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Abstract: One of the central issues in system identification consists not only in obtaining a good model
of the process under study but also an informative confidence interval around it. This problem is often
referred to as robust identification in the literature. Following the classical paradigm, one first obtains a
model through prediction error minimization. Asymptotic theory is then invoked to extract quality tags
from the normal approximation of the estimates’ distribution. This paper proposes an alternative route
for robust linear system identification. Our procedure relies on the use of kernel-based regularization
for both impulse response estimation and confidence intervals computation. The main novelty is that the
kernel is not used to define a Gaussian density for the impulse response but just a prior satisfying some
symmetry properties forming the basis of the recently developed sign-perturbed sums (SPS) framework.
For system identification, SPS is then combined with the stable spline (SS) kernel to account for impulse
response regularity and exponential stability. Numerical experiments show that SS+SPS can provide
more accurate confidence intervals than those commonly achieved in the Gaussian regression framework
(which, in turn, were already shown to outperform those based on the classical paradigm).
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1. INTRODUCTION

Classical approaches to system identification are based on
maximum likelihood and prediction error minimization (PEM)
(Ljung, 1997; Soderstrom and Stoica, 1989). The general work-
flow includes first the selection of a set of candidate models that
increase in complexity, e.g. FIR, ARX or ARMAX of different
dimensions in the linear scenario. Each of them is then fitted to
data by PEM and the “best” model is selected using a variety
of complexity measures such as the Akaike or the Bayesian
information criterion. One important limitation of these criteria
is that they rely on asymptotic arguments, being derived assum-
ing the availability of infinite data lengths. As illustrated e.g.
in (Pillonetto et al., 2014), this can lead to models with poor
prediction capability on future data. In this regard, recent re-
search has shown that the use of regularization may lead to sig-
nificant improvements (Pillonetto and De Nicolao, 2010; Chen
et al., 2012). The impulse response of the unknown system is
modeled in a Bayesian setting as a zero-mean Gaussian process
whose covariance is also called kernel in the machine learning
literature (Scholkopf and Smola, 2001). The suggested model
is the so called stable-spline kernel which includes information
on system exponential stability. In this framework, the choice of
model (discrete) orders is replaced by the (continuous) tuning
of few kernel parameters through non-asymptotic approaches,
e.g. empirical Bayes or Stein’s unbiased risk (Efron and Morris,
1973; Maritz and Lwin, 1989; Hastie et al., 2001). Empirical
and theoretical arguments which support this approach to linear
system identification are also described in (Bell and Pillonetto,
2004; Aravkin et al., 2014; Pillonetto and Chiuso, 2015).

However, beyond a good model of the process under study,
one of the central issues in system identification is also the
determination of an informative confidence interval. This prob-
lem is often referred to as robust identification in the literature
(Goodwin et al., 1992). The classical approach still relies on

asymptotic theory: quality tags are obtained from normal ap-
proximation of the estimates’ distribution. Under the Bayesian
framework mentioned above, uncertainty regions can instead
be directly derived from the a posteriori distribution. In fact,
once the Gaussian prior on the impulse response is accepted,
the posterior becomes available in closed form. The numerical
studies illustrated in (Prando et al., 2016) have shown that the
uncertainty regions so obtained are in general more accurate
than the ones returned by the asymptotic approximation. One
of the key reasons is the prior’s ability to constrain all the es-
timates in the stability region whereas the “asymptotic” region
cannot guarantee this. Note also that comparison between the
confidence intervals derived under a frequentist framework and
the Bayes intervals is a widely discussed topic, e.g. see (Efron,
2005) and also (Wahba, 1983) for a discussion focused on the
smoothing splines case.

This paper proposes an alternative route for robust linear system
identification. As in (Pillonetto and De Nicolao, 2010; Prando
et al., 2016), our procedure relies on the use of kernel-based
regularization for both impulse response estimation and con-
fidence intervals computation. But the main novelty here is
that the kernel is not used to define a Gaussian density for
the impulse response. The prior instead incorporates a much
milder symmetry property which forms the basis of the recently
developed sign-perturbed sums (SPS) framework (Campi and
Weyer, 2005; Cs4ji et al., 2015; Care et al., 2018). SPS is then
combined with the stable spline (SS) kernel to include informa-
tion on impulse response stability. The method is tested using
numerical experiments where noisy data come from output
error models defined by randomly generated rational transfer
functions. Results show that SS+SPS can provide more accu-
rate confidence intervals than those achieved in the Gaussian
regression framework.

The paper is organized as follows. Section 2 formulates the
problem. Section 3 reports four numerical procedures for robust
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linear system identification, then tested via numerical experi-
ments in Section 4. Conclusions then end the paper.

2. PROBLEM STATEMENT

Our aim is to identify a discrete-time linear and stable system
from noisy output measurements. An output-error structure is
postulated. In particular, a FIR of (possibly high) dimension m
is adopted and the measurements model is

y=60"+v (1)
where the vector y € R” contains the noisy outputs, the compo-
nents of 8° € R™ are the impulse response coefficients, @ is a
known exogenous regression matrix independent of v built with
the system inputs (with &7 @ of full rank) and v is the noise

vector. Following the framework developed in (Csdji et al.,
2015), the following assumption is stated.

Assumption 1. The components of the noise v in (1) are inde-
pendent random variables with a symmetric probability distri-
bution around zero.

The problem is now to obtain an estimate of 8° from y and also
an informative confidence interval around it.

3. LS+SPS, RELS+GAUSS AND RELS+SPS

In this section, four procedures to derive the estimate of 0% and
a confidence interval around it are described. The first one is
called LS+SPS. It relies on least squares and coincides with
that discussed in (Csdji et al., 2015). The other three, namely
ReLS+Gauss and two versions of ReLS+SPS, make instead use
of regularization.

3.1 LS+SPS

Algorithm 1 SPS-initialization given a matrix Q € RV*™

1: Define a (rational) confidence probability p € (0,1) and set
integers r > g > O suchthat p=1—g¢/r;

2: Calculate Ry and Rzlv/ * where
B Qro
=
3: Generate N(r— 1) i.i.d. random signs {¢;,} with
Ploy, =1)=P(a;; =—1)=1/2,
fori=1,...r—1landt=1,...,N;
4: Generate a random perturbation 7 of the set {0, 1,...,r —

1}, where each of the r! possible perturbations has the same
probability to be selected.

1/2,,1/2
Ry RN/ (RN/ )" = Rw;

The simplest approach to estimate 0° is the least squares (LS)
estimator

0L = (T @) '@y, )
As for the uncertainty around oLs , under Assumption 1 an exact
confidence interval (CI) is characterized by the SPS procedure
developed in (Csgji et al., 2015) and summarized in Algorithms
1 and 2. In the procedures, 0 is a given vector and Algorithm 2
checks whether the given 6 belongs to the CI. In what follows,
we use £ to denote a set of candidate O whose choice will be
discussed later on in the numerical experiments section 4.2. If
# is sufficiently rich, a good CI approximation is then achieved
by Algorithm 3.

Algorithm 2 SPS-indicator() given a matrix Q € R¥>*” and a
vector z € RV
1: For the given 6, compute the prediction errors
St(e)zzt—.Q(t,:)Q, t:l7,N
where Q(z,:) is the ¢-th row of Q;
2: Evaluate fori=1,2,...,r—1

S0(6) =R;1/2,‘V)f] Q(r,:) & (6)

and
1 N

5i(0)=Ry'" L X 0, 01,0) e (6);
t=1

3: Order the scalars {||S;(0)]|} in increasing order. If
Hé(ﬁlz)g@)ll = [1S6(8)1l 1Sa(8)]| preceeds [ISy(6)]] iff 7(a) <
o),

4: Compute the rank Z(60) of ||So(0)]| in the ordering, e.g.
Z(0) =1if||So(0)] is the smallest one;

5: Return “accept” if Z(0) < r—gq.

Algorithm 3 LS+SPS

1: Compute the LS estimate (2);

2: Define a set .# of candidate impulse responses;

3: Initialize the SPS procedure using Algorithm 1 with Q = &,
setting e.g. ¢ = 5 and r = 100 to obtain a 95% CI;

4: For each 6 € .# use Algorithm 2 with Q =® andz =y to
accept or refuse the candidate impulse response. Call the
accepted subset of .# the CI sampled version and denote it
with €;

5: Return LS estimate (2) and CI sampled version &

3.2 RelLS+Gauss

The main problem of the estimator (2) is that it can suffer
of high variance due to ill-conditioning. In these cases the
introduction of regularization is important and one option is
to resort to Bayesian estimation. In particular, in the Gaussian
regression setting, both 8° and the noise v are modeled as
(independent) normal vectors, i.e.

00 ~ N (1, A°L), v~ AN (0,6%L,), 3)

with A2 and 62 positive scale factors. The mean u and covari-
ance A*X thus embed our prior information on 8°. As for the
noise, note that v satisfies Assumption 1 but is now constrained
to be stationary and Gaussian.
Under the normal assumptions reported above, the posterior
distribution of ° given y is
g DT x|
6°|y~«/V(eB7(62+/12)'), )

where 67 is the minimum variance estimate characterized by
6% = argmin [ly—®6|>+n*(0— )T (6-p)  (S2)

—u+ (@ drn’zH el (y-op). (5b)

In (5), the scalar n?> = 62/A? is the so called regularization
parameter which balances the adherence to experimental data
and to the prior information on 6°.

For future developments, it is important to stress that the
regularized least squares (ReL.S) estimator (5) can be derived
also in a Fisherian context. We can come back to see 6° as
deterministic and add the following virtual measurements to (1)
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y=00°+v (6a)
yi=n2 Y2, ®:=nr 2 v~.40,6%,). (6b)

The new measurements model becomes
7= Qe° +e (7a)

®
z=(§v>7 Q:(i), e~ N (0,6 sm).  (Tb)

The maximum likelihood (least squares) estimate of 69 is then
given by

éReLS _ (QTQ)_IQTZ
=p+ @ e+n’r ) ol (y—dp)
and coincides with (5).

(8a)
(8b)

Under the linear Gaussian model (7) we can use as confidence
region

O={6: (6-0%5TQTQ(0 - 6%5) <ko?}, (9
where x regulates the confidence level, see subsection 3.B
in (Csdji et al., 2015). Then, given a sufficiently rich set .#

of candidates, a good CI approximation is now returned by
Algorithm 4.

Algorithm 4 ReLS+Gauss

1: Compute the ReLS estimate (8);

2: Define a set .# of candidate impulse responses;

3: Determine the 6 € .# which falls in the confidence region
(9), with the desired level defined by k. Call the accepted
subset of .# the CI sampled version €;

4: Return ReLS estimate (8) and CI sampled version %

Example 2. (Stable Spline). To embed information on system
exponential stability, one can adopt the stable spline prior
(Pillonetto et al., 2014) setting ¢ = 0 and using as covariance
the matrix A2X, where the (i, j) entry of Xy is

Zaij= @™, 0<a<t. 10)

The scalar ¢ is an additional hyperparameter which regulates
the impulse response decay rate. Using the inverse of the
Cholesky factor of £, (Chen et al., 2016), after simple calcula-
tions the model (6) becomes

6 — 69

0=n—=—Z2_+7 (11a)
K o(l—a) '
(11b)
60  —8°
0=n—2l 15, (11c)
om=1(1-a)
0 ~
0=1 7% +n. (11d)

Note that the virtual measurements provide the information that
the variances of 6 and of the Gaussian increments 6 — 67, |
decay exponentially to zero as k increases.

3.3 ReLS+SPSI

As graphically depicted in the top panel of Fig. 1, in the
Gaussian regression context we can see 8° as the output of a
linear operator (that defines the kernel) fed with a stationary
white Gaussian noise. For instance, in the smoothing splines
case, the linear system is a cascade of integrators (Wahba,

Stationary
WGN

—_—

Linear 6°
Operator

Non-stationary WN
(symmetric pdfs)

Linear 0°
Operator

Fig. 1. Top: Gaussian regression Prior information is formu-
lated modeling 6° as the output of a linear system fed
with stationary white Gaussian noise (WGN). Bottom:
SPS regression The information on 6° is built using a
non-stationary white noise (WN) with probability density
functions (pdfs) just symmetric around zero. Mean u is
assumed null to simplify the figure.

1990), whereas the covariance (10) derives from a particu-
lar anti-causal integrator (Pillonetto and De Nicolao, 2010).
The change of perspective to build a new confidence interval
around the ReLS estimate (8) is shown in the bottom panel of
the same figure. The difference is that the white noise input
used to introduce the expected properties of 6° is no more
assumed Gaussian but follows the assumptions underlying the
SPS framework. Converting this Bayesian view in the Fisherian
context based on the virtual measurements, model (7) becomes

z=06%+¢ (12a)

z= (,yyv) , Q= ( ~ ) , e satisfies Assumption 3 (12b)

with 3 and @ as in (6b), and

Assumption 3. The components of the noise e in (12) are inde-
pendent random variables with a symmetric probability distri-
bution around zero.

The consequence of this new framework can be also appreci-
ated reconsidering the model (11) induced by the stable spline
kernel. The information on increments 6 — 67, | of the impulse
response is no more connected with a Gaussian measure of
known variance but with a (much more general) pdf symmetric
around zero. The new procedure is called ReLS+SPS1 and is
implemented by Algorithm 5.

Algorithm 5 ReLLS+SPS1

1: Compute the ReLS estimate (8);

2: Define a set .# of candidate impulse responses;

3: Initialize the SPS procedure using Algorithm 1 with Q
given by (12), setting e.g. ¢ = 5 and r = 100 to obtain a
95% CI,

4: For each 0 € .# use Algorithm 2 with Q and z in (12) to
accept or refuse the candidate impulse response. Call the
accepted subset of .# the CI sampled version €;

5: Return ReLS estimate (8) and CI sampled version &

3.4 ReLS+SPS2

In this section, we present an alternative procedure with addi-
tional theoretical properties. Start by noting that in Algorithm
2 the random signs o, apply to all terms in the summation
in the S;(0) functions, so that, in the case of ReLS+SPS1,
random signs apply to terms that come from data as well as
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terms associated with the virtual measurements. More explic-
itly, a function S;(6) in Algorithm 2 as used by ReLS+SPS1
(Algorithm 5) can be written as

R7]/2 n m ~
Si(0) =" |Y i ®(t,) &(0) + Y 01 n®(t,:) €40(0) |,
t=1 t=1
(13)
where we recall that &(0) =y, — ®(t,:)0, t = 1,...,n, are
associated with the data while &.4,(0) = 5 — ®(¢,:)0, t =

1,...,m, with the virtual measurements. In this section we
introduce the alternative approach of applying the random signs
only to the data based terms and consider the functions

—1/2 T p
Z (X,',,@(t, + ZCD £t+n )‘| .
t=1

R
5i(6) =~
(14)
Algorithm 2 where (14) is used in place of (13) is in the sequel
referred to as Algorithm 2’. Using Algorithm 2’ in Algorithm 5
gives the following procedure.

Algorithm 6 ReLS+SPS2

Same as Algorithm 5 where, at step 4, Algorithm 2’ is used in
place of Algorithm 2.

To this approach, the following theorem applies which extends
the theory valid for LS+SPS, see Cs4ji et al. (2015).

Theorem 4. Consider model (1) where 6° has a deterministic
value. Under Assumption 1, for any value of 6°, Algorithm
2’ returns “accept” when applied to 6% with exact probability
p=1-q/r.

Remark 5. Model (1) requires that the data generating system
is an FIR (finite impulse response) system; however, the the-
orem can be approximately applied to IIR (infinite impulse
response) systems after the system is approximated by a model
in the form (1) where @ contains a long enough tail of past
input values. For undermodelling detection and a study of the
influence of undermodelling on SPS techniques, see Care et al.
(2017).

Due to space limitations, we here only provide a sketch of the
proof of Theorem 4 while the reader is also referred to Volpe
(2015) for more details. Corresponding to 6°, the functions
Si(0) in (14) take the form

n

71/2
S;(6° Zoc,,cp

while So( 9) is given by
k! 2

v +n2E” (“_60)1’ (15)

So(6°

Z‘D v +n%2 (u—eo)]. (16)

Comparing these two expressions, one notices that the probabil-
ity distributions of (15) and (16) are identical because o ;v; and
vy have the same distribution since v, has symmetric probability
distribution around zero, so that none of the two variables car-
ries a probability higher than the other to be bigger. ! Extending

! The statement that the distributions of (15) and (16) are identical is rigorous
as long as 17, X and u are deterministic parameters that do not depend on the
dataset. It is important to remark, however, that in everyday practice these
parameters are often estimated from data, in which case n, £ and u carry
a dependence on v so that the distributions of (15) and (16) are no longer
rigorously identical. On the other hand, it is expected that the stochastic
fluctuation associated with 1, X and p is moderate and thus Theorem 4 still
holds approximately. The numerical results in Section 4 confirm this intuition.

this reasoning to all functions So(6), S;(6), i =1,2,...,r—1,
one can conclude that Z(8°) < r — ¢, so that 8° is accepted by
Algorithm 2’, with probability p =1 —g/r.

Notice that Theorem 4 holds true independently of the way
0° is generated. This result, instead, does not apply to
ReLS+SPS1, for which an analysis (which is beyond the scope
of this paper and therefore not included in this contribution) can
be developed under the more stringent Assumption 3. We only

notice that the validity of Assumption 3 requires that y — ®°
be an independent random vector with symmetric distribution.

4. NUMERICAL EXPERIMENTS
4.1 Set-up of a Monte Carlo experiment

We will consider two Monte Carlo studies of 1000 runs each.
At any run a different transfer function of order 10 is randomly
generated as follows. Poles and zeros are chosen iterating the
following procedure: with equal probability a real or a couple
of complex conjugate poles is added to the numerator and
denominator until their order reaches 10. In the case of a real
pole, it is randomly drawn from a uniform distribution on
[—0.95,0.95], while the absolute value and phase of one of
the complex conjugate poles are independent random variables
uniform on [0,0.95] and [0, ], respectively. Measurement noise
is white and Gaussian with standard deviation set to 1/5 of
that of the noiseless output. In the first Monte Carlo study
the input is white Gaussian noise of unit variance. In the
second, it is white Gaussian noise filtered by a second-order
system (randomly generated at any run with the same procedure
described above). Identification data comprise N = 800 outputs
and the dimension of 0 is set to m = 100.

4.2 Implementation details

ReLS is implemented using the stable spline kernel X, in
(10). The structure of the resulting estimator (5) is thus known
except for the regularization parameter 12 and the decay rate
o. They are estimated at any Monte Carlo run via marginal
likelihood optimization (Pillonetto et al., 2014)[Section 4.4],
which also returns the noise variance estimate 62 used to define
the confidence region ® in (9).

To implement LS+SPS, the set .# of candidate 6 contains
20000 vectors. In particular, 10000 vectors are obtained from
the posterior (4) but adopting an improper uniform prior on the
impulse response, i.e. from

A ((@T®) oy, 62 (0" D) ).

The final 10000 samples are generated via a Metropolis random
walk (Gilks et al., 1996) with Gaussian increments of covari-
ance 3 := (‘I;T—;D)_l /10. Note that the generation of the candi-
dates for LS+SPS does not use the kernel since this procedure
does not exploit any kind of regularization.

To implement ReL.S+SPS1, ReLS+SPS2 and ReLS+Gauss, the
set .# of candidate O still contains 20000 vectors. However, it
is not convenient to use the same set .# adopted by LS+SPS
since, thanks to the introduction of the kernel, in practice
most of these candidates will be refused. This holds especially
for ReLS+SPS1 and ReLS+Gauss where the virtual measure-
ments/prior play a much important role in determining the con-
fidence region. For these reasons, only 10000 candidate vectors
are generated by the strategy used for LS+SPS, i.e. 5000 from
N ((@T®) @7y, 62(PT®P) ") and 5000 from the Metropolis
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random walk. The other 10000 are obtained exploiting the in-
formation that the region’s shape depends also on the kernel.
Hence, other 5000 candidates are independent samples from
(4), i.e. from a Gaussian distribution with mean 6% and covari-
ance 3 := (qgf) + %1)’1. Other 5000 are generated through
a random walk Metropolis (Gilks et al., 1996) with Gaussian
increments of covariance £/10 + xI. The matrix &I allows
to generate candidates with components significantly different
from zero in the tail of the impulse response. The scale factor k
is initially set to the maximum value of the LS estimate divided
by 100 and then tuned at any run via a pilot analysis to obtain
an acceptance rate around 30%.

4.3 Performance indexes computation

Let 6° and 6 indicate at a generic run the true impulse response
and its LS or ReLS estimate, respectively. First, it is checked
if the true 0° is contained in the 95% confidence intervals
(CI) defined by LS+SPS, ReLS+Gauss and the two versions
of ReLS+SPS. Then, the classical impulse response (IR) fit is

computed as
0°—6
100 (1—”) IR fit. a7

16°]]
Next, sampled versions € of the 95% ClIs associated to
LS+SPS, ReL.S+Gauss, ReLS+SPS1 and ReLLS+SPS2 are ob-
tained by Algorithms 3, 4, 5 and 6. From % two performance
indexes are extracted. The first one is called CI area. Letting h;
be the i-th component of a generic h € €, it is defined by

m=100
Z (max h; — min h,~> CI area.
= \hew he®

This index is thus a rough measure of the CI dispersion.
The second index is called CI fit and is computed only if the CI
does not contain the true 6. It is defined by

0_
max 100 ( 1 — M CI fit
he? |69

and thus describes the nearness of the sampled CI to the true
impulse response.

(18)

19)

4.4 Results

Table 1 allows one to assess the frequency with which the 95%
CIs defined by the four procedures contain the true 6° for the
two Monte Carlo studies. For LS+SPS the value is very close to
95%. This is expected from the SPS theory: letting the number
of runs grow to infinity, convergence to 95% would hold. When
using ReLS+Gauss, in both the case studies the level is around
70%. A significant improvement is obtained by ReLS+SPS1:
the percentage is always larger than 85% and close to 90%
for white noise input. Notice, however, that such values would
not converge to the confidence level 95% for increasingly
many Monte Carlo runs since, as hinted at in Section 3.4, the
validity of an exact confidence result for ReLS+SPS1 hinges
upon Assumption 3, which is violated by the data generation
mechanism used in this example. Finally, from Table 1 we see
that the percentage for ReLS+SPS2 is very close to 95%, as
expected from Theorem 4 and Remark 5.

Fig. 2 displays the performance indexes (17-19) for input equal
to white noise (top panels) and filtered white noise (bottom).
As expected, ReLS outperforms LS in terms of IR fit (17),

Table 1. 95% CI accuracy for the two Monte Carlo
studies of 1000 runs

LS+SPS | ReLS+Gauss | ReLS+SPS1 | ReLS+SPS2

WN input

filtered WN

95.2 % 70.1% 89.3% 95.5%
95.1% 72.7% 84.7% 94.8%

especially in the second Monte Carlo study where most of the
problems are severely ill-conditioned. Boxplots of the CI area
indexes (18) then show that the uncertainty regions returned by
the kernel-based estimators are much more compact than those
computed by LS+SPS. This is further illustrated in Fig. 3 which
displays the sets 4" (which approximate the 95% Cls) obtained
in one Monte Carlo run. The performance of ReLS+SPS2 is
worse than that of ReLS+SPS1, but still considerably better
than LS+SPS. Finally, the right panels of Fig. 2 report the CI
fit indexes (19) (the boxplots are separate since they contain
a different number of values). The kernel-based approaches
provide similar results, much better than LS+SPS.

5. CONCLUSIONS

In this paper, we have introduced kernel-based SPS methods,
i.e. methods for robust linear system estimation that rely on
kernel-based regularization.

In Gaussian regression, a prior is postulated according to which
the model parameter 0° is the output of a linear system fed with
a stationary sequence of white Gaussian random variables. This
prior has been relaxed in this paper by replacing the stationary
Gaussian sequence with a non-stationary sequence of inde-
pendent and symmetric, but otherwise arbitrarily distributed,
random variables.

A rigorous analysis of the theoretical properties of ReLS+SPS1
has not been included due to space limitations. In future work
it will be shown that ReLS+SPS1 can be cast in a joint
frequentist-Bayesian framework (Bayarri and Berger, 2004).
In particular, instead of resorting to virtual measurements in a
Fisherian context, one can assume that 8° satisfies the prior de-
scribed in the bottom panel of Fig. 1 and then show that the al-
gorithm delivers guaranteed confidence regions on average over
6°. On the other hand, ReLS+SPS2 delivers guaranteed regions
for every value of 69, so that this result is immune to misspecifi-
cations of the prior. Simulations results show that ReLS+SPS1
builds smaller confidence regions than ReLS+SPS2. This can
be interpreted considering that ReLLS+SPS1 exploits, at least
partly, the information contained in the prior. In future work,
we plan to theoretically study the shape and size of the regions
provided by these two algorithms. Under a numerical point
of view, the reconstruction of SPS regions in sampled form
is also an important point which will deserve further study.
For this purpose, we plan to design a more sophisticated and
efficient MCMC scheme. This will likely allow to define more
rigorous regions dispersion indexes to be used also to monitor
the convergence of the generated chains.

In conclusion, there is evidence that kernel-based SPS methods
combine some of the advantages of regularized methods with
the robustness of guaranteed SPS algorithms, and further anal-
ysis is required to understand the potentials and the limits of
this new approach.
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