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1. INTRODUCTION

System identification deals with the problem of building
mathematical models of dynamical systems from observed
data (Ljung [1999], Söderström and Stoica [1988]). It is
widely recognised that a model is of limited value if no
quality tag which tells us the accuracy of the model, is
supplied. It is desirable that the method used for assess-
ment of the model accuracy provides an evaluation of the
system uncertainties under general conditions. Moreover,
since there will always only be a finite amount of data
available for evaluation of model uncertainties, the uncer-
tainty description must be valid when the number of data
points is finite.

In this paper we derive an algorithm for tracking of param-
eters of a time varying system. Under the assumption that
an upper bound on the variability of the system param-
eters is known, the algorithm returns a confidence region
that tracks the true parameter variation through time. At
each instant of time the confidence region is guaranteed to
contain the true parameter with a user chosen probability.
This holds true irrespective of the noise level corrupting
the observations, and no prior knowledge about the noise
process is required for implementation of the algorithm.

The algorithm constructed in this paper builds on previous
work on time-invariant system identification (Campi and
Weyer [2005, 2006a,b]), along the LSCR (Leave-out Sign-
dominant Correlation Regions) approach.

The paper is organised as follows. In the next section we
give a brief overview of the LSCR algorithm for time-
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invariant systems, before we extend it to time-varying
systems in Section 3. Simulation results demonstrating the
method are presented in Section 4.

2. LSCR FOR TIME-INVARIANT SYSTEMS

In this section we briefly review the LSCR algorithm for
time-invariant systems.

2.1 Data generating system and predictors

The data generating system is given by

yt = φT
t θ0 + wt (1)

where

φt = [−yt−1, . . . ,−yt−na
, ut−1, . . . , ut−nb

]T

θ0 = [a0
1, . . . , a

0
na

, b0
1, . . . , b

0
nb

]T

Here yt and ut are the output and input respectively and
wt is the noise affecting the system.

Assumptions

(1) The user can choose the input signal ut, and the
choice of ut does not affect wt. That is ut and wt

are independent.
(2) The model orders na and nb are known.

There are no assumptions on wt. No upper bound on its
magnitude is assumed, and it is allowed to have non-zero
mean and any autocorrelation properties.

As a predictor we use

ŷt(θ) = φ
T
t θ

where
θ = [a1, . . . , ana

, b1, . . . , bnb
]T

and the prediction error is given by ǫt(θ) = yt − ŷt(θ).
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2.2 Main idea

The LSCR algorithm introduced by Campi and Weyer
[2005] generates a region in parameter space that has a
guaranteed probability of containing the true parameter
θ0 using a finite number of data points N . The main idea is
to compute empirical estimates of the correlation between
the prediction error ǫt(θ) and ut−k using different subsets
of the data. If ut is chosen as an independent sequence
symmetrically distributed around zero, one observes that
for θ = θ0, ǫt(θ)ut−k = wtut−k is also an independent
sequence symmetrically distributed around zero. Hence,
for the true value θ = θ0 it is very unlikely that nearly
all of the estimates of the correlation will be positive or
that nearly all of them will be negative. The values of
θ for which this occurs are therefore excluded from the
confidence set, hence the name Leave-out Sign-dominant
Correlation Regions.

2.3 The LSCR algorithm

Input design. Let ut, t = 1−n, . . . , N , be an iid sequence
of random variables symmetrically distributed around 0,
and let n = na + nb be the number of parameters in the
parameter vector θ.

LSCR Algorithm.

(S1′) Compute the prediction error

εt(θ) = yt − ŷt(θ) = yt − φT
t θ t = 1, . . . , N

(S2′) Form the vector

ξt = [ut−1, . . . , ut−n]T , t = 1, . . . , N,

of length n = na + nb and compute the vector

f t(θ) = ξtǫt(θ), t = 1, . . . , N.

(S3′) Select an integer M and construct M binary ({0, 1}-
valued) stochastic strings of length N as follows: Let
h0,1, . . . , h0,N = 0, . . . , 0 be the string of all zeros. Ev-
ery element of the remaining strings takes the values
0 or 1 each with probability 0.5, and the elements
are independent of each other. Moreover, each string
is constructed independently of previous strings.
Name the constructed non-zero strings h1,1, . . . , h1,N ;
h2,1, . . . , h2,N ;. . . ; hM−1,1, . . . , hM−1,N . Compute

gi(θ) =
N

∑

t=1

hi,t · f t(θ)

=

N
∑

t=1

hi,t · ξtǫt(θ), i = 0, . . . , M − 1.

Note that g0(θ) ≡ 0.
(S4′) Let gk

i (θ) denote the kth element of the vector
gi(θ), k = 1, . . . , n. Select an integer q in the interval

[1, M/2n]. Construct the regions Θ̂
k

N such that at
least q of the gk

i (θ) functions are strictly larger than
gk
0 (θ) ≡ 0 and at least q are strictly smaller than

gk
0 (θ) ≡ 0. The confidence set is given by

Θ̂N =

n
⋂

k=1

Θ̂
k

N . (2)

Point (S4′) of the algorithm implements the main idea

described in Section 2.2. That is, for θ = θ0 the functions

gk
i (θ) =

∑N

t=1
hi,t ·ut−kǫt(θ) take on positive and negative

values at random since gk
i (θ0) =

∑N

t=1
hi,t · ut−kwt.

It is therefore unlikely that only a small fraction of
them are positive or negative, and the algorithm excludes
the regions in parameter space where this happens. The

probability that θ0 belongs to each of the Θ̂
k

N is given in
the next theorem.

Theorem 1. Consider a k ∈ {1, . . . , n} and assume that
Pr{gk

i (θ0) = 0} = 0, i 6= 0. Then,

Pr{θ0 ∈ Θ̂
k

N} = 1 − 2q/M,

where Θ̂
k

N is constructed in point (S4′) of the algorithm
above, and q and M are introduced in points (S4′) and
(S3′) respectively.

Since Pr{θ0 /∈ Θ̂
k

N} = 2q/M for every k ∈ {1, . . . , n}, it

follows that Pr{θ0 /∈
⋃n

k=1
Θ̂

k

N} ≤ 2nq/M . Note that the

latter is an inequality since the events {θ0 /∈ Θ̂
k

N}, k =
1, . . . , n may overlap. It follows that

Corollary 2. Under the assumptions in Theorem 1,

Pr{θ0 ∈ Θ̂N} ≥ 1 − 2nq/M,

where Θ̂N is given by (2).

Theorem 1 and Corollary 2 are valid regardless of the
noise characteristics. The size of the confidence region
will, however, depend on the noise level, such that the
regions become larger when the noise level increases. The
LSCR algorithm automatically adjusts for an increased
noise level in (S4′) by keeping more values of θ in the
confidence set.

3. LSCR FOR TIME-VARYING SYSTEM

In this section, we extend the LSCR algorithm described
above to provide confidence sets for the parameters of a
time-varying system.

3.1 Data generating system

The data generating system is now given by

yt = φT
t θ0

t + wt (3)

where

φt = [−yt−1, . . . ,−yt−na
, ut−1, . . . , ut−nb

]T

θ0

t = [a0
1,t, . . . , a

0
na,t, b

0
1,t, . . . , b

0
nb,t]

T

This is the same as (1) except that the true parameter θ0
t

varies with time.

The assumptions on the noise, wt, and input, ut, are
the same as in the time-invariant case. In particular, we
assume no knowledge about the noise.

We assume that the variation in θ0
t is bounded by |θ0

t+1 −

θ0

t | ≤ K where K =
[

∆a0
1, . . . ,∆a0

na
, ∆b0

1, . . . ,∆b0
nb

]T
, | · |

denotes element-wise absolute value and ≤ represents an
element-wise comparison. For example, ∆a0

1 is the magni-
tude of the maximum change of the true a0

1 parameter
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between time steps. With this assumption, we aim to
find a region Θ̂t, that contains the true parameter of the
time-varying system at time t with a given user chosen
probability.

3.2 Generalisations for time-varying systems

The algorithm for time-invariant systems works because
for the true parameter, θ = θ0, εt(θ

0)ut−k = wtut−k.

Thus, gk
i (θ0) =

∑N

t=1
hi,twtut−k. These functions have the

desired ordering property exploited in step (S4′) because
wt and ut−k are independent and ut−k is iid and symmet-
rically distributed around 0. For time-varying systems, θ0

N

is the true parameter at time N and εt(θ
0

N )ut−k 6= wtut−k

for t 6= N . Instead we have εt(θ
0
t )ut−k = wtut−k and the

functions
N

∑

t=1

hi,tεt(θ
0

t )ut−k (4)

have the desired ordering property. As the goal is to
find a confidence set for θ0

N at time N we rewrite
∑N

t=1
hi,tεt(θ

0

t )ut−k in terms of
∑N

t=1
hi,tεt(θ

0

N )ut−k and
an extra term Ck

i,N that can be bounded based on the
maximum parameter change K.

Additionally, due to the time-varying nature of the system,
data from the distance past should be given less weight so
the algorithm can track parameter changes. The standard
approach, as in Ljung and Söderström [1983], is to intro-
duce a forgetting factor, λ < 1, such that the above sum
in (4) becomes

fk
i,N =

N
∑

t=1

λN−thi,tεt(θ
0

t )ut−k =

N
∑

t=1

λN−thi,twtut−k (5)

which still possesses the desired ordering property.

Next we express εt(θ
0

t ) in terms of εt(θ
0

N ). The predictor
and prediction error are

ŷt(θ) = φ
T
t θ

εt(θ) = yt − ŷt(θ) = y(t) − φT
t θ

The prediction error εt(θ
0

t ) = wt can be rewritten as
follows

εt(θ
0
t ) = εt(θ

0
N ) + εt(θ

0
t ) − εt(θ

0
N )

= εt(θ
0
N ) + φT

t (θ0
N − θ0

t )

= εt(θ
0

N ) + φT
t





N−1
∑

j=t

(θ0

j+1 − θ0

j)





and multiplication with the input ut−k gives,

wtut−k =



εt(θ
0

N ) + φT
t





N−1
∑

j=t

(θ0

j+1 − θ0

j)







ut−k

We now use this to expand (5)

fk
i,N =

N
∑

t=1

hi,tλ
N−tεt(θ

0
t )ut−k

=

N
∑

t=1

hi,tλ
N−tεt(θ

0
N )ut−k+

N
∑

t=1

hi,tλ
N−tφT

t





N−1
∑

j=t

(θ0

j+1 − θ0

j)



 ut−k

=gk
i,N (θ0

N ) + Ck
i,N (6)

where

gk
i,N (θ) =

N
∑

t=1

hi,tλ
N−tεt(θ)ut−k (7)

and

Ck
i,N =

N
∑

t=1

hi,tλ
N−tφT

t





N−1
∑

j=t

(θ0

j+1 − θ0

j)



 ut−k (8)

Note that gk
i,N(θ) can be evaluated for an arbitrary θ,

and that Ck
i,N can be bounded due to the assumption

|θ0

j+1 − θ0

j | ≤ K.

The goal is to find recursive algorithms for computing
gk

i,N (θ) and C̄k
i,N , where C̄k

i,N is a bound such that C̄k
i,N ≥

|Ck
i,N |. This means that gk

i,N+1(θ) and C̄k
i,N+1 should be

computed from gk
i,N (θ) and C̄k

i,N respectively, using a fixed
finite memory and a fixed finite number of computations
per time step.

3.3 Recursive algorithm for time-varying systems

Below we give the recursive LSCR algorithm. The detailed
derivation is given in Appendix A. In the algorithm,

C̄i,N = [C̄1
i,N , . . . , C̄n

i,N ]T

and Di,N is an n × n matrix used in the calculation of
C̄i,N . (S0) is an initialisation step, and the the following
steps (S1) to (S4) are repeated for every ’new’ data point
(which we denote by t = N + 1).

LSCR algorithm for time-varying systems

(S0) Let

gi,0(θ) = 0 i = 1, . . . , M − 1

Ci,0(θ) = 0 i = 1, . . . , M − 1

Di,0(θ) = 0 i = 1, . . . , M − 1

(S1) Compute the predictor and prediction error

ŷN+1(θ) = φT
N+1θ

εN+1(θ) = yN+1 − ŷN+1(θ)

where

φN+1 = [−yN , . . . ,−yN+1−na
, uN , . . . , uN+1−nb

]T

θ = [a1, . . . , ana
, b1, . . . , bnb

]T

(S2) Form the vector

ξN+1 = [uN , . . . , uN+1−n]T

(S3) Draw hi,N+1 = 0 or 1 with probability 0.5 each, for
i = 1, . . . , M − 1, and calculate the vector functions
gi,N+1(θ) and Ci,N+1 for i = 1, . . . , M −1 as follows:
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gi,N+1(θ) = λgi,N (θ) + hi,N+1εN+1(θ)ξN+1

Di,N+1 = λDi,N + λhi,NφNξT
N+1

C̄i,N+1 = λC̄i,N + |Di,N+1|
T K

where | · | denotes element-wise absolute value. Note
that g0,N+1(θ) ≡ 0

(S4) Find the region Θ̂
k

N+1 such that for all θ ∈ Θ̂
k

N+1

at least q of the empirical correlation estimates
gk

i,N+1(θ) satisfy gk
i,N+1(θ)−C̄k

i,N+1 < gk
0,N+1(θ) and

at least q satisfy gk
i,N+1(θ) + C̄k

i,N+1 > gk
0,N+1(θ),

where gk
i,N+1(θ) and C̄k

i,N+1 are the kth elements of

gi,N+1(θ) and C̄i,N+1 respectively. The confidence
set for t = N + 1 is given by

Θ̂N+1 =

n
⋂

k=1

Θ̂
k

N+1

3.4 Properties of the algorithm

The functions, fk
i,N+1, from (6) have the required ordering

property exploited in the LSCR algorithm. For the true
parameter value θ0

N+1 at time N + 1 we have that

gk
i,N+1(θ

0

N+1) − C̄k
i,N+1 ≤ fk

i,N+1 ≤ gk
i,N+1(θ

0

N+1) + C̄k
i,N+1

A confidence set is then constructed in the same manner
as for time-invariant LSCR by excluding those regions in
parameter space where gk

i,N+1(θ
0
N+1) − C̄k

i,N+1 takes on

positive values too many times and where gk
i,N+1(θ

0

N+1)+

C̄k
i,N+1 takes on negative values too many times.

Thus, the region constructed above will have at least
the same guaranteed probability of containing the true
parameter at any time t as stated in Theorem 1 and
Corollary 2. These results are now restated in the context
of the recursive algorithm for time-varying systems.

Theorem 3. Under the same assumptions as in Theorem 1,
for any given time t, the confidence regions constructed in
(S4) of the recursive LSCR algorithm in Section 3.3 have
the properties that

Pr{θ0

t ∈ Θ̂
k

t } ≥ 1 − 2q/M

and
Pr{θ0

t ∈ Θ̂t} ≥ 1 − 2nq/M

4. SIMULATION EXAMPLE

The following first-order system was simulated

yt = −a0
t yt−1 + b0

t ut−1 + wt (9)

For this example, wt was white Gaussian noise with a
variance of 0.16. This is provided for completeness and not
required by the algorithm (e.g. the noise could be biased
and/or coloured). The input ut was white Gaussian with
variance of 4. The simulation was run for t = 1, . . . , N
where the total number of data points was N = 1000. The
parameters a0

t and b0
t varied linearly according to

a0
t =

−0.2

N
t − 0.5

b0
t =

−0.2

N
t + 0.5

−1 −0.9 −0.8 −0.7 −0.6 −0.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

a

b

Fig. 1. An 90% confidence region for (a0, b0) at t = 1000
(blank region). The system trajectory is shown as the
solid line with the final parameter indicated by ◦.
λ = 0.99, K = [3 × 10−4 3 × 10−4]T .

Thus the absolute value of the actual parameter change at
each time step was

K0 =

[

|∆a0|
|∆b0|

]

=

[

2 × 10−4

2 × 10−4

]

In this simulation we assumed the parameter change was
50% larger than the actual change. That is, K = [3 ×
10−4 3 × 10−4]T .

Intergers q = 3 and M = 120 were selected such that the
probability the region contained the true parameter was
1 − 2nq

M
= 1 − 2×2×3

120
= 0.9. A forgetting factor λ = 0.99

was chosen and the confidence set was calculated at each
time step.

Figure 1 shows the system trajectory and the 90% con-
fidence region at t = 1000. Figure 2 represents a one
dimensional confidence interval for the parameters a0

t and
b0
t by considering the width and height of the confidence

region at the true parameter location. Time instants where
the true parameter value did not belong to the confidence
region are marked with an × at the bottom of the plot.

In this simulation, the parameter was always changing sig-
nificantly less than the bound assumed by the algorithm.
By selecting a bound equal to the actual change, that is
K = [2× 10−4 2× 10−4]T , the confidence set was, as ex-
pected, reduced as shown in Figure 3. The interval at each
time was also smaller, and there were more times where
the confidence set did not contain the true parameter as
expected. See Figure 4.

The forgetting factor, λ, is a tradeoff between noise sup-
pression and fast tracking of the parameters. The “effec-
tive” number of past data points used in the algorithm
is 1

1−λ
(see Ljung and Söderström [1983]) and hence the

number of “effective” data points increases with λ. With
λ = 0.995, the algorithm uses approximately 200 data
points to calculate the confidence set. Figure 5 shows
the confidence region at t = 1000, with λ = 0.995. As
expected, due to the larger number of “effective” data
points, the confidence region seems biased towards past
parameter values resulting in a larger confidence region.
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Fig. 2. The true parameter trajectories and 90% confidence
region for a0 (bottom lines) and b0 (top lines) as time
progresses. Time instants where the region doesn’t
include the true parameter are marked with an ×.
λ = 0.99, K = [3 × 10−4 3 × 10−4]T .

−1 −0.9 −0.8 −0.7 −0.6 −0.5
0

0.05
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0.15
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0.35
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0.45
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b

Fig. 3. An 90% confidence region for (a0, b0) at t = 1000
(blank region). The system trajectory is shown as the
solid line with the final parameter indicated by ◦.
λ = 0.99, K = [2 × 10−4 2 × 10−4]T .

A larger λ also means that the region changes slower as
demonstrated by Figure 6.

Alternatively, when λ is too small, the interval becomes
noisy and fluctuates rapidly between time points. The case
when λ = 0.95 is equivalent to using just 20 data points to
calculate the confidence set. This situation was simulated
and the result is shown in Figure 7.

5. CONCLUSION

In this paper, we have derived an algorithm for track-
ing the parameters of time-varying systems by assuming
that an upper bound on the parameter variation is avail-
able. The algorithm delivers guaranteed confidence regions
without any prior knowledge of the noise.
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Appendix A. ALGORITHM DERIVATION

The term gk
i,N (θ) in (7), can be computed as follows.
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Fig. 6. The true parameter trajectories and 90% confidence
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time progresses. Regions that do not include the true
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Fig. 7. The true parameter trajectories and 90% confidence
region for a0 (bottom lines) and b0 (top lines) as
time progresses. Regions that do not include the true
parameter are marked with an ×. λ = 0.95, K = [3×
10−4 3 × 10−4]T .

gk
i,N (θ) =

N
∑

t=1

hi,tλ
N−tεt(θ)ut−k

gk
i,N+1(θ) =

N+1
∑

t=1

hi,tλ
N+1−tεt(θ)ut−k

= λ
N

∑

t=1

hi,tλ
N−tεt(θ)ut−k+

hi,N+1εN+1(θ)uN+1−k

= λgk
i,N (θ) + hi,N+1εN+1(θ)uN+1−k (A.1)

The term Ck
i,N in (8), can be computed as follows

Ck
i,N =

N−1
∑

t=1

hi,tλ
N−tφT

t





N−1
∑

j=t

(θ0

j+1 − θ0

j)



 ut−k

=
N−1
∑

j=1

(θ0

j+1 − θ0

j)
T

j
∑

t=1

hi,tλ
N−tφtut−k

Ck
i,N+1 =

N
∑

j=1

(θ0

j+1 − θ0

j)
T

j
∑

t=1

hi,tλ
N+1−tφtut−k

= λ

N−1
∑

j=1

(θ0

j+1 − θ0

j )
T

j
∑

t=1

hi,tλ
N−tφtut−k+

(θ0

N+1 − θ0

N )T

N
∑

t=1

hi,tλ
N+1−tφtut−k

= λCk
i,N + (θ0

N+1 − θ0

N )T Dk
i,N+1

= λCk
i,N + Dk

i,N+1

T
(θ0

N+1 − θ0

N )

where

Dk
i,N+1 =

N
∑

t=1

hi,tλ
N+1−tφtut−k

= λ

N−1
∑

t=1

hi,tλ
N−tφtut−k + hi,NλφNuN−k

= λDk
i,N + λhi,NφNuN−k

The maximum possible value of Ck
i,N+1 at any given

time is determined from the largest value of the product

Dk
i,N+1

T
(θ0

N+1 − θ0
N ). We know that |θ0

N+1 − θ0
N | ≤ K

and the elements can have either sign to maximise the
product. Thus

|Dk
i,N+1

T
(θ0

N+1 − θ0
N )| ≤ |Dk

i,N+1|
T K

For these new terms, a bound on Ck
i,N+1 is given by

|Ck
i,N+1| ≤ C̄i,N+1

where
C̄k

i,N+1 = λC̄k
i,N + |Dk

i,N+1|
T K (A.2)

Thus corresponding to the true value θ = θ0
N+1

gk
i,N (θ0

N+1) − C̄k
i,N+1 ≤ fk

i,N+1 ≤ gk
i,N+1(θ

0

N+1) + C̄k
i,N+1

where fk
i,N+1 is given in (6).

Let

gi,N (θ) = [g1
i,N(θ), . . . , gn

i,N(θ)]T

C̄i,N = [C̄1
i,N , . . . , C̄n

i,N ]T

Di,N = [D1
i,N , . . . ,Dn

i,N ]T

It follows that (A.1) and (A.2) can be written in vector
notation as follows

gi,N+1(θ) = λgi,N (θ) + hi,N+1εN+1(θ)ξN+1

Di,N+1 = λDi,N + λhi,NφNξT
N+1

C̄i,N+1 = λC̄i,N + |Di,N+1|
T K
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