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Abstract
Scenario optimization is a broadmethodology to performoptimization based on empir-
ical knowledge. One collects previous cases, called “scenarios”, for the set-up inwhich
optimization is being performed, and makes a decision that is optimal for the cases
that have been collected. For convex optimization, a solid theory has been developed
that provides guarantees of performance, and constraint satisfaction, of the scenario
solution. In this paper, we open a new direction of investigation: the risk that a per-
formance is not achieved, or that constraints are violated, is studied jointly with the
complexity (as precisely defined in the paper) of the solution. It is shown that the joint
probability distribution of risk and complexity is concentrated in such a way that the
complexity carries fundamental information to tightly judge the risk. This result is
obtained without requiring extra knowledge on the underlying optimization problem
than that carried by the scenarios; in particular, no extra knowledge on the distribution
by which scenarios are generated is assumed, so that the result is broadly applicable.
This deep-seated result unveils a fundamental and general structure of data-driven
optimization and suggests practical approaches for risk assessment.
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1 Introduction

The scenario approach is a framework to perform optimization in uncertain environ-
ments where one has access to a record of past cases for the set-up where the present
decision has to be made. The prototype convex scenario optimization problem is writ-
ten as

min
x∈X

cT x

subject to : x ∈
⋂

i=1,...,N

Xδi ,
(1)

where x ∈ R
d is a vector of optimization variables and c is a constant vector of

weights; X ⊆ R
d is a convex set and Xδi are instances of a family {Xδ} of convex

constraint sets parameterized by δ. Parameter δ is modeled as a random element from
a probability space (Δ,F ,P), and δi , i = 1, . . . , N , is an independent random sample
of δ values.1 The interpretation of (1) is that the δi ’s are observations (or “scenarios”)
of an uncertain phenomenon (e.g., demand in the energy market or temperature in
a given environment), and one makes a decision which is optimal according to the
cost function cT x (e.g., minimize energy production or minimize the ranges for the
forecast of monthly temperatures) while also satisfying the constraints that come
from previous cases δi ’s (e.g., energy balance for a record of demands or correctly
describing the temperatures that have been recorded in the past). See [8,28,60] for
broader presentations of data-driven optimization.

The optimization problem (1) is convex, and this sets its fundamental structure: the
optimization domain, X , as well as the constraints, x ∈ Xδi , are convex and the cost
function is linear. Note that linearity of the cost function is not a limiting assumption
within a convex set-up because any problemwith a convex, but nonlinear, cost function
can be re-written as one with a linear cost function by an epigraphic reformulation,
[9]. Convexity makes solving (1) computationally tractable even in the presence of
many optimization variables.

Although clearly not all problems are convex, the set-up of (1) is truly vast and
encompasses problems that come from a variety of fields that range from finance, [39,
51–53], to control, [20,34,36,55,68], fromprediction, [15,23–25], tomachine learning,
[14,47]. A first common situation is the minimization of a loss function �(v, δ) that
depends on one’s choice v and on an uncertain variable δ.2 Given a sample of scenarios,
solving the worst-case problem

min
v

max
i=1,...,N

�(v, δi )

1 No limitations are imposed on Δ like e.g. that Δ is a subset of a Eucledian space or of a vector space, nor
isΔ endowed with a metric or a topology.Δ is just a generic set that forms a probability space together with
F and P. Hence, ideas like “the sample δi , i = 1, . . . , N , covers, or fills up, Δ” are void of any meaning.
This generality in the definition of Δ is important for the widespread applicability of the theory.
2 We assume that function �(v, δ) is convex in v for any given value of δ, while its dependence on δ is
arbitrary.
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is equivalent to (1) after one introduces a new variable h ∈ R, called the “perfor-
mance variable”, and set x = (v, h), cT x = [0 · · · 0 1]x = h, and Xδi = {(v, h) :
h ≥ �(v, δi )}. In this context, enforcing the constraints x ∈ Xδi , i = 1, . . . , N , leads
to worst-case optimization and one makes a choice such that no other selection of
the optimization variable v would lead to a better value simultaneously over all the
scenario-based loss functions �(v, δi ). In finance, this set-up has been described in
[33]. More generally, constraints x ∈ Xδi in (1) reflect needs of various type that go
from saturation limits in control applications to obstacle avoidance in mobile robotics,
from resource availability in management problems to bandwidth capacity in telecom-
munications.

1.1 A theory of generalization

In recent years, much effort has been spent in the stochastic optimization literature
towards studying the properties that sample-based solutions exhibit when applied
to new out-of-sample cases, [3,4,26,27,43,44,46,51,58]. By using a terminology
imported from machine learning, this problem is also referred to as the “general-
ization” problem as it involves extending, or generalizing, properties to new and yet
unseen situations. In this section, we specifically refer to the properties of the solution
obtained by solving (1).

To describe the existing generalization results, we start by introducing the notation
x∗
N for the solution to the optimization problem (1),3 and the following definition of

risk.

Definition 1 (risk) The risk of a given x ∈ X is defined as

V (x) = P{δ ∈ Δ : x /∈ Xδ}.

Hence, V (x) is the probability with which constraints are not satisfied by x . Note that
V (·) is a deterministic function fromX to [0, 1]. The risk of x∗

N is the random variable
V (x∗

N ) obtained by computing V (·) corresponding to the solution x∗
N of (1). Note that

V (x∗
N ) is stochastic through the dependence of x∗

N on δ1, δ2, . . . , δN . ��
When the constraints stem from an uncertain loss function �(v, δ) as described above,
V (x) = V (v, h) quantifies the probability that in a new case the loss associated with
v exceeds h, so that the risk of (v∗

N , h∗
N ) is the probability that applying the choice

v∗
N results in a loss greater than h∗

N . More generally, V (x∗
N ) is a measure of the

probability that some undesired event or condition occurs when the solution x∗
N is

applied. If V (x∗
N ) ≤ ε, then the risk for the solution to violate the random constraints

x ∈ Xδ is no more than ε. According to the stochastic programming terminology, this
is expressed that x∗

N is a chance-constrained feasible point at level ε, [29,58].4

3 Throughout, we assume that a solution exists. If more than one solution exists, a solution is singled out
by means of a convex tie-break rule according to the approach of [10].
4 We remark that V (x∗

N ) quantifies the risk, which refers to the chance-constrained feasibility, while the
value is not at issue here.
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Together with the cost value cT x∗
N , V (x∗

N ) represents the fundamental quantity to
evaluate the level of satisfaction one has in the solution x∗

N . Interestingly, the cost
value cT x∗

N becomes available to the user after the solution x∗
N has been computed.

In contrast, the value of V (x∗
N ) depends on the distribution P of δ, which in real

applications is normally unknown or only imprecisely known: hence, V (x∗
N ) cannot

be computed even after the optimization process has been completed. The problem
of estimating V (x∗

N ) without resorting to extra observations or test sets (which may
involve costly and limited resources) has attracted much attention over the past 10
years, and deep results have been established which (in a sense that we shall discuss in
detail later) affirm that the distribution of V (x∗

N ) can be bounded even when no knowl-
edge on the distribution of δ is available. This problem has been studied in [11,17] and
then extended in various directions including constraint violation, [18], regulariza-
tion, [16], non-convex optimization, [1,31,36], multi-stage problems, [62], and risks
at various empirical levels, [22]. Moreover, papers [21,50] introduce algorithms to
attain a solution that carries reduced risks. See also [5,44,45,48,49,69] for studies on
the connection between scenario optimization and chance-constrained problems. All
these results have put the scenario approach on solid quantitative grounds, a fact that
has had a role in the widespread acceptance of this methodology in various application
domains. In the next subsection, we specifically describe the mathematical results that
are relevant to place the contribution of this paper in context, and then introduce the
new perspective of this paper.

1.2 Previous results and the approach of this paper

In the paper [17], the fundamental relation

P
N {V (x∗

N ) ≤ ε} ≥ 1 −
d−1∑

i=0

(
N

i

)
εi (1 − ε)N−i (2)

has been established, where P
N refers to the sample (δ1, δ2, . . . , δN ) by which x∗

N
is determined (PN is a product probability due to independence of δ1, δ2, . . . , δN ).
Equation (2) bounds the cumulative probability distribution of V (x∗

N ), the bound is
universally valid for any scenario optimization problem in the form of (1) and, impor-
tantly, it is not improvable since it is exact (i.e.,PN {V (x∗

N ) ≤ ε} = 1−∑d−1
i=0

(N
i

)
εi (1−

ε)N−i ) for a class of problems, the so-called “fully-supported” problems according to
a definition introduced in [17]. The right-hand side of (2) is the cumulative distribution
of a Beta variable with parameters (d, N − d + 1). Figure 1 displays in solid blue
line the corresponding density when d = 400 and N = 1000 (respectively, number of
optimization variables and number of scenarios). In the same figure one can also see in
dashed yellow and dotted red lines the density of V (x∗

N ) for two scenario optimization
problems that are not fully-supported (these two optimization problems are presented
in detail in the simulation Sect. 4). For these problems, equation (2) holds with strict
inequality.

In the later paper [19], it was observed that optimization problems encountered
in applications are often not fully-supported, see also [56,63,64,67]. Moreover, by
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Fig. 1 Beta probability density for d = 400, N = 1000 (solid blue) and probability density of V (x∗
N )

for two non fully-supported scenario optimization problems (dashed yellow and dotted red) (color figure
online)

counting the number of support constraints for the case at hand, one knows that the
problem is not fully-supported, and, hence, can be unwilling to use the theory of
[17] that is tight for fully-supported problems only. Based on this observation, a new
approach was introduced in [19] where one waits before forming an evaluation on
V (x∗

N ), and the evaluation is based on the number of support constraints that have
been found in the instance of the scenario optimization problem at hand. This number
of support constraints is interpreted as the complexity of the scenario optimization
problem (1).

The present paper builds on the approach initiated in [19] and we herein fully
develop a new theory for the study of the joint distribution of the risk and the complex-
ity of scenario optimization problems. This theory reveals a fundamental correlation
structure that links the risk to the complexity and has important implications in applica-
tions.We start bymaking formal in the next definition the concept of support constraint,
taken from [10], and that of complexity.

Definition 2 (support constraint and complexity) A constraint x ∈ Xδi of the scenario
optimization problem (1) is called a support constraint if its removal (while all other
constraints are maintained) changes the solution x∗

N .
5 The complexity of the scenario

optimization problem (1) is the number of its support constraints. ��
In paper [10] it is shown that the number of support constraints of (1) is always less
than or equal to d, the number of optimization variables, and, in case of fully-supported
problems, (1) has d support constraints with probability 1, whenever N ≥ d.

A support constraint is necessarily an active constraint. The converse is not true
in general, and an active constraint need not be a support constraint as it can be eas-
ily understood by considering a situation where, after finding the solution, one more

5 Similarly to problem (1), it is assumed that the problems obtained after removing one constraint from (1)
admit a unique solution, possibly after breaking the tie by means of a convex tie-break rule according to
the approach of [10].
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active constraint is added: removing this constraint does not change the solution and
this constraint is not of support. In extreme cases, situations can occur where no sup-
port constraints exist. When all the active constraints are support constraints, which is
the typical case, keeping the support constraints and removing all the other constraints
leaves the solution unchanged. Following [19], we call this situation non-degenerate.
Non-degeneracy rules out situations in which the constraints accumulate anomalously
with nonzero probability.

Definition 3 (non-degeneracy) Optimization problem (1) is called non-degenerate if
its solution coincides with probability 1 (with respect to the sample (δ1, δ2, . . . , δN ))
with the solution that is obtained after eliminating all the constraints that are not of
support. ��
If (1) is non-degenerate, we can reconstruct the solution x∗

N by only using the support
constraints. The number of support constraints is therefore a measure of the com-
plexity of representation of x∗

N in a scenario optimization problem that has a reduced
number of constraints. For short, we at times speak of “complexity of the solution” to
mean the complexity of the optimization problem that has generated the solution.

Let s∗
N be the complexity of the optimization problem (1) and (s∗

N , V (x∗
N )) be the

bivariate variable of complexity and risk. Since δi , i = 1, . . . , N , are independent ran-
dom elements from (Δ,F ,P), the N -dimensional sample (δ1, δ2, . . . , δN ) is a random
element from (ΔN ,FN ,PN ) (we recall that the probability is a product probability
due to independence of δi , i = 1, . . . , N ), and so (s∗

N , V (x∗
N )) is a bivariate random

variable over (ΔN ,FN ,PN ) taking value in {0, 1, . . . , d} × [0, 1]. In this paper we
study the distribution of (s∗

N , V (x∗
N )), that is, the joint distribution of complexity and

risk, and Theorem 1 in Sect. 3 establishes a deep-seated result that this distribution is
concentrated so that the risk V (x∗

N ) can be estimated from the complexity s∗
N . Figure 2

displays a 99% region obtained from Theorem 1 for the distribution of (s∗
N , V (x∗

N ))

Fig. 2 99% region for the distribution of (s∗N , V (x∗
N )) when d = 800 and N = 2000. Horizontal axis:

value of s∗N (k = value of s∗N in the discrete set {0, 1, . . . , 800}); vertical axis: value of V (x∗
N ) (v = value

of V (x∗
N ) in the continuous interval [0, 1])
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Fig. 3 Distribution of (s∗N , V (x∗
N )) for an example discussed in Sect. 4

when d = 800 and N = 2000. Given the value of s∗
N , which can be easily computed,6

V (x∗
N ) is estimated to be in the line segment that is obtained by cutting the 99% region

with the vertical line that originates from the value of s∗
N . Importantly, the result in

Theorem 1 holds independently of the probability P so that it can be used without
requiring any additional information on the distribution of δ. In simple words, this
means that the complexity carries universal information for the judgement of the risk,
and this fact makes the theory of this paper broadly usable in applications where the
underlying distribution that generates the δ’s is not or only partly known.

Before closing this Sect. 1.2, we feel it advisable to make explicit two facts that are
consequences of what has been discussed so far.

(i) First, we compare, and better contrast, the result from [17] with that of this paper.
Figure 3 displays the distribution of (s∗

N , V (x∗
N )) for an example discussed in Sect. 4,

along with the corresponding marginal distribution of V (x∗
N ) (dashed yellow line in

the figure). This marginal has been already displayed in Fig. 1. Similarly, Fig. 4 shows
the distribution of (s∗

N , V (x∗
N )) for another example also discussed in Sect. 4, and the

marginal of V (x∗
N ) is that displayed in dotted red in Fig. 1.

The two bivariate distributions are quite different, but both are concentrated in the
99% region of Fig. 2. The two marginals for V (x∗

N ) have a dissimilar shape. As a
result, if one studies the distribution of V (x∗

N ) alone, as is done in paper [17], then
the problem arises that various behaviors are encountered depending on the scenario
optimization problem at hand, so that tight results valid for all cases are not possible.
On the other hand, adopting the broader point of view of studying jointly s∗

N and V (x∗
N )

6 To this purpose, it is enough to eliminate one by one the constraints and recompute the solution, the
support constraints are those whose elimination determines a change in the solution.
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Fig. 4 Distribution of (s∗N , V (x∗
N )) for another example discussed in Sect. 4

sheds light on the structure of dependence between these two variables and the value
of the hidden variable V (x∗

N ) can be estimated from the value of the easy-to-measure
variable s∗

N independently of all other elements that characterize each problem.
(ii) Strictly connected with point (i), a second fact is worth mentioning. For a given

problem, one can investigate a number of specificities beyond complexity (which
includes the shape of the constraints, the location of the constraints in the optimization
domain, etc.) and one can also possibly use prior knowledge to refine the judgement
of the risk. When doing so one has to keep in mind that the margin of improvement in
the judgment of the risk is limited to only reducing the remaining spread in the value
of V (x∗

N ) in the bivariate distribution of (s∗
N , V (x∗

N )), which shows that s∗
N already

contains much of the information to judge the value of V (x∗
N ).

1.3 Extension to scenario-based decision problems

The scope of the present contribution goes beyond the formulation of (1) and Sect. 5
deals with a more abstract scenario-based decision framework that covers problems
even beyond the domain of optimization. Leveraging this broader perspective, Sect. 5.1
presents a theory where the non-degeneracy condition is loosened. Further, Sect. 5.2
deals with “constraints relaxation”: differently from (1), the solution is not required
to satisfy all of the constraints introduced by the scenarios, instead the user is allowed
to tune the level of empirical risk (proportion of violated scenario constraints) so as to
achieve an improvement of the cost value. Interestingly, in the generalized context of
Sect. 5 all the concepts introduced in the first part of the paper maintain their essential
structure and mutual relation, while they are formulated more abstractly. In particular,
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the concept of complexity is still interpreted in terms of complexity of representation.
The main thrust of Sect. 5 is that, under a non-degeneracy condition, the complexity
is a tool that can be used to always tightly judge the level of risk (Theorem 2). This
has important conceptual implications: two scenario decision problems with the same
empirical risk can have quite different true risks depending on undisclosed mecha-
nisms by which the satisfaction of some constraints implies the satisfaction of other
constraints. Nonetheless, it is a universal fact that all these mechanisms are captured
by the complexity, which, alone, allows one to derive tight evaluations.

1.4 Structure of the paper

After the next section where a comparison with other methods is provided, Sect. 3
presents themain result, Theorem1, and a discussion of its use.An example is provided
in Sect. 4 that aims to illustrate the theory. In Sect. 5, we broaden our point of view
and show that the theory of this paper carries over to more general decision problems,
including a scheme to trade risk for performance. All the proofs are given in Sect. 6
and conclusions are drawn in Sect. 7.

2 Comparison with other methods

The scenario approach is one method to deal with data-driven optimization and other
approaches exist that address the problem from a different angle that focuses more
on the domain of uncertainty. These alternative approaches may offer a more flexible
tool of study than the scenario approach because working in the domain of uncertainty
allows one to cast the problem more freely in relation to various risk measures. On
the other hand, these alternative approaches may suffer from the fact that working
directly with the domain of uncertainty is possible only when this domain is simple
enough. In this section, we feel it advisable to present some comparison; we start by
suggesting that, from the scenario approach’s perspective, the domain of uncertainty
is only a mathematical tool, which plays no role in the operation of the method. This
is followed by a description of the advantages that may arise from working directly
with the domain of uncertainty.

One aspect which is distinctive of the scenario approach is that it deals with obser-
vations only in terms of the impact they have on the decision problem. To better explain
this assertion in mathematical terms, recall that the scenarios are realizations from a
probability space (Δ,F ,P). One such realization, δi , introduces a constraint x ∈ Xδi

in the optimization problem (1), while Δ and P never enter the practice of scenario
optimization, neither algorithmically, nor when certificates on the risk are generated.
This is crucial for the operation of the method: in applications, the domain Δ may
refer to a truly complex milieu, and indeed today’s use of data-driven optimization
in social sciences, engineering and medicine refers to ever more complex uncertainty
domains. The reader may find an exemplification of this fact in the papers [2,13] where
the scenario approach has been used with the goal of designing a model to predict the
effect of a defibrillator shock given to patients in cardiac arrest. In this case, a realiza-
tion of δ refers to the ECG trace of a patient and Δ is a complex infinite dimensional
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functional domain. While the domain Δ is often too complex to deal with, the domain
for optimization is usually a simple Euclidean space. This is not surprising asΔ refers
to the real world, while the optimization domain refers to the world of decisions as we,
the users, construct it, often with an attention to simplicity of use and implementation.

Since the scenario approach operates at the optimization domain level, it lends itself
very well to be applied independently of how complex Δ is or is meant to be (when
adopting the scenario approach, the user is not even requested to describe Δ). On the
other hand, as it has been noted before, in the optimization literature there has been a
surge of interest for methods that make explicit use of the domain Δ. These methods
offer valid alternatives when Δ has a simple enough structure, in which case they may
suggest a more general perspective as reviewed in the following.

In these methods, data are used to construct an “ambiguity set” P of probability
distributions over Δ and a decision which is robust with respect to P is made (data-
driven Distributionally Robust Optimization—DRO). If P comes accompanied by a
guarantee thatP ∈ P with a known probability 1−β, then a given property of the deci-
sion which is guaranteed to hold over P translates into a property certified for P with
probability 1 − β. Three principal approaches have been adopted to construct ambi-
guity sets: (i) moment ambiguity sets, [12,28,35,38,65,69]; (ii) ambiguity sets defined
as balls according to a metric, e.g., Prohorov [30] and Wasserstein [32,54,66], or to
the Kullback-Leibler divergence [40,41,61]; (iii) ambiguity sets defined by statistical
confidence regions, [6,7]. Moment ambiguity sets have better tractability properties,
while they in general do not allow one to obtain asymptotic convergence, a fact already
noticed in [7]. This is not surprising since along this approach the information in the
data is compressed with loss into confidence intervals for the moments; a similar dif-
ficulty is not germane to the other two approaches (ii) and (iii). Regardless of the
approach used to construct an ambiguity set, a difficulty with DRO methods is that it
is not easy to obtain ambiguity sets that minimize the impact on the optimization cost
whilemaintaining a desired level of confidence,whichmay reflect into conservatismof
the solution. This aspect has been discussed in [37,42,61], which have also suggested
remedies under suitable assumptions by using ambiguity sets that deviate from the
requirement that the ambiguity set contains P with probability 1 − β. One important
advantage of the DRO approach is that an ambiguity set offers a tool that can be used
independently of the adopted risk measure, so offering extra flexibility. Particularly,
DRO methods lend themselves to studying the minimization of expected costs and to
quantify the mismatch between the expected cost and its empirical counterpart, which
is not within the scope of the the scenario approach.

Before closing this section, we offer one last remark in relation to the specific
problem of evaluating the risk V (x). The first part of this paper concentrates on the risk
that is achieved when a value of x is obtained by solving problem (1). The data-driven
problem (1) has an intuitive appeal, and the result of this paper aims at quantifying
the risk of a methodology that pre-exists its analysis. In this context, the scenario
theory offers results (the fundamental Theorem 1 in primis and also all the other
theorems) that hold for any P, with no limitations on the underlying data generative
model. Importantly, despite their generality, the results are tight and informative, as
described in detail in Sect. 3.1. While generality and tightness leave little room for
improvement in the context of study of this paper, the DRO approach has a different
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goal of constructing methods to find an optimal solution while enforcing a desired
level of risk. This approach, however, requires proper shaping of the ambiguity set
which is prohibitive whenever Δ is a complex domain.

3 Main result and its practical use

Studying the optimization problem (1) that is based on N scenarios requires consider-
ing infinitely many other scenario optimization problems that have the same structure
as (1) with, however, an arbitrary number of scenarios:

min
x∈X

cT x

subject to : x ∈
⋂

i=1,...,m

Xδi ,
(3)

where m = 0, 1, 2, . . . is any integer; it is meant that the “subject to” line is dropped
when m = 0; and, δi , i = 1, . . . ,m, is an independent sample from (Δ,F ,P). Notice
that (1) is the same as (3) when m = N .
Assumption 1 (existence and uniqueness) For every m and for every sample
(δ1, δ2, . . . , δm), optimization problem (3) admits a solution (i.e. the optimization
problem is feasible and the infimum is achieved on the feasibility set). If more than
one solution exists, one solution is singled out by the application of a convex tie-break
rule, which breaks the tie by minimizing an additional convex function t1(x), and,
possibly, other convex functions t2(x), t3(x), …if the tie still occurs. The so-obtained
solution is indicated with x∗

m and it will be simply called the “solution” of (3). ��
The approach for breaking the tie in Assumption 1 is the same as that in [10]. An
example of a tie-break function is the norm of x , t1(x) = ‖x‖. Another example is the
lexicographic rule, which consists in minimizing the components of x in succession,
i.e., t1(x) = x1, t2(x) = x2, ….

The notion of support constraint in Definition 2 extends in an obvious manner to
(3): a constraint x ∈ Xδi of (3) is called a support constraint if its removal (while
other constraints are maintained) changes the solution x∗

m . We introduce the following
non-degeneracy assumption.

Assumption 2 (non-degeneracy) For every m, the solution x∗
m to the optimization

problem (3) coincides with probability 1 (with respect to the sample δi , i = 1, . . . ,m)
with the solution that is obtained after eliminating all the constraints that are not of
support. ��
It is perhaps worth noticing that, while the definition of support constraint concerns
removing one constraint at time, in Assumption 2 the simultaneous removal of all the
non-support constraints is considered. Assumption 2 is a mild condition that excludes
that the constraints accumulate anomalously at the solution. More comments on this
assumption are provided in Sect. 5.1 where it is shown that this assumption can be
relaxed by using a more abstract theory.

The following theorem is ourmain result in this first part of the paper. It characterizes
the distribution of the bivariate variable (s∗

N , V (x∗
N )), where s∗

N is the complexity of
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the solution (the number of support constraints) and V (x∗
N ) is its risk (the probability

that a new constraint is not satisfied).

Theorem 1 Consider the optimization problem (1) with N > d. Given a confidence
parameter β ∈ (0, 1), for any k = 0, 1, . . . , d consider the polynomial equation in
the t variable

(
N

k

)
t N−k − β

2N

N−1∑

i=k

(
i

k

)
t i−k − β

6N

4N∑

i=N+1

(
i

k

)
t i−k = 0. (4)

This equation has exactly two solutions in [0,+∞), which we denote with t(k) and
t(k) (t(k) ≤ t(k)). Let ε(k) := max{0, 1 − t(k)} and ε(k) := 1 − t(k). Under
Assumptions 1 and 2, for any Δ and P it holds that

P
N {ε(s∗

N ) ≤ V (x∗
N ) ≤ ε(s∗

N )} ≥ 1 − β. (5)

Proof The proof is given in Sect. 6. ��
The theorem assigns lower and upper bounds on V (x∗

N ) that hold with confidence
1−β. Thebounds dependon the randomvariable s∗

N , the number of support constraints,
which can be assessed by the user after computing the solution x∗

N . A more explicit
way of writing (5) is

P
N

(
d⋃

k=0

{s∗
N = k and ε(k) ≤ V (x∗

N ) ≤ ε(k)}
)

≥ 1 − β. (6)

Hence, a user who computes the number of support constraints and claims the risk
to be between the limits ε(k) and ε(k) (where k is the assessed number of support
constraints) incurs a probability 1 − β of making a wrong statement. This result
holds true for all convex scenario optimization problems in the form of (1) under
Assumptions 1 and 2. Figure 5 shows the confidence regions obtained fromTheorem 1
for various values of N and d. For practical values of N and d, the two functions ε(·)
and ε(·) are close enough to each other so that, after evaluating s∗

N , tight and useful
information about V (x∗

N ) is obtained. As N grows, the two functions get progressively
closer and eventually converge to one another.

3.1 Distribution-free has little cost

As we have seen, Theorem 1 applies independently of the distribution P, that is, it is a
distribution-free result. Hence, it can be used without knowledge of P, a fact that plays
an important role in applications. In this section we show that there are optimization
problems corresponding to given probability measures P for which the distribution
of the bivariate variable (s∗

N , V (x∗
N )) has support that is not too dissimilar to what

is found by applying Theorem 1. Hence, the price paid for a distribution-free result
is small relative to knowing that one of these optimization problems is being run.
The interpretation is that the number of support constraints carries the fundamental
information to judge the risk, and the residual uncertainty in the risk after the number
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(a) (b)

(c) (d)

Fig. 5 Profile of curves ε(k) and ε(k). a N = 500, d = 200; b N = 1000, d = 400; c N = 2000, d = 800;
d N = 4000, d = 1600. The three curves are for β = 0.1, β = 0.01; β = 0.001

of support constraints has been seen (two samples of scenarios that lead to the same
number of support constraints may carry a different risk) is only marginally increased
by requiring that the result holds distribution-free.

To put the above discussion on solid grounds, consider a fully-supported problem in
dimension k, see [17] for a definition of fully-supported problem. For such a problem,
the number of support constraints is k with probability 1. It is not hard to embed this
problem into another problem that has d optimization variables while it continues to
have k support constraints with probability 1, so that s∗

N = k with probability 1. If we
now apply Theorem 1 in [17] to this problem we see that the distribution of V (x∗

N ) is a

Beta(k, N − k + 1) distribution, i.e., PN {V (x∗
N ) ≤ ε} = 1− ∑k−1

i=0

(N
i

)
εi (1− ε)N−i .

Now let α(k) be the value such that 1−∑k−1
i=0

(N
i

)
α(k)i (1−α(k))N−i = β (i.e., α(k)

is the threshold value that clips the left tail of the Beta distribution with probability β)
and, similarly, let α(k) be the threshold value that clips the right tail with probability
β, i.e., 1 − ∑k−1

i=0

(N
i

)
α(k)i (1 − α(k))N−i = 1 − β. In order for Eq. (6) to be true for

this problem it is necessary that

ε(k) ≤ α(k) and α(k) ≤ ε(k), (7)

for, otherwise, at least one side on the inequality ε(k) ≤ V (x∗
N ) ≤ ε(k) would be

violated with a probability that exceeds β. Figure 6 profiles ε(k) and ε(k) against α(k)
and α(k). The fact that the curves are close to each other shows that the price that is
paid to make the result distribution-free is minor.
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Fig. 6 Profile of curves ε(k), ε(k) and α(k), α(k), N = 2000, d = 800, β = 0.001

3.2 Computational aspects

The discussion in the previous section suggests an easy way to compute function t(·)
and t(·) in Theorem 1. The two relations in (7) give respectively t(k) ≥ 1− α(k) and
t(k) ≤ 1−α(k). Hence, the two solutions of Eq. (4) must lie in the two bold intervals
in Fig. 7. To determine t(k), a bisection procedure can be run starting from the extreme
points 0 and 1− α(k), while, to determine t(k), one first checks if polynomial (4) has
the same sign in 1 − α(k) and 1 (in which case one comes to know that t(k) > 1
so that ε(k) in Theorem 1 has value 0) and, when the signs in 1 − α(k) and 1 are
different, a bisection procedure with initial extreme points 1−α(k) and 1 is run to find
t(k). A self-contained MATLAB code implementing these two bisection procedures
is provided in “Appendix A”.

4 An example

In this section, we describe the context in which Figs. 3 and 4 in the introduction have
been generated and illustrate various aspects relating to the theory of the previous
section.

1000 points pi are independently sampled inR400 according to a probability density
P and presented to us.Wewant to translate the negative orthant inR400 (i.e., the domain
where all components are negative or zero) so that the translated orthant contains all
the given points while the translation shift is minimized. This amounts to solving the
scenario optimization problem

Fig. 7 Intervals to which ε(k) and ε(k) belong
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Fig. 8 Distribution of
(s∗N , V (x∗

N )) for the first
probability density, N = 1000,
d = 400. The shaded region is
the 99.9% region given by
Theorem 1

Fig. 9 Distribution of
(s∗N , V (x∗

N )) for the second
probability density, N = 1000,
d = 400. The shaded region is
the 99.9% region given by
Theorem 1

min
x∈R400

400∑

j=1

x j

subject to : x j ≥ pi, j , i = 1, . . . , N ,

(8)

where j denotes component.
Optimization problem (8) was solved for two different probability densities P. In

the first case, the points were given by relation pi = qi + ci where the qi ’s were
independently drawn from a 400-dimensional Gaussian distribution with zero mean
and unit variance, G(0, I ), and the ci ’s were vectors with 400 equal components taken
from [0, 5] with uniform distribution. In the second case, the pi ’s were again given
by pi = qi + ci with the qi ’s generated as in the previous case but the ci ’s were this
time vectors of equal components with value 0 with probability 99% and a value taken
from a Gaussian distribution G(0, 22)with probability 1%. The optimization problem
(8) was solved 100000 times for both probability densities and each time the values
of s∗

1000 and V (x∗
1000) were recorded. This gave the empirical distributions reported in

Figs. 8 and 9,7 where the region given by Theorem 1 for β = 0.001 is also displayed.

7 These are the same empirical distributions as in Figs. 3 and 4 (in Figs. 3 and 4 only some values of k
were displayed).
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Fig. 10 Distribution of
(s∗N , V (x∗

N )) for the second
probability density, N = 2000,
d = 400. The shaded region is
the 99.9% region given by
Theorem 1

Fig. 11 Distribution of
(s∗N , V (x∗

N )) for the second
probability density, N = 4000,
d = 400. The shaded region is
the 99.9% region given by
Theorem 1

For the second probability density, the simulation set-up as above was then
repeated for N = 2000 and N = 4000, while all other quantities were kept the
same as for N = 1000. The results are on display in Figs. 10 and 11. One can
notice the evolution of the empirical distribution, which, for any given k, tends to
move towards lower values of the risk while the random spreads also progressively
reduce.

5 A theory for scenario-based decision problems

The theory developed in previous sections can be carried over to a more abstract set-
up which incorporates only the salient features that play a role in the derivation of
the results. Such an abstract theory is presented here, followed by two application
examples: in Sect. 5.1, the upper bound V (x∗

N ) ≤ ε(s∗
N ) is studied under a more

general condition than the non-degeneracy Assumption 2, while Sect. 5.2 deals with
the possibility of relaxing the constraints so as to improve the value of the cost func-
tion.
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In analogy with Sect. 3, for any given m = 0, 1, 2, . . . start by considering an
independent sample δi , i = 1, . . . ,m, from (Δ,F ,P). The optimization domainX of
Sect. 3 is here substituted by a generic setZ , called the “decision set”.8 To any δ there
is associated a set Zδ ⊆ Z . In Sect. 3, x∗

m was generated by optimization problem (3),
that is, optimization problem (3) there defined maps (one for any m) from Δm to X .
Here, we consider generic maps

Mm : Δm → Z, m = 0, 1, 2, . . .

and write z∗m = Mm(δ1, . . . , δm). The interpretation is that z∗m is a decision made
according to a rule Mm applied to a set of scenarios δ1, δ2, . . . , δm . Throughout this
Sect. 5 the word “decision” refers to z∗m , and the symbol “z” will only be used in
relation to a decision.

The following assumption applies to Mm .

Assumption 3 (properties on Mm)

(i) Mm is permutation-invariant:Mm(δ1, . . . , δm) = Mm(δi1 , . . . , δim ) if δi1, . . . , δim
is a permutation of δ1, . . . , δm ;

(ii) given m values δi , i = 1, . . . ,m, augment them with n more values
δm+1, . . . , δm+n , wherem and n are generic non-negative integers. If the decision
z∗m obtained from the first m values of δ is in the sets associated with the extra
n values of δ, that is, z∗m ∈ Zδi for i = m + 1, . . . ,m + n, then it holds that
Mm+n(δ1, . . . , δm+n) = z∗m , that is, the decision obtained after adding the new
δ’s remains unchanged.

(iii) instead, if δi , i = 1, . . . ,m, is augmented with values δm+1, . . . , δm+n such that
one or more δi , i = m+1, . . . ,m+n, has associated a set which does not contain
z∗m , that is, z∗m /∈ Zδi for one or more i = m + 1, . . . ,m + n, then it holds that
Mm+n(δ1, . . . , δm+n) 
= z∗m . ��

Notice that Assumption 3 does not require that z∗m is in Zδi , i = 1, . . . ,m.
The notion of risk of a z ∈ Z is an obvious extension from Sect. 3: V (z) = P{δ ∈

Δ : z /∈ Zδ}. Also the notion of support constraint carries over from Sect. 3, but we
here prefer to speak of “support element” since, as we have remarked above, z∗m is not
forced to be in Zδi , i = 1, . . . ,m, that is the Zδi ’s do not act here as constraints: Zδi

is called a support element if Mm−1(δ1, . . . , δi−1, δi+1, . . . , δm) 
= Mm(δ1, . . . , δm).
The number of support elements is denoted by s̃∗

m . Finally, the assumption of non-
degeneracy remains essentially unchanged.

Assumption 4 (non-degeneracy of Mm)
For every m, the decision z∗m = Mm(δ1, . . . , δm) coincides with probability 1

(with respect to the sample δi , i = 1, . . . ,m) with the decision that is obtained after
eliminating all the elements that are not of support. ��
8 Z can be any set, without any Euclidean structure. We change notation from X to Z because in some
applications Z is the same as X augmented with extra elements; concrete examples of decision sets are
provided in Sects. 5.1 and 5.2.
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The fact that the set-up of this section encompasses as a particular case that of Sect. 3
is shown in Sect. 6.2.

We are now ready to state the main theorem of this section, Theorem 2. The essence
of this theorem is that the thesis of Theorem 1 carries over to the present more abstract
set-up. One difference with Theorem 1 is that in Theorem 2 the number of support
elements is not a-priori upper bounded (as it was the number of support constraints in
Theorem 1, which could not exceed d), so that we here have to also account for the
case k = N (number of support elements equal to the number of scenarios), which
leads to considering Eq. (10).

Theorem 2 Given a confidence parameter β ∈ (0, 1), for any k = 0, 1, . . . , N − 1
consider the polynomial equation in the t variable

(
N

k

)
t N−k − β

2N

N−1∑

i=k

(
i

k

)
t i−k − β

6N

4N∑

i=N+1

(
i

k

)
t i−k = 0, (9)

and, for k = N, consider the polynomial equation

1 − β

6N

4N∑

i=N+1

(
i

k

)
t i−N = 0. (10)

For any k = 0, 1, . . . , N − 1, Eq. (9) has exactly two solutions in [0,+∞), which
we denote with t(k) and t(k) (t(k) ≤ t(k)). Instead, Eq. (10) has only one solution
in [0,+∞), which we denote with t(N ), while we define t(N ) = 0. Let ε(k) :=
max{0, 1− t(k)} and ε(k) := 1− t(k), k = 0, 1, . . . , N. Under Assumptions 3 and 4,
for any Δ and P it holds that

P
N {ε(s̃∗

N ) ≤ V (z∗N ) ≤ ε(s̃∗
N )} ≥ 1 − β. (11)

��
Proof The proof is given in Sect. 6. ��

Theorem 2 allows one to evaluate the risk for decision problems of various type.
We next apply Theorem 2 to two specific setups.

5.1 Application no. 1: a theorem for problem (1) with a relaxed non-degeneracy
condition

In Sect. 3, Theorem 1 was stated under the non-degeneracy Assumption 2. We here
show that a statement on the generalization properties of (1) can be obtained under a
condition that only refers to the instance at hand of (1), as opposed to Assumption 2,
which pertains to all choices of scenario samples.

Suppose that in the instance at hand of (1) the set of active constraints coincides
with the set of support constraints (which implies that the instance at hand of (1)
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is non-degenerate). Note that this condition is easily verifiable based on the available
scenarios. The next theorem, which is a corollary of Theorem 2, provides an evaluation
of the risk when this condition is satisfied.

Theorem 3 Consider the optimization problem (1) with N > d. Given a confidence
parameter β ∈ (0, 1), for any k = 0, 1, . . . , d consider the polynomial equation in
the t variable

(
N

k

)
t N−k − β

2N

N−1∑

i=k

(
i

k

)
t i−k − β

6N

4N∑

i=N+1

(
i

k

)
t i−k = 0. (12)

This equation has exactly two solutions in [0,+∞), which we denote with t(k) and
t(k) (t(k) ≤ t(k)). Let ε(k) := 1 − t(k). Under Assumptions 1, for any Δ and P it
holds that

P
N ({V (x∗

N ) > ε(s∗
N )} ∩ C

) ≤ β, (13)

whereC is the event where the set of active constraints coincides with the set of support
constraints. ��
Proof The proof is given in Sect. 6. ��

5.2 Application no. 2: optimization with constraints relaxation

In this section, we consider scenario optimization problems where, unlike (1), one is
allowed to violate constraints for the purpose of improving the cost value. We assume
that constraint violation has itself a cost and in the limit when this cost goes to infinity
the original problem (1) is recovered.

Matters of convenience suggest that constraints are written in this section as
f (x, δ) ≤ 0, where f (x, δ) is a convex function in x for any given δ (referring
back to the notation in Sect. 1, we therefore have that Xδ = {x : f (x, δ) ≤ 0}). The
reason for this choice is that the value of the function f is used to express the “regret”
for violating a constraint: for a given δ, the regret at x is f (x, δ) and the steepness
of this function describes the marginal increase of regret when the solution is moved
in a given direction. In this set-up, we consider the following scenario optimization
problem, which is a penalty-based variant of model (1):

min
x∈X

ξi≥0,i=1,...,N

cT x + ρ

N∑

i=1

ξi

subject to : f (x, δi ) ≤ ξi , i = 1, . . . , N ,

(14)

where, as before, δi , i = 1, . . . , N , is an independent random sample from (Δ,F ,P).
Note that (14) has d + N optimization variables, namely, x and ξi , i = 1, . . . , N .
If ξi > 0, the constraint f (x, δi ) ≤ 0 is relaxed to f (x, δi ) ≤ ξi and this generates
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the regret ξi . Parameter ρ is used to set a suitable trade-off between the original cost
function and the cost generated by the regret for violating constraints. When ρ → ∞,
one goes back to the original optimization problem (1) where no constraint violation is
allowed. It turns out that the cost cT x∗

N achieved at the optimum of (14) (existence and
uniqueness of the solution follows fromAssumption 5 below) is an increasing function
of ρ so that taking a lower value of ρ improves the cost. This fact, which is somehow
intuitive as decreasing ρ reduces the penalty for constraint violation, is proven in the
following (to highlight the dependence on ρ, the solution to (14) is written as x∗

N (ρ),
ξ∗
i,N (ρ), i = 1, . . . , N , in this derivation). Let ρ1 > ρ2 > 0. Optimality of x∗

N (ρ1),
ξ∗
i,N (ρ1), i = 1, . . . , N , for (14) with ρ = ρ1 yields

cT x∗
N (ρ1) + ρ1

N∑

i=1

ξ∗
i,N (ρ1) ≤ cT x∗

N (ρ2) + ρ1

N∑

i=1

ξ∗
i,N (ρ2),

from which one has

1

ρ1

(
cT x∗

N (ρ1) − cT x∗
N (ρ2)

) ≤
N∑

i=1

ξ∗
i,N (ρ2) −

N∑

i=1

ξ∗
i,N (ρ1). (15)

Likewise,

cT x∗
N (ρ2) + ρ2

N∑

i=1

ξ∗
i,N (ρ2) ≤ cT x∗

N (ρ1) + ρ2

N∑

i=1

ξ∗
i,N (ρ1)

gives
N∑

i=1

ξ∗
i,N (ρ2) −

N∑

i=1

ξ∗
i,N (ρ1) ≤ 1

ρ2

(
cT x∗

N (ρ1) − cT x∗
N (ρ2)

)
. (16)

From (15) and (16) one obtains

cT x∗
N (ρ1) − cT x∗

N (ρ2) ≤ ρ1

ρ2

(
cT x∗

N (ρ1) − cT x∗
N (ρ2)

)
.

Since ρ1
ρ2

> 1, one therefore has that cT x∗
N (ρ1) − cT x∗

N (ρ2) ≥ 0, which gives the
sought result.

The following assumption is the equivalent of the existence and uniqueness
Assumption 1 for the generalized set-up of this section.

Assumption 5 (existence and uniqueness) Consider optimization problems as in (14)
where N is substituted with an index m = 0, 1, . . . and δi , i = 1, . . . ,m, is an inde-
pendent sample from (Δ,F ,P). For every m and for every sample (δ1, δ2, . . . , δm),
these optimization problems admit a solution (i.e., the problems are feasible and the
infimum is achieved on the feasibility set). If for one of these optimization problems
more than one solution exists, one solution is singled out by the application of a convex
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tie-break rule, which breaks the tie by minimizing an additional convex function t1(x),
and, possibly, other convex functions t2(x), t3(x), …if the tie still occurs.9 ��
Moreover, we make the following assumption.

Assumption 6 For every x , P{δ : f (x, δ) = 0} = 0. ��
This is a non-accumulation assumption on functions f (x, δ), and, when constraints
f (x, δi ) ≤ 0 are enforced in the scenario optimization problem as is done in (1), it
implies the non-degeneracy Assumption 2.

In this context, we have the following theorem.

Theorem 4 Consider the optimization problem (14). Given a confidence parameter
β ∈ (0, 1), for any k = 0, 1, . . . , N − 1 consider the polynomial equation in the t
variable

(
N

k

)
t N−k − β

2N

N−1∑

i=k

(
i

k

)
t i−k − β

6N

4N∑

i=N+1

(
i

k

)
t i−k = 0, (17)

and for k = N consider the polynomial equation

1 − β

6N

4N∑

i=N+1

(
i

k

)
t i−N = 0. (18)

For any k = 0, 1, . . . , N − 1, Eq. (17) has exactly two solutions in [0,+∞), which
we denote with t(k) and t(k) (t(k) ≤ t(k)). Instead, Eq. (18) has only one solution
in [0,+∞), which we denote with t(N ), while we define t(N ) = 0. Let ε(k) :=
max{0, 1− t(k)} and ε(k) := 1− t(k), k = 0, 1, . . . , N. Under Assumptions 5 and 6,
for any Δ and P it holds that

P
N {ε(s̃∗

N ) ≤ V (x∗
N ) ≤ ε(s̃∗

N )} ≥ 1 − β, (19)

where V (x) = P{δ ∈ Δ : f (x, δ) > 0}, x∗
N is the value of x at the optimum of (14),

and s̃∗
N is the number of δi ’s for which f (x∗

N , δi ) ≥ 0. ��
Proof The proof is given in Sect. 6. ��

Theorem 4 provides a quantitative evaluation of the risk in the context of opti-
mization with constraint relaxation. By a comparison with Theorem 1, we see that
the number of support constraints s∗

N of the scenario optimization problem (1) is
here substituted by s̃∗

N . s̃
∗
N accounts for the constraints of (1) that are violated, i.e.,

f (x, δi ) > 0, plus those that are active, i.e., f (x, δi ) = 0, at x = x∗
N . One can prove

that f (x∗
N , δi ) = 0 in at most d cases with probability 1, showing that functions ε(·)

9 Note that only the tie with respect to x is broken by t1(x), t2(x), t3(x), …. On the other hand, for
a given x∗

m the values of ξi , i = 1, . . . ,m, remain unambiguously determined at optimum by relation
ξ∗
i,m = f (x∗

m , δi ), so that no tie on ξi , i = 1, . . . ,m, can persist after the tie on x is broken.
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and ε(·) have to be evaluated at an integer equal to the number of violated constraints
plus at most an excess of d in order to compute the lower and upper bounds for the
risk.10

As we have previously seen, decreasing ρ in (14) improves the cost cT x∗
N , while,

along the process, the number of violated constraints typically increases.11 Asρ varies,
the cost is computed, while Theorem 4 allows one to evaluate the risk, so providing
the user with the information needed to achieve a sensible trade-off between cost and
risk.12 The next example illustrates this idea.

Example 1 A manufacturer produces goods in d different workplaces and x j , j =
1, . . . , d, is the quantity planned to be produced in workplace j . For the production,
n different resources are employed. The quantity of resource k, k = 1, . . . , n, used
in workplace j to produce a unitary amount of goods is subject to random fluctuation
and is denoted by q j,k(δ). Each resource is available in a limited amount ak . The goal
of the manufacturer is to maximize the production while keeping low the probability
of being in need of resources that exceed the available amount.

Assuming that a record {q j,k(δi ), j = 1, . . . , d, k = 1, . . . , n}, i = 1, . . . , N , of
values for {q j,k(δ), j = 1, . . . , d, k = 1, . . . , n} is available, the problem is modeled
according to the scenario approach as follows

min
x j≥0, j=1,...,d

−
d∑

j=1

x j

subject to :

⎧
⎪⎪⎨

⎪⎪⎩

∑d
j=1q j,1(δi )x j ≤ a1,

...∑d
j=1q j,n(δi )x j ≤ an,

i = 1, . . . , N .

(20)

A simulation was performed with d = 50, n = 2 and N = 2000, which gave the result
−∑50

j=1 x
∗
j,2000 = −16.66, s∗

2000 = 4.13 With the choice β = 10−6, an application of

10 Intuitively, the proportion of violated constraints (empirical risk) is not a valid indicator of the true
risk V (x∗

N ) since optimization generates a bias towards larger risks by drifting the solution against the
constraints. The excess with respect to the number of violated constraints that appears in the computation
of s̃∗N captures this mechanism and offers one the possibility to obtain tight evaluations of the risk, as
quantified by the lower and upper bounds in Eq. (19), independently of the problem under consideration.
11 The increase is not always monotone.
12 Othermethods have beenproposed in the literature to trade the risk for an improved cost.Onemethod con-
sists in allowing the solution to violate a preset proportion of the empirical constraints (chance-constrained
problem over the empirical distribution). In the context of scenario optimization, this approach is described
in [18], where practically useful, but untight, bounds on the risk are also derived. More generally, the prob-
lem of relating the empirical risk to chance-constrained feasibility is dealt with in many papers including
[6,7,44,57]. The problem of finding a solution that violates a preset proportion of the empirical constraints
is a non-convex problem that is difficult to solve in general. The formulation in (14) is convex and this
eases the problem of finding a solution. Interestingly, as already noted, this formulation is amenable to tight
evaluations of the risk.
13 For reproducibility, we inform the reader about the mechanism by which q j,k (δ) were generated. Let
δ = (α1, α2, γ1,1, . . . , γ50,1, γ1,2, . . . , γ50,2), where, for k = 1, 2 and j = 1, . . . , 50, αk ∼ U [10, 50]
(i.e., αk is uniformly distributed in [10, 50]), γ j ,k ∼ U [−2.5, 2.5], and all these variables are independent
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Theorem 1 provided the following interval for the risk that the available amounts of
resources are exceeded: 0 ≤ V (x∗

N ) ≤ 0.014.
Further, the manufacturer decides to increase the production and towards this goal

accepts some rise in the risk of running out of resources. To design the new production
strategy, the manufacturer uses the constraints relaxation approach presented in this
section and solves the optimization problem

min
x j≥0, j=1,...,50

ξi≥0,i=1,...,2000

−
50∑

j=1

x j + ρ

N∑

i=1

ξi

subject to :
⎛

⎝max

⎧
⎨

⎩

50∑

j=1

q j,1(δi )x j − a1,
50∑

j=1

q j,2(δi )x j − a2, 0

⎫
⎬

⎭

⎞

⎠
2

≤ ξi

i = 1, . . . , 2000.

(21)

Notice that this is the same as (14) with14

f (x, δ) =
⎛

⎝max

⎧
⎨

⎩

50∑

j=1

q j,1(δ)x j − a1,
50∑

j=1

q j,2(δ)x j − a2, 0

⎫
⎬

⎭

⎞

⎠
2

. (22)

As for the value of ρ, its selection can be tricky, because how ρ impacts on produc-
tion/risk can be difficult to forecast, and we here refer to an approach that can be of
general utility in other applications as well. The manufacturer sets out to solve (21)
for an array of values of ρ. For each value, the production increase is calculated from
the solution, while Theorem 4 gives an interval for the corresponding risk. Selecting
β = 10−6, the intervals that were found for 22 distinct values of ρ are displayed
in Fig. 12 (in the figure, red crosses depict ε(s̃∗

2000) and ε(s̃∗
2000), where the numeri-

cal values are given on the right vertical axis).15 In the same figure, the plot of cost
= −∑50

j=1 x
∗
j,2000 is also profiled (blue dots, whose numerical values are given on the

one of the others. Then, q j ,k (δ) = (α
1
4
k + γ j ,k )

−1, j = 1, . . . , 50, k = 1, 2. Moreover, in the simulation,
we took a1 = a2 = 1.
14 Notice that, strictly speaking, this choice of f (x, δ) does not satisfy Assumption 6. Reason is that
setting to zero f (x, δ) when

∑50
j=1 q j ,1(δ)x j − a1 and

∑50
j=1 q j,2(δ)x j − a2 are negative, as is done

in (22), generates regions with positive volume in the domain in R
50 for x where f (x, δ) = 0.

However, an easy inspection of the derivation of Theorem 4 shows that the requirement of Assump-
tion 6 that, for every x , P{δ : f (x, δ) = 0} = 0 can be relaxed to requiring that, for every x ,
P{δ : x is on the boundary of the constraint { f (x, δ) ≤ 0}} = 0, and the theory goes through unaltered
with the only modifications that, throughout, “ f (x, δ) = 0” becomes “x is on the boundary of the con-
straint { f (x, δ) ≤ 0}”, “ f (x, δ) < 0” becomes “x is in the interior of the constraint { f (x, δ) ≤ 0}”, and
“ f (x, δ) ≥ 0” becomes “x violates or is on the boundary of the constraint { f (x, δ) ≤ 0}”. While we have
preferred in the general presentation the simpler formulation of Assumption 6, this second formulation
leads to zero volume regions in the domain in R

50 for x in the present example.
15 Since the intervals in Fig. 12 are obtained by a repeated application of Theorem 4, the confidence that
ε(s̃∗2000) ≤ V (x∗

2000) ≤ ε(s̃∗2000) for all the 22 values of ρ simultaneously is 1 − 22 · β.
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Fig. 12 Cost = −∑50
j=1 x

∗
j ,2000 vs. risk. In abscissa is the number s̃∗2000 of scenarios for which

f (x∗
2000, δi ) ≥ 0

left vertical axis). A suitable trade-off between production and risk can be obtained
by a direct inspection of the figure. In this case, the value of ρ that gives s̃∗

2000 = 46
was selected, resulting in a 50% increase in production, while the estimated interval
for the risk moved from [0, 0.014] to [0.009, 0.047]. ��

6 Proofs

The proof of Theorem 2 is given first since Theorem 1 easily follows as a corollary of
Theorem 2.

6.1 Proof of Theorem 2

We start by showing that Eq. (9) has two solutions in [0,+∞) and that Eq. (10) has
one solution in [0,+∞).

Denote by ϕk(t), k = 0, 1, . . . , N − 1, the polynomials in the left-hand side of (9)
and by ϕN (t) the polynomial in the left-hand side of (10), which we rewrite here by
making explicit the number H = 3N of terms in the rightmost summations:16

ϕk(t) =
⎧
⎨

⎩

(N
k

)
t N−k − β

2N

∑N−1
i=k

(i
k

)
t i−k − β

2H

∑N+H
i=N+1

(i
k

)
t i−k, 0 ≤ k < N

1 − β
2H

∑N+H
i=N+1

( i
N

)
t i−N , k = N .

(23)

16 The reason for introducing H is that the theorem will be proven in a slightly more general form where
H is any integer ≥ 1 and not just 3N . The choice H = 3N gives satisfactory evaluations in most cases, and
this is why Theorem 2 was stated with H = 3N . However, the extra generality allowed by other values of
H can turn out to be useful to tighten the bounds ε(·) and ε(·) in some cases when N is not too large. This
issue is not further discussed in this paper.
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Let us start with ϕN (t). By construction, ϕN (0) = 1 and ϕN (t) is strictly decreasing
with ϕN (t) → −∞ as t → +∞. Hence, ϕN (t) has a unique root t(N ) in [0,+∞),
and, moreover,

ϕN (t) > 0 for t ∈ [0, t(N )), while ϕN (t) < 0 for t ∈ (t(N ),+∞). (24)

Turn now to ϕk(t), k = 0, 1, . . . , N − 1. Notice first that the following recursive
equation holds

ϕk(t) = − β

2N
+ (k + 1)

∫ t

0
ϕk+1(τ ) dτ, k = 0, 1, . . . , N − 1, (25)

as can be verified by a direct calculation. Using (25), wewant to show that all the ϕk(t),
k = 0, 1, . . . , N − 1, follow the same pattern: a. ϕk(0) = − β

2N < 0; b. with the sole
exception ofϕN−1(t) that is increasing in t = 0+,ϕk(t) is initially decreasing, then it is
increasingwith ϕk(t) > 0 at its maximum, and then decreasing again; c. ϕk(t) → −∞
as t → +∞. Facts a,b,c are obtained by using (25) for k = N − 1 (and recalling the
properties of ϕN (t)), and then proceeding backward, k = N −2, N −3, . . . , 0, where
the only point that deserves an explanation is that ϕk(t) > 0 at its maximum. To show
this, notice that from (23) we have

ϕ0(1) = 1 − β

2N

N−1∑

i=0

1 − β

2H

N+H∑

i=N+1

1 = 1 − β > 0,

and, looking again at (25), ϕ0(1) > 0 would not be possible if it were that ϕk(t) ≤ 0
∀t for some k. From a,b,c, it follows that each ϕk(t), k = 0, 1, . . . , N − 1, has exactly
two roots, t(k) and t(k), in [0,+∞). Moreover,

ϕk(t) < 0 for t ∈ [0, t(k)) ∪ (t(k),+∞), while ϕk(t) > 0 for t ∈ (t(k), t(k)).

(26)

We next prove relation (11). For all positive integers k = 0, 1, . . . define

Fk(v) = P
k{V (z∗k ) ≤ v ∧ s̃∗

k = k}, (27)

where z∗k = Mk(δ1, . . . , δk), s̃∗
k = number of support elements, and ∧ is the “and”

operator. In words, Fk(v) is the probability that, with a sample of k instances of δ, all of
them are of support and the decision has risk no more than v. The Fk’s are generalized
distribution functions, [59]. Functions F0, F1, . . . are different from one problem to
another and, as we shall show, for a given problem the left-hand side of (11) can be
computed from F0, F1, . . ..

123



S. Garatti, M. C. Campi

Start by noting that the events {s̃∗
N = k1} and {s̃∗

N = k2} are not overlapping for
k1 
= k2, so that

P
N {ε(s̃∗

N ) ≤ V (z∗N ) ≤ ε(s̃∗
N )} =

N∑

k=0

P
N {ε(k) ≤ V (z∗N ) ≤ ε(k) ∧ s̃∗

N = k}.

(28)

Focus on one event Sk := {δ1, . . . , δN : ε(k) ≤ V (z∗N ) ≤ ε(k) ∧ s̃∗
N = k} ⊆ ΔN

and, for each sample (δ1, . . . , δN ) ∈ Sk , evaluate the indexes of the δi ’s that correspond
to the support elements. Group together all the samples with the same indexes. In this
way, Sk is partitioned in

(N
k

)
subsets. All these subsets have the same probability

because δ1, . . . , δN are independent and identically distributed. Hence,

P
N {ε(s̃∗

N ) ≤ V (z∗N ) ≤ ε(s̃∗
N )} =

(
N

k

)
P
N {A}, (29)

where A is one of these subsets, say the one where the indexes are 1, 2, . . . , k, that is,

A := {ε(k) ≤ V (z∗N ) ≤ ε(k) ∧ s̃∗
N = k ∧ δ1, . . . , δk are of support}.

We show below that set A is equal to

B := {ε(k) ≤ V (z∗k ) ≤ ε(k) ∧ s̃∗
k = k ∧ z∗k ∈ Zδi , i = k + 1, . . . , N }

up to a zero probability set.
We first show that A ⊆ B up to a zero probability set. Since in A the support

elements are the first k, by the non-degeneracy Assumption 4, z∗N = z∗k up to a zero
probability set. Thus, ε(k) ≤ V (z∗N ) ≤ ε(k) implies ε(k) ≤ V (z∗k ) ≤ ε(k) up to a zero
probability set. Moreover, z∗k ∈ Zδi , i = k + 1, . . . , N , because if z∗k /∈ Zδī

for some
ī ∈ {k + 1, . . . , N }, then z∗N 
= z∗k by property (iii) in Assumption 3. We finally show
that all the δ1, . . . , δk are of support for Mk(δ1, . . . , δk), which gives s̃∗

k = k. Indeed,
if one among δ1, . . . , δk , say δ1, were not of support, then Mk−1(δ2, . . . , δk) = z∗k .
But then, by adding δk+1, . . . , δN – which correspond to Zδi such that z

∗
k ∈ Zδi – one

would obtain MN−1(δ2, . . . , δN ) = z∗k = z∗N by property (ii) in Assumption 3, and,
hence, δ1 would not be of support for MN (δ1, . . . , δN ), which is a contradiction.

Next we show that B ⊆ A up to a zero probability set. Since in B it holds that
z∗k ∈ Zδi , i = k + 1, . . . , N , by property (ii) in Assumption 3 we obtain that z∗N = z∗k
and, thus, relation ε(k) ≤ V (z∗k ) ≤ ε(k) implies that ε(k) ≤ V (z∗N ) ≤ ε(k). We next
show that s̃∗

N = k ∧ δ1, . . . , δk are of support, which is equivalent to say that δ1, . . . , δk
are the only support scenarios for MN (δ1, . . . , δN ), up to a zero probability set. First,
none of the δk+1, . . . , δN can be of support forMN (δ1, . . . , δN ). Indeed, remove one of
these scenarios, say δN , from the sample δ1, . . . , δN . Since δ1, . . . , δN−1 is δ1, . . . , δk
with the addition of δi , i = k + 1, . . . , N − 1, for which z∗k ∈ Zδi , by property (ii)
in Assumption 3 one obtains MN−1(δ1, . . . , δN−1) = z∗k = z∗N . This shows that δN
is not of support. To next show that δ1, . . . , δk are of support for MN (δ1, . . . , δN ) up
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to a zero probability set, proceed by contradiction, and assume that at least one of the
first k scenarios is not of support with non-zero probability. Since δk+1, . . . , δN are
not of support, then the support scenarios for MN (δ1, . . . , δN ) would be with non-
zero probability a strict subset of δ1, . . . , δk . However, since properties (ii)–(iii) in
Assumption 3 imply that the decision obtained from a strict subset of δ1, . . . , δk must
be different from z∗k (indeed, to be the same, by property (iii), theZδi corresponding to
themissing scenariosmust include z∗k ; but, then, by property (ii), adding all themissing
scenarios except one the solution would still be z∗k , contradicting the assumption that
all the δ1, . . . , δk are of support for Mk(δ1, . . . , δk)), then we would have that the
decision obtained from the support scenarios of MN (δ1, . . . , δN ) would be different
from z∗k , and, hence, different from z∗N = MN (δ1, . . . , δN ), with non-zero probability.
This, however, contradicts the non-degeneracy Assumption 4.

We next show that

P
N {B} =

∫

[ε(k),ε(k)]
(1 − v)N−kdFk(v). (30)

Indeed, owing to the independence of δ1, . . . , δN , (1− v)N−k is the conditional prob-
ability that z∗k ∈ Zδi , i = k + 1, . . . , N , given that V (z∗k ) = v and s̃∗

k = k. Then,
recalling the definition of Fk in (27), (30) follows from [59, Chapter II, Section 7,
Equation (17)].

Since P
N {A} = P

N {B} (which follows from the fact that A = B up to a zero
probability set), substituting (30) in (29) and further (29) in (28) yields

P
N {ε(s̃∗

N ) ≤ V (z∗N ) ≤ ε(s̃∗
N )} =

N∑

k=0

(
N

k

) ∫

[ε(k),ε(k)]
(1 − v)N−kdFk(v). (31)

Equation (31) provides the fundamental formula by which P
N {ε(s̃∗

N ) ≤ V (z∗N ) ≤
ε(s̃∗

N )} can be computed from F0, F1, . . .. To proceed in the evaluation of the right-
hand side of (31), we have now to characterize the distributions F0, F1, . . ., which is
done in the following.

If the same argument used to derive (31) is repeated with z∗m ,m = 0, 1, . . ., in place
of z∗N and with 0 in place of ε(s̃∗

N ) and and 1 in place of ε(s̃∗
N ), relation

P
N {0 ≤ V (z∗m) ≤ 1} =

m∑

k=0

(
m

k

) ∫

[0,1]
(1 − v)N−kdFk(v)

is found. Since V (z∗m) takes value in [0, 1], the right-hand side of this equality is
clearly equal to 1, which shows that F0, F1, . . . must satisfy the following generalized
moment conditions:

m∑

k=0

(
m

k

) ∫

[0,1]
(1 − v)m−kdFk(v) = 1, m = 0, 1, . . . . (32)
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Equation (32) provides a characterization of F0, F1, . . . under which the right-hand
side of (31) can be evaluated, and the optimization problem (34) below returns a lower
bound to PN {ε(s̃∗

N ) ≤ V (z∗N ) ≤ ε(s̃∗
N )}. That is,

P
N {ε(s̃∗

N ) ≤ V (z∗N ) ≤ ε(s̃∗
N )} ≥ γ, (33)

with (C denotes the positive cone of generalized distribution functions)

γ = inf
Fk , k=0,1,...

N∑

k=0

(
N

k

) ∫

[ε(k),ε(k)]
(1 − v)N−kdFk(v)

subject to:
m∑

k=0

(
m

k

) ∫

[0,1]
(1 − v)m−kdFk(v) = 1, m = 0, 1, . . .

Fk ∈ C, k = 0, 1, . . . . (34)

The last part of the proof consists in showing that γ ≥ 1−β, fromwhich (11) follows.
Consider the following truncated version of (34):

γH = inf
F0,F1,...,FN+H

N∑

k=0

(
N

k

) ∫

[ε(k),ε(k)]
(1 − v)N−kdFk(v)

subject to:
m∑

k=0

(
m

k

) ∫

[0,1]
(1 − v)m−kdFk(v) = 1, m = 0, 1, . . . , N + H ,

F0, F1, . . . , FN+H ∈ C. (35)

Since in (34) and (35) the cost function only depends on F0, F1, . . . , FN and (35) is
less constrained than (34), we have that

γ ≥ γH . (36)

The dual of (35) is

γ ∗
H = sup

λ0,λ1,...,λN+H

N+H∑

m=0

λm

subject to:
N+H∑

m=k

λm

(
m

k

)
(1 − v)m−k

≤
{(N

k

)
(1 − v)N−k · 1[ε(k),ε(k)](v), k = 0, 1, . . . , N

0, k = N + 1, . . . , N + H ,

v ∈ [0, 1], (37)

where 1 denotes the indicator function. The following derivation, provided for self-
containedness, shows that γH ≥ γ ∗

H (weak duality): for every F0, F1, . . . , FN+H
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feasible for (35) and λ0, λ1, . . . , λN+H feasible for (37) it holds that

N∑

k=0

(
N

k

) ∫

[ε(k),ε(k)]
(1 − v)N−kdFk(v)

=
N∑

k=0

∫

[0,1]

(
N

k

)
(1 − v)N−k · 1[ε(k),ε(k)](v)dFk(v)

≥
N+H∑

k=0

∫

[0,1]

N+H∑

m=k

λm

(
m

k

)
(1 − v)m−kdFk(v)

=
N+H∑

m=0

λm

m∑

k=0

(
m

k

)∫

[0,1]
(1 − v)m−kdFk(v)

=
N+H∑

m=0

λm,

so that taking the inf on the left-hand side and the sup on the right-hand side yields

γH ≥ γ ∗
H . (38)

Inequalities (33), (36), and (38) give

P
N{

ε(s̃∗
N ) ≤ V (z∗N ) ≤ ε(s̃∗

N )
} ≥ γ ≥ γH ≥ γ ∗

H , (39)

from which the theorem can be proven by showing that γ ∗
H ≥ 1 − β.

To show that γ ∗
H ≥ 1− β, we perform the substitution t := 1− v and rewrite (37)

as

γ ∗
H = sup

λ0,λ1,...,λN+H

N+H∑

m=0

λm

subject to:
N+H∑

m=k

λm

(
m

k

)
tm−k

≤
{(N

k

)
t N−k · 1[1−ε(k),1−ε(k)](t), k = 0, 1, . . . , N

0, k = N + 1, . . . , N + H ,

t ∈ [0, 1]. (40)

Consider now

λm = − β

2N
, m = 0, 1, . . . , N − 1,

λm = 1, m = N ,

λm = − β

2H
, m = N + 1, N + 2, . . . , N + H .

(41)
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We want to show that the selection of λm’s in (41) is feasible for (40), which gives
the sought inequality because for these λm’s we have that

∑N+H
m=0 λm = 1 − β, and

γ ∗
H ≥ 1 − β because γ ∗

H is the sup over all the feasible choices of the λm’s.
Consider first the constraints in (40) for k > N . These are trivially satisfied since

for the λm’s in (41) the left-hand side of the inequality is negative for t ∈ [0, 1].
When instead k ≤ N , for the λm’s in (41), the left-hand side of the inequality in (40)
coincides with the polynomial ϕk(t) in (23). Since ϕk(t) ≤ (N

k

)
t N−k , k = 0, 1, . . . , N ,

and since ϕk(t) ≤ 0 for t outside the interval [1− ε(k), 1− ε(k)] (see (26), (24), and
the definitions of ε(k) and ε(k) in Theorem 2), also the constraints in (40) for k ≤ N
are satisfied.

Wrappingup, the selectionofλm’s in (41) is feasible for (40) and, hence,γ ∗
H ≥ 1−β,

which used in (39) gives

P
N {

ε(s̃∗
N ) ≤ V (z∗N ) ≤ ε(s̃∗

N )
} ≥ 1 − β.

This concludes the proof. ��

6.2 Proof of Theorem 1

The optimization problems (3) complemented with a convex tie-break rule as specified
inAssumption 1 define a family ofmapsMm from the sample δ1, . . . , δm to the solution
x∗
m . We show that this family of maps satisfies the assumptions of Theorem 2 so that
Theorem 1 follows from Theorem 2 with the positions z∗m = x∗

m , s̃
∗
m = s∗

m and
Zδ = Xδ , and by noting that Eq. (10) in Theorem 2 can be dropped in the context of
Theorem 1 since N > d implies s̃∗

N < N .
Consider Assumption 3. First of all note that themapsMm are permutation invariant

(point (i) in Assumption 3) because the solution to (3) clearly does not depend on the
order in which constraints are sampled. Consider now (ii) in Assumption 3. In (3) the
solution is selected as the feasible point that achieves the smallest cost cT x and, if a
tie occurs, the tie is broken by minimizing the convex functions t1(x), t2(x), . . .. By
adding extra constraints that are satisfied at x∗

m , the feasibility domain shrinks while x∗
m

remains feasible. Hence, x∗
m remains the optimal solution and (ii) follows. Referring

to (iii), if some δi ’s are added such that at least one δi corresponds to a constraint that
is not satisfied by x∗

m , then the solution x
∗
m has to change and move to a feasible point,

and this gives (iii). Finally, notice that the non-degeneracy Assumption 4 is guaranteed
by Assumption 2. ��

6.3 Proof of Theorem 3

Given a sample δi , i = 1, . . . ,m, the scenario optimization problem (3) defines a
solution x∗

m , possibly after a tie-break rule is applied as indicated in Assumption 1.
Here, we introduce a decision z∗m generated by (3) which consists of x∗

m augmented
with the values of the δi ’s that correspond to active constraints of (3), where each of
these δi ’s is equipped with an integer number that indicates how many times the same
value of δi has been seen (that is, if δ1 is active, δ3 takes on the same value as δ1, and
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no other δi takes on the same value, then the value of δ1 is included in the decision,
followed by the number 2). Hence, formally,

z∗m = (
x∗
m,

{
(δ; n) where δ = δi for some i ∈ {1, . . . ,m} such that Xδi is active

for problem (3), and n = number of times with which the same value δ

appears in (3)
})

,

and Z is the set of all z = (x, {(δ( j); n( j)), j = 1, . . . , p}) for some integer p ≥ 0,
where x ∈ X , δ( j) ∈ Δ, n( j) ∈ N, j = 1, . . . , p. Given a δ, let Zδ = {z ∈ Z :
x ∈ Xδ and Xδ is non-active at x}. Hence, V (z) is defined as the probability of the set
of δ’s such that either x /∈ Xδ or Xδ is active at x . Clearly, V (x∗

m) ≤ V (z∗m) as the
latter also includes active constraints. An easy inspection shows that Assumption 3
holds with these definitions. Moreover, the support elements are here those associated
to the δi ’s such that Xδi is active at x∗

m and it follows immediately that the non-
degeneracy Assumption 4 also holds. Hence, Theorem 2 can be applied to this context
to obtain a result on V (z∗N ). From this result we next show that the statement of
Theorem 3 is obtained. First, we drop in the event of Eq. (11) the left inequality and
write PN {V (z∗N ) ≤ ε(s̃∗

N )} ≥ 1 − β; then, since V (x∗
m) ≤ V (z∗m), we further obtain

P
N {V (x∗

N ) ≤ ε(s̃∗
N )} ≥ 1 − β, or, equivalently, PN {V (x∗

N ) > ε(s̃∗
N )} ≤ β, from

which

P
N ({V (x∗

N ) > ε(s̃∗
N )} and condition C holds

) ≤ β.

On the other hand, condition C implies that s̃∗
N in Theorem 2 (number of active

constraints) coincides with s∗
N in Theorem 1 (number of support constraints). This

gives (13). Moreover, if N > d, then we certainly have s̃∗
N = s∗

N ≤ d, so that
the polynomial equation (10) in Theorem 2 can be dropped as it never happens that
s̃∗
N = N . This concludes the proof. ��

6.4 Proof of Theorem 4

Let x∗
m, ξ∗

i,m , i = 1, . . . ,m, be the solution of (14) with m in place of N . The abstract
theory of Sect. 5 does not apply directly to x∗

m, ξ∗
i,m , i = 1, . . . ,m, and we have first

to define the concept of decision z∗m . This is x∗
m augmented with the values of the

δi ’s that correspond to constraints f (x, δi ) ≤ 0 that are violated at the solution (i.e.,
f (x∗

m, δi ) > 0), where each of these δi ’s is equipped with an integer number that
indicates how many times the same value of δi has been seen. Formally,

z∗m = (
x∗
m,

{
(δ; n) where δ = δi for an i ∈ {1, . . . ,m} such that ξ∗

i,m > 0, and

n = number of times with which the same value δ appears in (14)withm

in place of N
})

,

and Z is the set of all z = (x, {(δ( j); n( j)), j = 1, . . . , p}) for some integer p ≥ 0,
where x ∈ X , δ( j) ∈ Δ, n( j) ∈ N, j = 1, . . . , p. We take as Zδ the set of z ∈ Z for
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which f (x, δ) ≤ 0 and (δ( j); n( j)), j = 1, . . . , p, are arbitrary both in number (i.e.,
p is any positive integer) and value. Correspondingly, V (z) = V (x, {(δ( j); n( j)), j =
1, . . . , p}) is defined as the probability of the set of δ’s such that x /∈ Xδ . Assumptions 3
and 4 are satisfied in this context, as we next show. Condition (i) in Assumption 3 is
clearly true. To show (ii), argue as follows. If z∗m ∈ Zδi for i = m + 1, . . . ,m + n,
then f (x∗

m, δi ) ≤ 0 for i = m+1, . . . ,m+n. Hence, augmenting the solution of (14)
with m in place of N with ξi = 0 for i = m + 1, . . . ,m + n gives a feasible point x∗

m ,
ξi = ξ∗

i,m , i = 1, . . . ,m, ξi = 0, i = m + 1, . . . ,m + n for (14) with m + n in place
of N that attains the same value as the optimal value of (14) with m in place of N . It
is claimed that this is the optimal solution of (14) with m + n in place of N . Indeed,
if a better solution x̄, ξ̄i , i = 1, . . . ,m + n existed for (14) with m + n in place of N ,
then x̄, ξ̄i , i = 1, . . . ,m would be superoptimal for (14) with m in place of N since
the dropped ξ̄i , i = m+1, . . . ,m+n give a non-negative contribution. To the optimal
solution x∗

m+n = x∗
m , ξ

∗
i,m+n = ξ∗

i,m , i = 1, . . . ,m, ξ∗
i,m+n = 0, i = m+1, . . . ,m+n

of (14) with m + n in place of N there corresponds z∗m+n = (x∗
m+n, {(δ; n), where

δ = δi for an i ∈ {1, . . . ,m + n} such that ξ∗
i,m+n > 0, and n = number of times with

which the same value δ appears in (14) with m + n in place of N }). This z∗m+n equals
(x∗

m, {(δ; n), where δ = δi for an i ∈ {1, . . . ,m} such that ξ∗
i,m > 0, and n = number of

times with which the same value δ appears in (14) withm in place of N }), which is the
same as z∗m , showing the validity of (ii). Condition (iii) in Assumption 3 instead easily
follows from the fact that if z∗m /∈ Zδī

for some ī ∈ {m + 1, . . . ,m + n}, then either
x∗
m+n has to move to a new location where f (x, δī ) ≤ 0 (and therefore z∗m+n 
= z∗m) or

δī has to be added to the solution z
∗
m to obtain z∗m+n (and, again z

∗
m+n 
= z∗m). Turn now

to assess the non-degeneracy Assumption 4. Consider optimization problem (14) with
m in place of N and eliminate a δi such that f (x∗

m, δi ) < 0. The decision associated
with the remaining m − 1 δi ’s is the same decision as that associated with the original
optimization problem (14) with m in place of N because the constraint corresponding
to the eliminated δi is non-active. Hence, none of the δi such that f (x∗

m, δi ) < 0 is
of support. We further claim that all δi ’s such that f (x∗

m, δi ) ≥ 0 are of support with
probability 1. Eliminate any one of them from the optimization problem (14) with
m in place of N . If the eliminated one is such that f (x∗

m, δi ) > 0, then the decision
clearly changes, so that the δi is of support. Suppose instead that the eliminated one
is such that f (x∗

m, δi ) = 0 and, for the sake of contradiction, suppose also that the
decision does not change. It follows that x∗

m is obtained by an optimization problem
that does not contain δi and, due to the independence of δ1, δ2, . . . , δm , it is easily
seen that Assumption 6 implies that f (x∗

m, δi ) = 0 only happens with probability 0.
Hence, with probability 1 the δi ’s such that f (x∗

m, δi ) ≥ 0 are of support, and they give
the original decision since the simultaneous elimination of the other δi ’s for which
f (x∗

m, δi ) < 0 (non-active) does not change the decision. This means that the problem
is non-degenerate.

Since all conditions of the abstract theory are satisfied, Theorem 2 applies. In the
present context,V (z∗N ) = V (x∗

N ) and s̃∗
N =number of the δi ’s forwhich f (x∗

N , δi ) ≥ 0,
which concludes the proof of the theorem. ��
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7 Conclusions

In recent years, the stochastic optimization community has witnessed a surge of inter-
est for methods that are based on knowledge obtained from data. This is a timely trend
in the current world where data analytics is gaining importance owing to the avail-
ability of increasing amounts of data and the growth of computational power for their
treatment. Various approaches are making their way as emerging technologies in this
context. One is data-driven Distributionally Robust Optimization (DRO) where the
distribution of uncertainty is estimated from the data. This approach is quite flexible
because availing of a distributional description of uncertainty allows one to apply var-
ious methods and risk measures, while it has been also shown that the computational
complexity attendant to DROmethods can bemaintained to levels of tractability under
various conditions. The disadvantage of DRO is that it deals with uncertainty explic-
itly, which can be prohibitive in applications involving complex systems. In contrast,
the scenario approach deals with data directly by considering the impact they have
on the optimization problem, regardless of the underlying mechanisms that govern
the generation of uncertainty. Scenario algorithms include optimizing over the set of
feasibility of all observations, as well as relaxed schemes where an increase of risk is
traded for an improvement of the performance. The core achievement of this paper is
showing that there exists a profound, and quite general, link between two concepts:
risk, which is important to the user to judge the danger of constraint violation, and
complexity, a quantity that can be measured from observations. Exploiting this link
furnishes fundamental tools to evaluate the risk of scenario solutions, so complement-
ing the heuristic use of data in decision-making with a solid theory that enables one
to certify the dependability of the decision.

A MATLAB code

The following MATLAB code returns ε(k) and ε(k) for user assigned k, N , and β.

function [epsL, epsU] = epsLU(k,N,bet)

alphaL = betaincinv(bet,k,N-k+1);

alphaU = 1-betaincinv(bet,N-k+1,k);

m1 = [k:1:N];

aux1 = sum(triu(log(ones(N-k+1,1)*m1),1),2);

aux2 = sum(triu(log(ones(N-k+1,1)*(m1-k)),1),2);

coeffs1 = aux2-aux1;

m2 = [N+1:1:4*N];

aux3 = sum(tril(log(ones(3*N,1)*m2)),2);

aux4 = sum(tril(log(ones(3*N,1)*(m2-k))),2);

coeffs2 = aux3-aux4;

t1 = 1-alphaL;

t2 = 1;
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poly1 = 1+bet/(2*N)-bet/(2*N)*sum(exp(coeffs1 - (N-m1’)*log(t1)))...

-bet/(6*N)*sum(exp(coeffs2 + (m2’-N)*log(t1)));

poly2 = 1+bet/(2*N)-bet/(2*N)*sum(exp(coeffs1 - (N-m1’)*log(t2)))...

-bet/(6*N)*sum(exp(coeffs2 + (m2’-N)*log(t2)));

if ((poly1*poly2) > 0)

epsL = 0;

else

while t2-t1 > 1e-10

t = (t1+t2)/2;

polyt = 1+bet/(2*N)-bet/(2*N)*sum(exp(coeffs1 - (N-m1’)*log(t)))...

-bet/(6*N)*sum(exp(coeffs2 + (m2’-N)*log(t)));

if polyt > 0

t1=t;

else

t2=t;

end

end

epsL = 1-t2;

end

t1 = 0;

t2 = 1-alphaU;

poly1 = 1+bet/(2*N)-bet/(2*N)*sum(exp(coeffs1 - (N-m1’)*log(t1)))...

-bet/(6*N)*sum(exp(coeffs2 + (m2’-N)*log(t1)));

poly2 = 1+bet/(2*N)-bet/(2*N)*sum(exp(coeffs1 - (N-m1’)*log(t2)))...

-bet/(6*N)*sum(exp(coeffs2 + (m2’-N)*log(t2)));

if ((poly1*poly2) > 0)

epsL = 0;

else

while t2-t1 > 1e-10

t = (t1+t2)/2;

polyt =1+bet/(2*N)-bet/(2*N)*sum(exp(coeffs1-(N-m1’)*log(t)))...

-bet/(6*N)*sum(exp(coeffs2 + (m2’-N)*log(t)));

if polyt > 0

t2=t;

else

t1=t;

end

end

epsU = 1-t1;

end

end
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