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a b s t r a c t

This paper addresses the problem of constructing reliable interval predictors directly from observed data.
Differently from standard predictor models, interval predictors return a prediction interval as opposed
to a single prediction value. We show that, in a stationary and independent observations framework, the
reliability of themodel (that is, the probability that the future systemoutput falls in the predicted interval)
is guaranteed a priori by an explicit and non-asymptotic formula, with no further assumptions on the
structure of the unknown mechanism that generates the data. This fact stems from a key result derived
in this paper, which relates, at a fundamental level, the reliability of the model to its complexity and to
the amount of available information (number of observed data).

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, we present a novel approach for the construction
of predictor models— that is, models that can be used for prediction
purposes — directly from observed data, and for assessing the
reliability of the prediction generated by these models.
Along the standard routes in system identification (see,

e.g., Ljung (1999) and Söderström and Stoica (1989)), a model is
typically obtained by first selecting a parametric model structure,
and then by estimating the model parameters, either using
an available batch of observations, or by on-line parameter
estimation. The so-obtained model may be used to predict the
future output of the system. The predicted value is, however,
of little use if derived without a tag certifying its accuracy
(Box & Jenkins, 1970, Chapters 1 and 5), (Granger & Newbold,
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1977), (McAleer & Deistler, 1986, Section 4.1)). A practical way of
assigning the accuracy tag is to provide an interval of confidence
around the predicted value, to which the future output is
guaranteed to belong with a certain probability (reliability of
prediction). For the construction of this interval, two sources of
information are used in this standard identification process: a
priori information on the true system, and a posteriori information
(the data). The mutual strength of this two-layers information
set-up drives the compromise in the choice of the model class
complexity (bias vs. variance trade-off). Moreover, the final
reliability of the obtained model depends on such a compromise,
and attaching a reliability certificate to the model calls for the use
of a priori knowledge to quantify the bias component.

1.1. Objectives of this paper

In this paper we propose an alternative approach that, under
suitable hypotheses (stationarity and independence of the system
variables) stated formally in the next section, permits one to
derive a reliable interval of confidence for the system output, with
no further assumptions on the structure of the mechanism that
generates the data. In other words, no a priori information on the
system structure is used to assess reliability.
This result is achieved by abandoning the traditional perspec-

tive that the model is a one-valued function. We instead introduce
models directly returning an interval as output (IPM – Interval Pre-
dictor Models). The IPM selection is driven by the principle that
the model should correctly describe the already seen data. Among
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models correctly describing the data, the one returning the small-
est possible prediction interval is chosen.
By the use of IPMs, a key conceptual separation is obtained: the

reliability tag only depends on the chosen model class and by the
number of observed data, and it is therefore always guaranteed,
independently of what the data-generating mechanism is. On
the other hand, a priori information still has a role in the
proposed approach, since selecting a suitable model class results
in an IPM with smaller prediction intervals. A strength of the
proposed approach is that of returning the smallest possible
interval predictor within the chosen class.

1.2. Problem statement

Let Φ ⊆ Rn and Y ⊆ R be given sets, called respectively
the explanatory variable set and the outcome set. An unknown (but
a priori fixed) stochastic data generation mechanism generates
the data in the form of a sequence of explanatory variables and
corresponding outcomes: (ϕ(t), y(t)), t = 1, 2, . . ., with ϕ(t) ∈
Φ , y(t) ∈ Y . We shall assume that this data generation process is
stationary.

Assumption 1 (Stationarity). The process x(t) = (ϕ(t), y(t)), t =
1, 2, . . ., with ϕ(t) ∈ Φ ⊆ Rn and y(t) ∈ Y ⊆ R, is a (strict-
sense) stationary discrete-time stochastic process. The (unknown)
marginal distribution of the process at time t , which is the same
for any t , is denoted with P. ?

Remark 1. P can be interpreted as a ‘‘probabilistic cloud’’ in the
Φ×Y space. The case inwhich y(t) is obtained as a function ofϕ(t)
is just a particular casewhere theprobabilityP is concentrated over
the function. In general, the fact that P is a ‘‘cloud’’ accommodates
situations where the fluctuation in y(t) is caused by other sources
(noise sources) besides the explanatory variable ϕ(t). ?

Remark 2. Stationarity simply says that the system is operating
in steady-state. No assumption is made on the marginal P so
that the structural or functional form relating ϕ(t) to y(t) can
be arbitrary. The system can be, for example, linear corrupted by
noise, nonlinear corrupted by noise, or anything else. ?

For the reliability results we shall develop in Section 4, the
following additional hypothesis of independence is made on x(t).

Assumption 2 (Independence). The process x(t) = (ϕ(t), y(t)),
t = 1, 2, . . ., is an independent sequence. ?

We underline that independence is just a technical additional
assumption that we introduce for two reasons: (i) this basic
setting permits one to better understand the ideas behind the
theorems by focusing on conceptual aspects; (ii) admittedly,
quantifying the IPM reliability is more involved in the dependent
case. This latter assumption is relieved in Section 4.2 of this paper,
where an extension to M-dependent processes is provided. In the
independent case, time ordering is not significant and t can also be
seen just as an index to enumerate the data.
The problem addressed in this paper is described as follows.

Problem (Reliable Interval Prediction). Suppose a finite number N
of data from the unknown process x(t) have been observed, and
call DN = {ϕ(t), y(t)}t=1,...,N the collection of these observations.
We want to find a rule that, when fed with ϕ(N + 1), returns
an informative (i.e., not too large) interval I to which the next
(unobserved) output y(N + 1) belongs with high probability.
Moreover, this probability should be quantified only on the basis
of the structure of the rule and of the number of observations,
without further assumptions on the mechanism that generates
the data. ?

To achieve these goals, we first introduce interval predictor
models (IPMs), which are the tools through which prediction
intervals are generated. Then, we show that these models can
actually ‘‘learn’’ from data, that is once the IPM has been ‘‘trained’’
on a batch DN , it may fail to correctly predict future outcomes with
an a priori quantifiable probability only.

1.3. Structure of the paper

In Section 2, interval predictor models are introduced and
the notion of reliability of such models is defined. The problem
of identifying an interval predictor from data is the subject of
Section 3. The main results on reliability assessment for interval
predictors are given in Section 4,which also contains some remarks
and comments on the general philosophy underlying the method.
Illustrative numerical examples are presented in Section 5, and
conclusions are finally drawn in Section 6. To keep the focus of
the discussion on the main concepts and to improve readability,
all technical proofs are given in the Appendices A and B.

2. Interval predictor models

In this section, we introduce the key instrumental element of
our approach, that is models that return an interval as output:
Interval Predictor Models (IPMs). The origin of this kind of model
has to be found in the theory of differential inclusions and set-
valued dynamical systems (see e.g. Aubin (1990), Aubin and
Cellina (1984) and Aubin, Lygeros, Quincampoix, Sastry, and Seube
(2002)). Interval models have been previously considered in other
contributions along routes that are quite different from that of
this paper. In Milanese and Novara (2004) and Milanese and
Novara (2005), interval predictors identification is performed
under certain a priori Lipschitz conditions on the underlying
system function. Utilizing this prior assumption allowed the
authors of these papers to establish guaranteed results without
resorting to any stationarity assumption. Of course, however,
the results are reliant on the a priori known bounds, and this
sets a serious limitation to the applicability of the method. Set
prediction has also been developed in Jaulin, Kieffer, Braems,
and Walter (2001), Jaulin, Kieffer, Didrit, and Walter (2001) and
Kieffer, Jaulin, and Walter (2002). By combining prior feasible sets
with observations, guaranteed regions for the state vector and the
system parameters are obtained.
Some basic concepts on IPMs are recalled next. Then, a new type

of parametric IPMs, of use in the present paper, is introduced in
Section 2.1; see also Calafiore and Campi (2002).
An interval predictor model is simply a rule that assigns to each

instance vector ϕ ∈ Φ a corresponding output interval in Y . That
is, an IPM is a set-valued map

I : ϕ→ I(ϕ) ⊆ Y . (1)

In (1), ϕ is a regression vector containing explanatory variables
on which the system output y depends, and I(ϕ) is the prediction
interval. We are interested in building IPMs such that, given an
observed ϕ, I(ϕ) is an informative interval, containing y with
high guaranteed probability. Output intervals are here obtained
by considering the span of parametric families of functions, as
detailed in the next section.
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2.1. Interval models described in parametric form

Consider a family of functionsM mappingΦ into Y , parameter-
ized by a vector q ranging in some set Q ⊆ Rnq , i.e.

M = {y = M(ϕ, q), q ∈ Q ⊆ Rnq},

where, for a given q, M is a one-valued map Φ → Y . Then, a
parametric IPM is obtained by associating to each ϕ ∈ Φ the set
of all possible outputs given byM(ϕ, q) as q varies over Q , viz.

I(ϕ) = {y : y = M(ϕ, q) for some q ∈ Q }. (2)

An example of a parametric IPM is that derived from standard
linear regression functions:

M = {y = ϑTϕ + e, ϑ ∈ Θ ⊆ Rn, |e| ≤ γ ∈ R}. (3)

In this case, q = [ϑT e]T ∈ Rn+1 and Q = Θ × [−γ , γ ]. A possible
choice for the setΘ is a ball with center c and radius r:

Θ = Bc,r = {ϑ ∈ Rn : ‖ϑ − c‖ ≤ r}. (4)

A more general choice forΘ is an ellipsoidal region:

Θ = Ec,P = {ϑ ∈ Rn : (ϑ − c)TP−1(ϑ − c) ≤ 1}, (5)

where P is a symmetric positive definite matrix.
For the model structure (3) and (4), given an instance ϕ, the

interval output of the IPM obtained through Eq. (2) can be
explicitly computed as

I(ϕ) = [cTϕ − (r‖ϕ‖ + γ ), cTϕ + (r‖ϕ‖ + γ )]. (6)

To verify this, rewrite (4) as {ϑ ∈ Rn : ϑ = c + ρ, ‖ρ‖ ≤ r} and
write

y = ϑTϕ + e = cTϕ + ρTϕ + e ≤ cTϕ + r
ϕT

‖ϕ‖
ϕ + γ

= cTϕ + r‖ϕ‖ + γ .

Similarly, y ≥ cTϕ − r‖ϕ‖ − γ , leading to (6).
Similar considerations show that for the ellipsoidal model

defined by (3) and (5) the interval is given by:

I(ϕ) =
[
cTϕ −

(√
ϕTPϕ + γ

)
, cTϕ +

(√
ϕTPϕ + γ

)]
. (7)

2.1.1. Classes of IPMs
Note that a parametric IPM as defined in (2) is assigned once

a set Q is given. For this reason, parametric IPMs shall be usually
denoted by IQ .
For identification purposes, we shall consider classes of

parametric IPMs, among which the predictor model is selected.
A class of parametric IPMs is simply a collection of IQ , where
Q belongs to a family Q of feasible sets. For instance, for the
parametric IPM defined by (3) and (4), Q = Bc,r × [−γ , γ ] is
uniquely determined by c , r and γ , and Q can for example be
given by

Q = {Q = Bc,r × [−γ , γ ] : c ∈ Rn, r ≥ 0, γ ≥ 0}, (8)

that is, Q is the family of all cylinders obtained by letting the
spherical basis and height vary in all possible ways.
Similarly, when Q = Ec,P × [−γ , γ ]we can choose

Q = {Q = Ec,P × [−γ , γ ] : c ∈ Rn, P ∈ S+, γ ≥ 0}, (9)

where S+ is the set of symmetric positive definite n× nmatrices.
Fig. 1. I(ϕ) (textured region) and y(ϕ) (dashed line).

2.2. Reliability of IPMs

Recalling that P is the probability distribution in the spaceΦ ×
Y , we have the following definition.

Definition 1 (Reliability of an IPM). Let I be a given IPM. The
reliability of I is defined as

R(I) := ProbP{y ∈ I(ϕ)},

that is R(I) is the probability that the pair (ϕ, y) falls in the IPM. ?

Note that this definition refers to picking a random ϕ and a y such
that y belongs to I(ϕ); in otherwords, this notion is not conditional
to a given ϕ.

2.3. An example of IPM

Assume that an output y ∈ R is generated according to the
following data-generating mechanism:

y = y(ϕ) = ϕ · (1+ |ϕ|), with ϕ ∈ [−1, 1].

Suppose this mechanism is actually unknown, and consider a
parametric IPM defined according to the following equation:

I(ϕ) = {y : y = ϑϕ, ϑ ∈ [1, 2]}

(note that this is a particular instance of a predictor model as
in (2)–(4)). The prediction interval I(ϕ) can be explicitly computed
according to (6), leading to I(ϕ) = [1.5ϕ − 0.5|ϕ|, 1.5ϕ + 0.5|ϕ|].
The map I(ϕ) is depicted in Fig. 1, where function y(ϕ) is also
represented. In this case, for each ϕ the output y(ϕ) is contained in
the predicted interval I(ϕ), so that the reliability of the predicted
interval is 100%.

Remark 3. Note that y = ϑϕ should not be considered as a
function family from which a specific function has to be selected
to represent the data-generating system. Instead, these parametric
functions are merely an instrument through which the interval
map I(ϕ) is defined. As amatter of fact, y(ϕ) does not belong to the
family y = ϑϕ, and yet the predicted interval I(ϕ) always contains
the output y(ϕ) for suitable values of ϑ that depend on ϕ. ?

In this example, the ϕ to ymap is deterministic. Inmore general
situations, the data-generating system is not a deterministic map.
Rather it is a ‘‘cloud’’ in the Φ × Y space and the interval map is
used to describe the vertical dispersion of y.
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3. Identification of IPMs

In this section we discuss the problem of selecting an interval
predictor from a parametric class on the basis of criteria of
consistency with the observed data and of optimality. This section
is focused on the numerical techniques for constructing an IPM,
whereas the fundamental issue of assessing the reliability of the
IPM is deferred to Section 4.
Suppose that the observations

DN = {ϕ(t), y(t)}t=1,...,N

have been collected. Based on DN we want to identify an interval
predictor model IQ̂N from a given class of parametric IPMs IQ ,
Q ∈ Q.
In this work, identification is guided by two different criteria, as

explained in the following.
First, we require IQ̂N to be consistent with the available

observations, according to the following definition.

Definition 2. An IPM I is consistent with the batch of observations
DN if y(t) ∈ I(ϕ(t)), for t = 1, . . . ,N . ?

In other words, consistency means that the interval I(ϕ(t)) for the
given ϕ(t) is not falsified by the observed y(t), for t = 1, . . . ,N .
Clearly, consistency alone does not make IQ̂N a good predictor.

The second requirement on IQ̂N is that it satisfies a tightness
criterion, expressed in terms of the minimization of an index µQ
measuring how wide the intervals returned by the IPM are. The
tightness criterion should reflect the specific needs of the problem
at hand, and is model class dependent. For example, for parametric
IPMs with ϑ in a ball defined by (3) and (4), given a ϕ, the size of
the predicted interval increases linearly with r and γ (see (6)), so
that we may want to consider

µQ = αr + γ , (10)

where α is a fixed nonnegative number. If e.g. α = E[‖ϕ(t)‖], then
µQ = rE[‖ϕ(t)‖] + γ = E[r‖ϕ(t)‖ + γ ] measures the average
(half) width of IQ .
Combining the consistency requirement with the requirement

of tightness, the identification of IQ̂N can be formulated as the
following constrained optimization problem (to ease the notation
we shall write ÎN in place of IQ̂N in the following).

Problem 1 (IPM Identification). Find ÎN := IQ̂N such that

Q̂N = argmin
Q∈Q

µQ ,

subject to y(t) ∈ IQ (ϕ(t)), t = 1, . . . ,N. ?

Problem 1 might be hard to solve in general. However, for some
standard IPM parameterizations and cost criteria, Problem 1 turns
out to be a convex optimization problem, which can be solved at
low computational effort.
For instance, for parametric IPMs with ϑ in a ball defined by (3)
and (4) with Q and µQ as in (8) and (10), Problem 1 becomes the
following linear program (note that Q = Q (c, r, γ ) in this case).

Problem 1.a (Spherical Parameter Set). Find ÎN := IQ (̂cN ,̂rN ,γ̂N ) such
that
ĉN , r̂N , γ̂N = argminc,r,γ αr + γ , subject to

r, γ ≥ 0
y(t) ≥ cTϕ(t)− r‖ϕ(t)‖ − γ , t = 1, . . . ,N
y(t) ≤ cTϕ(t)+ r‖ϕ(t)‖ + γ , t = 1, . . . ,N. ?
A similar result also holds for the IPMs with ϑ in an ellipsoid
defined by (3) and (5) withQ as in (9) and

µQ = Tr[PW ] + γ 2,

whereW is a weighting matrix and Tr[·]means trace. If e.g.W =
E[ϕ(t)ϕ(t)T] then µQ relates to the width of IQ as follows:

E[(half width)2] = [see (7)] = E[(
√
ϕ(t)TPϕ(t)+ γ )2]

≤ 2E[ϕ(t)TPϕ(t)+ γ 2] = 2E[Tr[ϕ(t)TPϕ(t)] + γ 2]
= 2E[Tr[Pϕ(t)ϕ(t)T]] + 2γ 2 = 2Tr[PE[ϕ(t)ϕ(t)T]] + 2γ 2

= 2µQ .

Notice that minimizing E[half width] is not suitable since this
quantity is not convex in the optimization variables.
In this case, as shown in Calafiore, Campi and El Ghaoui

(2002), Problem 1 can be rewritten as follows (ε1, . . . , εN are slack
variables).

Problem 1.b (Ellipsoidal Parameter Set). Find ÎN := IQ (̂cN ,̂PN ,γ̂N ) such
that
ĉN , P̂N , γ̂ 2N = argminc,P,γ 2,ε1,...,εN Tr[PW ] + γ

2, subject to

P � 0,[
γ 2 εt
εt 1

]
� 0,[

ϕ(t)TPϕ(t) y(t)− cTϕ(t)− εt
y(t)− cTϕ(t)− εt 1

]
� 0,

t = 1, . . . ,N. ?

Problem 1.b is a convex semi-definite optimization problem, for
which many efficient numerical solvers have been developed (see
e.g. Boyd and Vandenberghe (2004) and Vandenberghe and Boyd
(1996)).
Numerical examples of IPM identification can be found in

Section 5.

3.1. Identification with discarded constraints

It is well known that in some cases there can be some
‘‘exceptional’’ data points (the so-called outliers) whose value is
anomalous as compared to other observations. In presence of
outliers, requiring consistency for all the available observations, as
in Problem 1, may be unsuitable. Indeed, even a single anomalous
datum may adversely affect the final result, generating a wide
identified model. In this case, a wiser procedure would be to
discard ‘‘bad data’’, and use the remaining ones to carry out
identification, (Bai, Cho, & Tempo, 2002; Jaulin & Walter, 2002;
Lahanier, Walter, & Gomeni, 1987).
The presence of outliers is not the only reason justifying data

discarding. Indeed, there are situations where one is willing to
accept a decrease in prediction reliability in favor of a narrower
interval model and, as we will show in this section, this can be
obtained by discarding some data even when these data cannot be
regarded as outliers. As an example, we may think of prediction
of stock market returns or volatilities. Here, a 60%–70% confidence
prediction interval of small enough sizemay bemore suitable than
a 99% confidence prediction interval which is, however, too loose
to reveal the future index trend.
From an optimization point of view, the IPM identification with

discarded constraints can be outlined as follows. Let k < N be
a fixed number and let A be a decision algorithm through which
k observations are discarded from DN . The output of A is the
set A(DN) = {i1, . . . , iN−k} of N − k indexes from {1, . . . ,N}
representing the constraints that are used in identification. By ÎAN,k
we denote the identified IPM when k constraints are removed as
indicated byA. Precisely:
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Problem 1′ (IPM Identification with k Discarded Constraints). Find
ÎAN,k := IQ̂A

N,k
such that

Q̂A
N,k = argminQ∈Q

µQ ,

subject to y(t) ∈ IQ (ϕ(t)), t ∈ A(DN). ?

Notice that, for k = 0,̂ IAN,0 ≡ ÎN , so that Problem 1 is a particular
case of Problem 1′.
Two main issues now arise:

(i) How shouldA be chosen?
(ii) Which is the loss in reliability when ÎAN,k is used in place of ÎN?

Point (ii) will be postponed to Section 4, while point (i) is the
subject of the next Section 3.2.

3.2. Choice of the data discarding algorithmA

3.2.1. Greedy constraints removal
A straightforward approach to remove constraints is to select,

in succession, those constraints which – if removed one by one
– lead each time to the largest immediate improvement in µQ .
This approach does not of course give the overall optimal result
with k constraints removed. It has however the great advantage
of being implementable at a low computational effort. Moreover,
the reliability analysis of Section 4 is algorithm-independent, and
rigorously applies to this greedy approach as well.

3.2.2. Optimal constraints removal
In order to achieve the best possible benefit from constraints

removal, algorithm A should be chosen so as to discard those
constraints whose removal leads to the largest overall drop in
the cost µQ . To this end, one can try to solve Problem 1 for all
possible combinations of N − k constraints taken out from the
initial N constraints, and then choose that combination resulting
in the lowest value of µQ . This brute-force way of proceeding,
however, is computationally very demanding, since it requires one
to solveN!/(N−k)!k! optimization problems, a truly large number
in general.
The main aim of this section is to present a better algorithm for

solving the problem of constraints removal. The approach taken
here is in the same spirit as in Bai et al. (2002) and Matoušek
(1994), though in a different setting. We inform the reader that is
not interested in computational aspects that he/she can jump from
here to Section 4, where the key issue of reliability is discussed,
without any loss of continuity.
We first give some definitions. To avoid notational clutter,

these definitions are given with reference to a generic constrained
optimization problem:

P : Find ẑ = arg min
z∈Z⊆Rd

f (z),

subject to z ∈ Zt , t = 1, . . . ,N.

Existence and uniqueness of ẑ is taken here for granted. More
generality can be achieved by extra technicalities. Let w(P ) :=
f ( ẑ) be the optimal value for problem P . We have the following
definition.

Definition 3 (Support Constraint). The l-th constraint Zl is a support
constraint for P if w(Pl) < w(P ), where Pl is the optimization
problemobtained fromP by removing the l-th constraint, namely:

Pl : Find ẑl = arg min
z∈Z⊆Rd

f (z),

subject to z ∈ Zt ,
t = 1, . . . , l− 1, l+ 1, . . . ,N. ?
Fig. 2. Constraints for the optimization problem (11).

In other words, a support constraint is a constraint whose
elimination improves the optimal solution. The following theorem
is taken from Calafiore and Campi (2005); see Theorem 2 and
Section 4.3 in that reference.

Theorem 1. If P is a convex optimization problem (i.e. if f (z) is a
convex function of z, Z is a convex set, and Zt is a convex set for any t),
then the number of support constraints for P is at most d, the number
of optimization variables.

We also need the following definition.

Definition 4 (Non-degenerate Problem). P is non-degenerate if
w(Psc) = w(P ), where

Psc : Find ẑsc = argmin
z∈Z
f (z),

subject to z ∈ Zt , for any Zt
that is a support constraint of P . ?

Thus, a non-degenerate problem is one such that the optimal
solution with the sole support constraints in place is the same
as the optimal solution with all constraints. A degenerate P is
illustrated in the example below.

Example 1. Let

P : Find (̂z1, ẑ2) = arg min
(z1,z2)∈R2

z2, (11)

subject to (z1, z2) ∈ Za ∩ Zb ∩ Zc,

where Za, Zb and Zc are as in Fig. 2.
In this case, only Za is a support constraint, since removing Zb

or Zc does not change the optimal solution. However, considering
the optimization problem subject to Za only leads to a different
solution than the original problem. ?

We now go back to the problem of optimally removing k
constraints from the initial set of constraints DN (with a little
abuse of terminology, we say ‘‘constraints DN ’’ for ‘‘constraints
generated by DN ’’). We shall consider a sequence of optimization
problems obtained from Problem 1 by removing some constraints
from the initial set DN . For each of these problems, we assume
that the optimal solution exists and is unique, and moreover
that the problem is non-degenerate. While these assumptions can
be relaxed (e.g. tie-break rules can be introduced to avoid non-
uniqueness, see e.g. Calafiore and Campi (2005)), we prefer to
maintain them to avoid unduly technical complications.
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For F ⊆ DN , let w(F) be the optimal value for Problem 1
with F in place of DN . We will also denote by sc(F) and by sci(F)
respectively the set of support constraints and the i-th support
constraint of the problem with constraints F . Finally, suppose that
Problem 1 is a convex problem (this is true e.g. for Problems 1.a
and 1.b) so that |sc(F)| ≤ d, ∀F ⊆ DN , according to Theorem 1 (| · |
denotes cardinality).
The following Algorithm A∗ optimally discards k constraints.

The strength of this algorithm lies in that, instead of considering
all possible combinations of N − k constraints from the N initial
ones, it only considers a subset of situations. Precisely, it constructs
a tree of optimization problems as follows: the root is given by
Problem 1, with the initial set of constraints DN ; each problem in
the tree is obtained from a parent problem simply removing one
of the parent problem support constraints. In the end, one has to
solve the optimization problems at level k in the tree (that is with
k constraints removed).
The pseudo-code of the algorithm is as follows (here, DhN−i

denotes the constraints of the h-th problem at level i, while Mi is
the number of problems at level i).

Algorithm A∗

0. D1N := DN ;M0 := 1; i := 0;
1. Mi+1 := 0

FOR h = 1 TOMi
FOR l = 1 TO |sc(DhN−i)|
Mi+1 := Mi+1 + 1
DMi+1N−i−1 := D

h
N−i − scl(D

h
N−i)

END
END

2. IF i+ 1 < k THEN i := i+ 1; GO TO 1.
ELSE A∗(DN) := DrN−k where D

r
N−k is such that

w(DrN−k) ≤ w(D
j
N−k), j = 1, . . . ,Mk.

The optimality of AlgorithmA∗ is guaranteed by the following
theorem.

Theorem 2. Under the non-degeneracy assumption (Definition 4),
algorithm A∗ is optimal, in the sense that it returns a set of N − k
constraints resulting in the largest possible drop of the cost value µQ .

Proof. See Appendix A.

We next provide an evaluation of the computational effort
required to implement algorithm A∗. The core of Algorithm A∗ is
the inner FOR loop where one support constraint at a time has to
be removed from DhN−i. In order to spot the support constraints in
DhN−i one tests all the constraints: each constraint is eliminated in
turn and one checks whether the optimal solution improves.
In A∗, the computation of support constraints has to be

repeated for all the problems in the tree, from level 0 to level k−1.
Since for each problem there are at most d support constraints, the
number of problems at level i is at most di. Moreover, each of these
problems has N − i constraints. Thus, a bound to the number of
problems which A∗ requires to solve is N + (N − 1) · d + · · · +
(N−k−1) ·dk−1 ≤ N · d

k
−1
d−1 . Note that this number ismuch smaller

than N!/k!(N − k)!.
As an additional remark, since support constraints have to be

active constraints (i.e. constraints whose boundary contains the
solution of the optimization problem), sc(DhN−i) can be determined
by searching among active constraints of DhN−i only. This may
further reduce the number of optimization problems to test
significantly.
4. Reliability of IPMs

This section contains the main results of the paper. Here, we
tackle the fundamental issue of quantifying the reliability R(I) of
the IPM (recall Definition 1) identified according to Problem 1′.
The reliability result applies to any constraints removal algorithm
A and, in particular, to the greedy algorithm in Section 3.2.1, to
the optimal algorithm A∗ of Section 3.2.2, and, of course, to the
particular case when no observations are removed.
A quantification of the reliability of the IPM will be given in

the next two sections. Section 4.1 concentrates on an independent
setting (e.g. data are generated by a static system fed by an
independent input), while extensions to dependent settings are
discussed in Section 4.2.

4.1. Independent observations

The following main theorem permits one to quantify the
reliability of an IPMwhenever the optimization Problem1′ used for
its identification is convex (i.e. µQ and the constraints are convex
in the optimization variables).

Theorem 3. Let x(t) = (ϕ(t), y(t)), t = 1, 2, . . ., satisfy
Assumptions 1 and 2. Moreover, suppose that Problem 1′ is
a convex constrained optimization problem, and that its solution
exists and is unique. Then, for any ε ∈ (0, 1) and k < N − d (k
is the number of constraints discarded by A and d is the number of
optimization variables in Problem 1′) it holds that

ProbPN {R(̂I
A
N,k) ≥ 1− ε} > 1− β, (12)

where

β = β0

k∑
i=0

(N − d)!
(N − d− i)!i!

·
εi

(1− ε)i
, (13)

β0 =
N!

(N − d)!d!
(1− ε)N−d, (14)

and PN is the probability with which data x(t), t = 1, . . . ,N, are
observed.

Proof. See Appendix B.

Theorem 3 is a ‘‘generalization’’ theorem, in the sense that
the solution obtained by looking at N observations generalizes to
unseen data. Precisely, the theorem states that the reliability of ÎAN,k
is no worse than 1 − ε, with high probability greater than 1 − β .
As for the probability 1− β , one should note that ÎAN,k is a random
element that depends on the observed realization x(1), . . . , x(N)
of the stochastic process x(t). Therefore, its reliability R(̂IAN,k) can
be greater than or equal to 1 − ε for some random observations
and not for others, and β refers to the probability PN = P×· · ·×P
of observing a ‘‘bad’’ multi-sample x(1), . . . , x(N) such that the
reliability of ÎAN,k is less than 1 − ε. Parameter ε is referred to as
the ‘‘reliability parameter’’ while β is the ‘‘confidence parameter’’.
The confidence probability 1− β is the key to obtaining results

that are guaranteed independently of the data-generating system.
Without this probability, a reliability resultwould certainly require
some a priori assumption on the data-generating mechanism. It is
worth noting that the confidence parameter can be pushed down
to values such that the probability 1 − β is so close to 1 that it
loses any practical significance (so that R(̂IAN,k) ≥ 1 − ε is, for
practical purposes, guaranteed) and this is obtainedwithout letting
N increase too much. This is due to the fact that β is exponentially
vanishing with N . See e.g. Table 1 for a numerical example.
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Table 1
β given by (13) with ε = 0.1, d = 4 and k = 10.

N 500 600 700 800 900 1000

β 4.1× 10−3 1.3× 10−6 3.2× 10−10 5.5× 10−14 7.5× 10−18 8.8× 10−22
Fig. 3. IPM vs. reality, ‘x’= data.

We further remark that a confidence probability is com-
mon in many different contexts of classical probability theory,
starting from the Glivenko–Cantelli theorem, Chung (1974), and
going down to Vapnik–Chervonenkis uniform law of large num-
bers, (Vapnik, 1998; Vapnik & Chervonenkis, 1971, 1981).
For k = 0, Eq. (13) tells us that R(̂IN) ≥ 1 − ε holds with

confidence at least 1−β0; see (14). This bound for k = 0 previously
appeared in Calafiore and Campi (2006) in a robust control context.
In the expression for β in (13), the term

∑k
i=0

(N−d)!
(N−d−i)!i! ·

εi

(1−ε)i

represents the confidence degradation due to the discarding of k
observations.
A number of remarks on Theorem 3 are now in order.

Remark 4. The requirement that the optimization problem be
convex is for example satisfied for the model classes used in
Problems 1.a and 1.b, and further investigations are expected in
the direction of determining other convex classes. We further note
that convexity is not only the key property to obtaining reliability
results; it is also crucial in making the resulting optimization
problem computationally tractable. ?

Remark 5. The relationship (12) holds for givenN and k. In certain
applications one may want to let k vary with a fixed number
of observations to meet a suitable balance between performance
and reliability, or one may want to let N increase as the time
horizon extends. If so, relationship (12) can still be applied and
the simultaneous satisfaction of the reliability results for different
k and N holds with a confidence 1 −

∑
j βj, where j runs over the

different situations. Having a sum of βj is not a hurdle since βj is
very small in normal situations. ?

Remark 6. The reader maywonder how the result in Theorem 3 is
possible since, after all, reality has been inspected in correspon-
dence of N points only and, since no assumptions are made on
the data-generating system, reality can be anything elsewhere. The
reason why this perhaps surprising result is possible relies on the
role played by the probability 1 − β , a role that can be easily ap-
preciated through a simple example.
Suppose that reality is represented by some function, and that

the IPM does not correctly predict part of it. Two situations can
occur. In the first situation in Fig. 3(a), only a small part of reality is
outside the IPM (in the terminology of this paper, R(̂IAN,k) ≥ 1− ε),
and the IPM is reliable in the context of Theorem 3.
In the second situation (Fig. 3(b)) a large part of reality is outside

the IPM (R(̂IAN,k) < 1 − ε) so that the IPM is not reliable. For this
situation to occur, however, data have to be confinedwhere reality
and the IPM agree. This happens only with small probability with
respect to data extraction, and it is taken into account in Theorem3
by the confidence parameter β .
To put it differently, it is true that, once the data have been
collected, reality can be anything elsewhere so that a data-
generating system, which is consistent with the observed data
and such that the IPM is not reliable, can always be constructed.
On the other hand, if the data-generating system had been the
one we constructed, we would hardly have seen data leading
us to construct such an IPM. Theorem 3 provides a quantitative
measure of this unlikelihood, in general situations and uniformly
with respect to the probability measure P.
In some more specific and quantitative terms, expression (14)

for β0 has the following intuitive motivation. β0 represents
an upper bound to the probability of obtaining an IPM whose
reliability is< 1− ε (poorly reliable IPM) if no data are discarded.
Only few data determine the IPM (actually at most d, inspect the
proof). Term N!

(N−d)!d! is the number of possible choices of d data
points out of N , that is the total number of potential IPMs. All other
N−d data have to be contained in the actually obtained IPM.When
the reliability is < 1 − ε, the probability of another point lying in
the IPM is < 1 − ε, so that the probability that all other N − d
data are in the IPM is< (1− ε)N−d, and this generates the second
term in (14). The degradation term

∑k
i=0

(N−d)!
(N−d−i)!i! ·

εi

(1−ε)i
in (13) to

obtain β from β0 accounts for the possibility of having data points
outside the IPM. ?

Eq. (13) is a fundamental relation linking the level of available
information (represented by the number N of observations and
the number k of discarded data), the complexity of the model
(represented by the number d of decision variables in the IPM
identification problem), and the probabilistic levels of reliability ε
and confidence β .
In Eq. (13), the confidence parameter β is explicitly computed

from ε, N , k, and d. Such equation, however, should be better
thought of as a relationship among five different variables
(ε, β,N, k, d), andmaking such a relationship explicitwith respect
to one variable or another is a matter of convenience dictated by
the application context. The interpretation of (13) when it is made
explicit with respect to other variables than β is briefly discussed
next.

– N = N(ε, β, k, d)
This case is related to the design of an identification experiment,
where the number of observations to be collected has to be
chosen by the user;

– ε = ε(β,N, k, d)
This is the most typical identification framework where data
points are given, and onewould like to determine the prediction
reliability of the identified IPM;

– k = k(ε, β,N, d)
In this case, one wants to establish how many data points can
be removed, without going below a chosen reliability level;

– d = d(ε, β,N, k)
In this case, one evaluates the maximal complexity allowed for
the explanatory model, for given ε, β , N , and k.

Though analytical expressions may be difficult to obtain in all
the above cases, the inversion of Eq. (13) can be easily performed
through numerical methods.
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4.2. Dependent observations

Assuming independence in x(t) is a condition that applies
to many identification problems in econometrics, in pattern
recognition, and more generally in learning theory where no
dynamics is present. On the other hand, it may be of interest to
generalize results to a dependent context. Such generalization is
still unavailable in any general form and we limit here just to
discussing the case ofM-dependent observations, (Bosq, 1998).

Definition 5 (M-dependent Sequence). A (strict-sense) stationary
stochastic sequence x(t) is said to be M-dependent if x(t) and
x(t + s) are independent random variables whenever |s| > M . ?

M-dependence can be also regarded as an approximation of
situations where the dependence between data points decays
quickly enough so that it is negligible afterM time instants.
We have the following theorem, which is quoted here without

proof since the proof can be derived along similar lines as those in
Theorem 3. It suffices here to say that, in order to test the reliability
of the constructed IPM, in the proof of Theorem 4 one simply
concentrates on data that areM instants apart from each other.

Theorem 4. Let x(t) = (ϕ(t), y(t)), t = 1, 2, . . ., satisfy
Assumption 1 and assume that it is an M-dependent sequence.
Moreover, suppose that Problem 1′ is a convex constrained
optimization problem, and that its solution exists and is unique. Then,
for any ε ∈ (0, 1) and k < N − d it holds that

ProbPN {R(̂I
A
N,k) ≥ 1− ε} > 1− β,

where

β =
N!

(N − d)!d!

k∑
i=0

W !
(W − i)!i!

εi(1− ε)W−i,

and W = d(N − d(2M + 1))/(M + 1)e.(d·e is the smallest integer
greater than or equal to the argument.)

4.3. Reviewing the philosophy underlying IPM identification

The reliability of the identified IPM is guaranteed by Theorem 3
for stationary and independent observations, with no further
assumptions on the data-generating mechanism, that is on P. On
the other hand, as it is obvious, a priori knowledge on what is
being identified certainly has to play a role in the identification
procedure. So, the question is:where does a priori knowledge enter
the picture in the theoretical approach of this paper? The answer is
that a selection of an IPM model class which is suitably tailored to
the structure of the data-generating mechanism generally leads to
a narrower model, that is, one with smaller prediction intervals.
Thus, the reliability of the IPM is always guaranteed, and the
a priori knowledge impacts the other side of the coin, that is
the width of the model. The point is that such a width can be
assessed at the end of the identification procedure before the IPM
is used.

5. Numerical examples

Two simple examples illustrate the idea of interval predictor
models and IPM identification. The second example also deals with
the presence of outliers.
Fig. 4. IPM (2-dimensional ϑ) and data points for Example A.

5.1. Example A

Consider the static data-generating mechanism:

y(t) = sin(2u(t))+ w(t), (15)

where u(t) is an i.i.d. (independent and identically distributed)
sequence of random variables with uniform distribution in U =
[−1, 1], andw(t) is i.i.d. with normal distributionN (0, 0.01).
N = 300 observations u(t), y(t) were generated according

to (15) and used for identification. We took ϕ(t) = [u(t) u2(t)]T
as an explanatory variable, and considered interval models in the
form (2)–(4) with n = 2:

I(ϕ(t)) = {y(t) : y(t) = ϑ1u(t)+ ϑ2u(t)2 + e,
ϑ = [ϑ1 ϑ2]

T
∈ Bc,r , |e| ≤ γ },

whereBc,r is the 2-dimensional ball with radius r and center c.
SettingµQ = 0.6r+γ (note that E[‖ϕ(t)‖] ≈ 0.6) and solving

the linear Problem 1.a yielded

ĉ300 = [1.2870 0.0220]T; r̂300 = 0.0503;
γ̂300 = 0.3839

as the optimal solution. The obtained IPM is depicted in Fig. 4
directly as a set-valued map from U to Y = R. In the same plot,
the available u(t), y(t) data points are also represented.
Theorem 3 guarantees that the reliability of the identified

model is no less than 1− ε = 0.92, with high confidence 1− β =
0.999 ( Eq. (13) with d = 4).
On the other hand, the obtained IPM is loose. This is apparent

from the blank areas between the cloud of data-points and the
border of the interval prediction region, and is reflected in the
optimal cost value µQ̂300 = 0.4140. A better description of reality
can be achieved by suitablymodifying the class of IPMs over which
identification is performed.
By taking ϕ(t) = [u(t) u2(t) u3(t)]T and

I(ϕ(t)) = {y(t) : y(t) = ϑ1u(t)+ ϑ2u(t)2 + ϑ3u(t)3 + e,
ϑ = [ϑ1 ϑ2 ϑ3]

T
∈ Bc,r , |e| ≤ γ },

with µQ = 0.67r + γ as a cost function (E[‖ϕ(t)‖] ≈ 0.67 in this
case), we obtain

ĉ300 = [1.9665 − 0.0174 − 1.1606]T;
r̂300 = 0.0529; γ̂300 = 0.2320,

and the corresponding IPM is as depicted in Fig. 5. The optimal cost
turns out to be µQ̂300 = 0.2674, with an almost 40% reduction
with respect to the previous situation. Furthermore, Theorem 3
guarantees a reliability no less than 1 − ε = 0.9 with confidence
1 − β = 0.999, where the loss in reliability is due to the increase
in the number of optimization variables from 4 to 5.
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Fig. 5. IPM (3-dimensional ϑ) and data points for Example A.

Fig. 6. IPM and data points for Example B.

5.2. Example B

Data were generated according to the following mechanism

y(t) = u(t)(1+ w1(t))+ w2(t),

where the i.i.d. signal u(t) = ϕ(t) is the explanatory variable
and has distribution N (0, 1), w1(t) is i.i.d. with distribution
N (0, 0.01), and w2(t) is a sequence of independent random
variables taking values 0, +1, −1 with probability 0.98, 0.01 and
0.01 respectively. The sequence w2(t) is regarded as a source of
outliers.
After collecting 300 observations u(t), y(t), we sought an

interval predictor model of the form (2)–(4) with n = 1, i.e.

I(ϕ(t)) = {y(t) : y(t) = ϑu(t)+ e, |e| ≤ γ , ϑ ∈ Bc,r}.

Setting µQ = 0.8r + γ , and solving Problem 1.a returned

ĉ300 = 1.1204; r̂300 = 0.0453; γ̂300 = 0.9988;

and µQ̂300 = 1.0351. The resulting set-valued map I(ϕ(t)) is
depicted in Fig. 6, along with the collected data points. As it
appears, the identified IPM is loose because of the presence of
outliers.
Now suppose that one had selected to remove k =

10 observations according to the optimal algorithm A∗ of
Section 3.2.2. Solving Problem 1′, the IPM depicted in Fig. 7 was
found, corresponding to

ĉA
∗

300,10 = 0.9724; r̂A
∗

300,10 = 0.1942; γ̂A∗

300,10 = 0.0197;

and µQ̂A∗
300,10
= 0.1750. Thus, discarding 10 observations yielded a

83% reduction of the cost µQ . As for the IPM reliability, Theorem 3
says that, with confidence at least equal to 1 − β = 0.99, R(I) is
no less than 0.935 if no constraints are removed, and no less than
0.864 when k = 10 constraints are removed. Thus, the reliability
loss is only 0.071.
Fig. 7. IPM and data points for Example B – k = 10 outliers removed.

6. Conclusions

In this paper, we discussed the identification and reliability
analysis of interval models for prediction. From the computational
side, we showed how to construct IPMs for some specific
parametric classes, with the objective of minimizing a measure
of the prediction interval while maintaining consistency either
(a) with all of the observed data, or (b) with all except k of
them. The first case is the easiest and can be efficiently handled
via linear programming (in the spherical parameter case), or via
convex semi-definite programming (in the ellipsoidal parameter
case). In case (b), we proposed an optimal algorithm that alleviates
the inherent combinatorial complexity of the partial consistency
problem. Alternatively a greedy approach can be used.
From the theoretical side, we provided reliability guarantees

given by way of an explicit, non-asymptotic, formula that relates
the reliability to the degrees of freedom of the explanatory model
class, and to the number of available observations.
We believe that these results are bound to launch a new

philosophical foundation in system identification. This new
approach is here put on solidmathematical grounds and developed
algorithmically for spherical and ellipsoidal models. On the other
hand, the results are currently given in the stationary and
independent or M-dependent setup, whereas the dynamic case
requires further study.

Appendix A. Proof of Theorem 2

Let X be an optimal set of N − k constraints which gives the
largest drop of the cost criterion. Starting from the root of the
tree of problems constructed by A∗, generate a descending path
as follows: at the root, eliminate a support constraint which is also
an element in DN − X (if more than one support constraint exists
in DN − X , choose any one at will in this set) and move one level
down to a problemwith N − 1 constraints. Then, again eliminate a
support constraint which is also an element inDN−X . Proceed this
way until you get stuck, that is, no support constraints in DN − X
to eliminate can be found, and let DrN−l be the constraints of the
problem that has been reached. We then have:

w(X) ≥ w(sc(DrN−l)) (since sc(DrN−l) ⊆ X)
= w(DrN−l) (thanks to non-degeneracy)
≥ w(X) (since X is optimal),

so that equality holds throughout and w(sc(DrN−l)) = w(X).
Thus, an optimal problem is reached at some level of the tree, and
this trivially entails that the leaves generated at level k from this
problem are optimal too.
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Appendix B. Proof of Theorem 3

Let ∆ = Y × Φ be the set where observations x(t) =
(ϕ(t), y(t)) live and let ∆N = ∆ × · · · × ∆ the N-fold product
of∆’s. Moreover, let (x(1), . . . , x(N)) denote a generic element of
∆N .
Select a subset H = {i1, . . . , id} of d indexes from {1, . . . ,N}

and let ÎH be the optimal solution of the following optimization
problem with d constraints only:

min
Q∈Q

µQ , subject to y(t) ∈ IQ (ϕ(t)), t ∈ H.

Based on ÎH , introduce a subset∆
N,k
H of∆N defined as follows:

∆
N,k
H = {(x(1), . . . , x(N)) ∈ ∆

N
: ÎH = ÎAN,k}. (B.1)

In other words, ∆N,kH contains those observations such that, if we
apply algorithm A to them, we obtain the same IPM as if we
optimized with constraints x(i1), . . . , x(id) only.
Let now H range over the collection H of all possible choices

of d indexes from {1, . . . ,N} (H contains N!/(N − d)!d! sets). We
prove that:

∆N =
⋃
H∈H

∆
N,k
H . (B.2)

Take any (x(1), . . . , x(N)) in ∆N and let x(j1), . . . , x(jN−k),
{j1, . . . , jN−k} ⊂ {1, . . . ,N}, be the remaining constraints after k
constraints have been discarded according to algorithm A. These
N − k constraints determine the optimal solution ÎAN,k. From
x(j1), . . . , x(jN−k), eliminate a constraint which is not a support
constraint (see Definition 3 for the notion of support constraint).
This is possible since, in view of Theorem 1, there are, at most, d
support constraints and N − k > d. The resulting optimization
problemwithN−k−1 constraints has still ÎAN,k as optimal solution.
Consider now the set of the remaining N − k − 1 constraints,
and among these, remove a constraint which is not a support
constraint. Again, the optimal solution does not change. If we keep
going this way, we are eventually left with d constraints and ÎAN,k
is still the optimal solution. Thus, (x(1), . . . , x(N)) ∈ ∆N,kH where
H are the indexes we are left with at the end of the elimination
procedure. Since this is true for any (x(1), . . . , x(N)) ∈ ∆N , (B.2) is
proven.
Consider now the following subsets of∆N :

B = {(x(1), . . . , x(N)) ∈ ∆N : R(̂IAN,k) < 1− ε}

(i.e. B is the set of ‘bad’ observations which lead to an IPMwhich is
not as reliable as we would like it to be), and

BH = {(x(1), . . . , x(N)) ∈ ∆N : R(̂IH) < 1− ε}.

We have that:

B = B ∩∆N = [using (B.2)] = B ∩

(⋃
H∈H

∆
N,k
H

)
=

⋃
H∈H

(B ∩∆N,kH ) = [using (B.1)]

=

⋃
H∈H

(BH ∩∆
N,k
H ).

A bound for ProbPN {B} is now obtained by bounding ProbPN {BH ∩
∆
N,k
H } first, and then summing over H ∈ H .
Fix any H , e.g. H = {1, . . . , d} to be more explicit. Since the

condition R(̂IH) < 1 − ε involves only the first d constraints,
the set BH is a cylinder with the base in the Cartesian product of
the domains of the first d constraints. Now fix (x̄(1), . . . , x̄(d))
in the base of this cylinder. For a point (x̄(1), . . . , x̄(d), x(d +
1), . . . , x(N)) to belong to BH ∩ ∆
N,k
H , at least N − d − k

constraints among (x(d + 1), . . . , x(N)) must be satisfied by ÎH ,
for, otherwise, ÎH would satisfy less than N − k constraints among
(x̄(1), . . . , x̄(d), x(d + 1), . . . , x(N)) and we would not have ÎH =
ÎAN,k as required by definition (B.1) of∆

N,k
H . Therefore, we have that:

{(x(d+ 1), . . . , x(N)) :

(x̄(1), . . . , x̄(d), x(d+ 1), . . . , x(N)) ∈ BH ∩∆
N,k
H }

⊆ {(x(d+ 1), . . . , x(N)) :
at least N − d− k constraints are satisfied by ÎH}
= Ω0 ∪Ω1 ∪ · · · ∪Ωk,

where Ωi is the set where N − d − i constraints among (x(d +
1), . . . , x(N)) are satisfied by ÎH and i are not.
Let ζ = ProbP{y 6∈ ÎH(ϕ)}. Then, thanks to the fact that

observations are independent, we have that:

ProbPN−d{(x(d+ 1), . . . , x(N)) :

(x̄(1), . . . , x̄(d), x(d+ 1), . . . , x(N)) ∈ BH ∩∆
N,k
H }

≤

k∑
i=0

(N − d)!
(N − d− i)!i!

ζ i(1− ζ )N−d−i

<

k∑
i=0

(N − d)!
(N − d− i)!i!

εi(1− ε)N−d−i, (B.3)

where the latter inequality follows since ProbP{y 6∈ ÎH(ϕ)} > ε in
BH , and since

∑k
i=0

(N−d)!
(N−d−i)!i!ζ

i(1− ζ )N−d−i is a strictly decreasing
function of ζ , as it can be checked by differentiation.
The probability on the left hand side of (B.3) is nothing but the

conditional probability that (x(1), . . . , x(N)) ∈ BH ∩ ∆
N,k
H given

x(1) = x̄(1), . . . , x(d) = x̄(d). Integrating over the base of the
cylinder BH we obtain:

ProbPN {BH ∩∆
N,k
H }

<

k∑
i=0

(N − d)!
(N − d− i)!i!

εi(1− ε)N−d−i · ProbPd{base of BH}

≤

k∑
i=0

(N − d)!
(N − d− i)!i!

εi(1− ε)N−d−i.

Recalling that B =
⋃
H∈H (BH ∩ ∆

N,k
H ), the bound for ProbPN {B}

sought after is finally obtained:

ProbPN {B} ≤
∑
H∈H

PN{BH ∩∆
N,k
H }

<
N!

(N − d)!d!

k∑
i=0

(N − d)!
(N − d− i)!i!

εi(1− ε)N−d−i.
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