IDENTIFICATION WITH FINITELY MANY DATA POINTS: THE LSCR APPROACH

Marco Campi University of Brescia Erik Weyer University of Melbourne

PART I: From nominal-model to model-set identification

$$y_t = a^o y_{t-1} + b^o u_{t-1} + n_t$$

<u>Goal:</u> finding confidence regions, guaranteed under general assumptions

PART II: <u>LSCR</u> = Leave-out Sign-dominant Correlation Regions

A simple Example

$$y_t + a^o y_{t-1} = w_t$$

 $w_t = independent$, symmetrically distributed

Find a "guaranteed" interval for a^{O}

The LSCR approach

$$y_t + ay_{t-1} = w_t$$

$$\hat{y}_t = -ay_{t-1}$$

$$\epsilon_t(a) = y_t - \hat{y}_t = y_t + ay_{t-1}$$

$$\frac{1}{N}\sum_{t=1}^{N}\epsilon_{t-1}(a)\epsilon_{t}(a)$$

empirical correlation this is a function of a

discard regions where empirical correlations are positive or negative "too many times" (LSCR = Leaveout Sign-dominant Correlation Regions)

Theorem ('pivotal' result)

For $a = a^{O}$, the value 0 is "at top", "as second top", … with the same probability 1/8, <u>independently of the noise</u> <u>characteristics</u>.

10 more trials

 w_t independent of u_t

 w_t independent of u_t

 w_t independent of u_t

region guaranteed under general assumptions on noise

LSCR - general

•
$$\epsilon_{t-d}(\theta)\epsilon_t(\theta)$$
 • $u_{t-d}\epsilon_t(\theta)$

Theorem

 w_t zero mean, symmetrically distributed (no assumption on strength of noise) $Pr\left\{\theta^o \in \mathsf{LSCR} \text{ region}
ight\} = 1 - rac{q}{M+1}$

• usually, intersect more regions

$$y_t + a^0 y_{t-1} = w_t + c^0 w_{t-1}$$

$$a^0 = -0.5, \quad c^0 = 0.2, \quad w_t \sim WGN(0,1)$$

$$y_t + a^0 y_{t-1} = w_t + c^0 w_{t-1}$$

 $a^0 = -0.5, \quad c^0 = 0.2, \quad w_t \sim WGN(0,1)$

$$y_t + a^0 y_{t-1} = w_t + c^0 w_{t-1}$$

$$a^0 = -0.5, \quad c^0 = 0.2, \quad w_t \sim WGN(0, 1)$$

$$y_t + a^0 y_{t-1} = w_t + c^0 w_{t-1}$$

$$a^0 = -0.5, \quad c^0 = 0.2, \quad w_t \sim WGN(0, 1)$$

$$y_t + a^0 y_{t-1} = w_t + c^0 w_{t-1}$$

$$a^0 = -0.5, \quad c^0 = 0.2, \quad w_t \sim WGN(0, 1)$$

$$y_t + a^0 y_{t-1} = w_t + c^0 w_{t-1}$$

 $a^0 = -0.5, \quad c^0 = 0.2, \quad w_t \sim WGN(0,1)$

 $F^{0} = \frac{b^{o}z^{-1}}{1 + a^{o}z^{-1}} \qquad a^{o} = -0.7, b^{o} = 0.3$ $H^{0} = 1 + h^{o}z^{-1} \qquad h^{o} = 0.5$

N = 2047 $w_t \sim WGN(0, 1)$ $u_t \sim WGN(0, 10^{-6})$

... use asymptotic theory

... use asymptotic theory

$$Pr = 90\%$$

LSCR - properties

- the region shrinks around θ^o
- for any $N, \theta^o \in region$ with given Pr despite no assumption on level of noise is made

PART III: Extensions

- w_t non-symmetrically distributed
- nonlinear systems (bi-linear systems)

UNMODELED DYNAMICS

• estimate $G(\theta^o)$ only

• unmodelled dynamics $y_t = b_1^o u_{t-1} + b_2^o u_{t-2} + w_t$

IN CONCLUSION:

LSCR is a new framework for sys id that provides guaranteed results with minimal assumptions

and it represents an exciting topic of research