filter is that the parameter i can be interpreted as its bandwidth. These
results are particularly meaningful for minimum-phase plants because, in this case, the transfer
function of the closed-loop system coincides with that of the filter.

In this paper, the theory has been developed in detail for minimum-phase plants with a single

"unstable pole or a pair of unstable complex-conjugate poles. However, the idea has also been
found to work well in the case of more unstable poles. Simulation examples have shown that,
in the latter case, the improvement achievable with respect to the standard IMC filter is even
larger than in the single pole case.

Some lines of further research are the following:

® When the plant is non-minimum-phase, the filter transfer function can no longer be
interpreted as the closed-loop transfer function, and the theory developed in this paper
cannot be directly applied. Further work should be done to handle this case as well,
particularly with a view to identifying the filter parameter that corresponds to closed-loop
bandwidth. '

® The characteristics of the new filter can be exploited in the adaptive approach to robust
control discussed in Reference 3. However the use of the new filter in such a context
reguires some more work and is currently under way.
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