IDENTIFICATION WITH FINITELY MANY DATA POINTS: THE LSCR APPROACH

Marco Campi
University of Brescia

Erik Weyer
University of Melbourne
PART I: From nominal-model to model-set identification
true

\[\mathcal{P} \]

\[\sim \]

\[\hat{\mathcal{P}} \]

identified
\[\Pr\{\theta^o = \hat{\theta}\} = 0 \]
\[\Pr\{\theta^0 \in \text{region}\} \geq 0 \]
Example

\[y_t = a^o y_{t-1} + b^o u_{t-1} + n_t \]
Goal: finding confidence regions, guaranteed under general assumptions
PART II:

$LSCR = \text{Leave-out Sign-dominant Correlation Regions}$
A simple Example

\[y_t + a^0 y_{t-1} = w_t \]

\(w_t \) = independent, symmetrically distributed

Find a “guaranteed” interval for \(a^0 \)
The LSCR approach

\[y_t + ay_{t-1} = w_t \]

\[\hat{y}_t = -ay_{t-1} \]

\[\epsilon_t(a) = y_t - \hat{y}_t = y_t + ay_{t-1} \]

\[
\frac{1}{N} \sum_{t=1}^{N} \epsilon_{t-1}(a) \epsilon_t(a)
\]

empirical correlation

this is a function of \(a\)
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_1</td>
<td>⬤</td>
<td>⬤</td>
<td>0</td>
<td>⬤</td>
<td>⬤</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>I_2</td>
<td>⬤</td>
<td>0</td>
<td>⬤</td>
<td>⬤</td>
<td>0</td>
<td>⬤</td>
<td>0</td>
</tr>
<tr>
<td>I_3</td>
<td>0</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>0</td>
<td>⬤</td>
<td>0</td>
</tr>
<tr>
<td>I_4</td>
<td>⬤</td>
<td>⬤</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>⬤</td>
<td>⬤</td>
</tr>
<tr>
<td>I_5</td>
<td>⬤</td>
<td>0</td>
<td>⬤</td>
<td>0</td>
<td>⬤</td>
<td>0</td>
<td>⬤</td>
</tr>
<tr>
<td>I_6</td>
<td>0</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>0</td>
<td>0</td>
<td>⬤</td>
</tr>
<tr>
<td>I_7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
</tr>
</tbody>
</table>

\[\Rightarrow \frac{1}{4}[\epsilon_1(a)\epsilon_2(a) + \epsilon_2(a)\epsilon_3(a) + \epsilon_4(a)\epsilon_5(a) + \epsilon_5(a)\epsilon_6(a)] \]

\[\Rightarrow \frac{1}{4}[\epsilon_1(a)\epsilon_2(a) + \epsilon_3(a)\epsilon_4(a) + \epsilon_4(a)\epsilon_5(a) + \epsilon_6(a)\epsilon_7(a)] \]

\[\Rightarrow \frac{1}{4}[\epsilon_2(a)\epsilon_3(a) + \epsilon_3(a)\epsilon_4(a) + \epsilon_5(a)\epsilon_6(a) + \epsilon_6(a)\epsilon_7(a)] \]

\[\ldots \]

\[\ldots \]

\[\ldots \]
\[\frac{1}{4} \sum_{t=1,2,4,5} \epsilon_t(a^0) \epsilon_t(a^0) = \frac{1}{4} \sum_{t=1,2,4,5} w_{t-1} w_t \]
discard regions where empirical correlations are positive or negative “too many times” (LSCR = Leave-out Sign-dominant Correlation Regions)
Theorem (‘pivotal’ result)

For $a = a^0$, the value 0 is "at top", "as second top", ..., with the same probability $1/8$, independently of the noise characteristics.

$Pr\{a^0 \in interval\} = 0.5$
10 more trials
LSCR - general

w_t independent of u_t
LSCR - general
LSCR - general

$H(\theta^0)$

$G(\theta^0)$

u_t independent of u_t
LSCR - general

\[H(\theta^o) \]

\[G(\theta^o) \]

\[w_t \] independent of \(u_t \)

\[u_t, y_t, \ t = 1, ..., N \]

region guaranteed under general assumptions on noise
LSCR - general

- \(\epsilon_{t-d}(\theta) \epsilon_t(\theta) \)
- \(u_{t-d} \epsilon_t(\theta) \)

Theorem

\(\omega_t \) zero mean, symmetrically distributed
(no assumption on strength of noise)

\[
Pr \{ \theta^o \in \text{LSCR region} \} = 1 - \frac{q}{M+1}
\]

- usually, intersect more regions
Example 1

\[y_t + a^0 y_{t-1} = w_t + c^0 w_{t-1} \]
\[a^0 = -0.5, \quad c^0 = 0.2, \quad w_t \sim WGN(0, 1) \]

\[N = 1025 \]
\[\epsilon_{t-1}(a, c) \epsilon_t(a, c) \]
\[\epsilon_{t-2}(a, c) \epsilon_t(a, c) \]
Example 1

\[y_t + a^0 y_{t-1} = w_t + c^0 w_{t-1} \]
\[a^0 = -0.5, \quad c^0 = 0.2, \quad w_t \sim WGN(0, 1) \]

\[N = 1025 \]
\[\epsilon_{t-1}(a, c) \epsilon_t(a, c) \]
\[\epsilon_{t-2}(a, c) \epsilon_t(a, c) \]

\[Pr \geq 95\% \]
Example 1

\[y_t + a^0 y_{t-1} = w_t + c^0 w_{t-1} \]
\[a^0 = -0.5, \quad c^0 = 0.2, \quad w_t \sim WGN(0, 1) \]

\[N = 1025 \]

\[\epsilon_{t-1}(a, c)\epsilon_t(a, c) \]
\[\epsilon_{t-2}(a, c)\epsilon_t(a, c) \]

\[Pr = 97.66\% \]
Example 1

\[y_t + a^0 y_{t-1} = w_t + c^0 w_{t-1} \]
\[a^0 = -0.5, \quad c^0 = 0.2, \quad w_t \sim WGN(0, 1) \]

\[N = 1025 \]
\[\epsilon_{t-1}(a, c) \epsilon_t(a, c) \]
\[\epsilon_{t-2}(a, c) \epsilon_t(a, c) \]

\[Pr = 97.66\% \]
Example 1

\[y_t + a^0 y_{t-1} = w_t + c^0 w_{t-1} \]
\[a^0 = -0.5, \quad c^0 = 0.2, \quad w_t \sim WGN(0, 1) \]

\[N = 1025 \]

\[\varepsilon_{t-1}(a, c)\varepsilon_t(a, c) \]
\[\varepsilon_{t-2}(a, c)\varepsilon_t(a, c) \]

\[Pr \geq 95\% \]
Example 1

\[y_t + a^0 y_{t-1} = w_t + c^0 w_{t-1} \]

\[a^0 = -0.5, \quad c^0 = 0.2, \quad w_t \sim WGN(0, 1) \]

\[N = 1025 \]

\[\epsilon_{t-1}(a, c) \epsilon_t(a, c) \]

\[\epsilon_{t-2}(a, c) \epsilon_t(a, c) \]
Example 2

\[F^0 = \frac{b^o z^{-1}}{1 + a^o z^{-1}} \quad a^o = -0.7, \quad b^o = 0.3 \]

\[H^0 = 1 + h^o z^{-1} \quad h^o = 0.5 \]

\[N = 2047 \]

\[w_t \sim WGN(0, 1) \]

\[u_t \sim WGN(0, 10^{-6}) \]
... use asymptotic theory
... use asymptotic theory

\[F(\theta^o) \]

\[F(\hat{\theta}) \]

\[Pr = 90\% \]
... use LSCR

\[Pr = 90\% \]
LSCR - properties

- The region shrinks around θ^o
- For any N, $\theta^o \in$ region with given Pr despite no assumption on level of noise is made
PART III: Extensions
• w_t non-symmetrically distributed

• nonlinear systems (bi-linear systems)

UNMODELED DYNAMICS

• estimate $G(\theta^0)$ only

• unmodelled dynamics

\[y_t = b_1^0 u_{t-1} + b_2^0 u_{t-2} + w_t \]
IN CONCLUSION:

LSCR is a new framework for sys id that provides guaranteed results with minimal assumptions and it represents an exciting topic of research.