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Abstract— The scenario approach is a broad methodology for
data-driven optimization that has found numerous applications
in systems and control design. It consists in making a decision
that is optimal with respect to a given criterion, while also
being consistent with a sample of observations that are called
the “scenarios”. More precisely, each scenario corresponds
to a constraint and the solution is sought in the domain of
feasibility of all scenario constraints. The level of robustness
of the scenario solution is quantified by the “risk”, which is
the probability that the scenario solution is not consistent with
a new, out-of-sample, scenario. Recent studies have unveiled
a profound link between the risk and the complexity of the
solution (defined as the minimum amount of scenarios that is
needed to reconstruct the solution). In this work, we leverage
these results to introduce a new learning scheme where the size
of the scenario sample is iteratively learned during optimization
as a function of the complexity of the current solution. This new
scheme implies a better exploitation of the information, so that
one achieves a prescribed level of risk while saving many data
as compared to standard scenario schemes. This paper presents
the theoretical study that proves this result and illustrates it
through a numerical example.

I. INTRODUCTION

Scenario optimization is a data-driven paradigm for
decision-making in the presence of uncertainty. The proto-
type scenario optimization problem is as follows:

min
x∈X

c(x)

subject to: x ∈
⋂

i=1,...,N

Xδi , (1)

where x ∈ Rd is a vector of optimization variables, c(x) is
a convex cost function, X ⊆ Rd is a convex set, and Xδi
are instances of convex constraint sets from a family {Xδ}
parameterized by the uncertainty parameter δ. Parameter δ
is modeled as a random element from a probability space
(∆,D,P) and δi, i = 1, . . . , N , is an independent random
sample of δ values. The solution to (1) is called “scenario
solution” and is denoted by x∗N .
The idea underlying (1) is that (∆,D,P), which represents
the mechanism through which uncertainty is generated, is
unknown to the user. The only available source of knowledge
on uncertainty is given by δ1, δ2, . . . , δN , which are referred
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to as the “scenarios” and have to be thought of as data
retrieved from experiments. The scenario solution x∗N is the
minimizer of the cost function c(x) within the domain of x
values that are feasible for the scenarios at hand.
The paradigm introduced by (1) is very general and it
encompasses problems from various fields. In fact, since its
introduction in the seminal paper [6] the scenario approach
has obtained increasing recognition and, in systems and
control, instances of (1) have found application in various
methods for control system design [7], [14], [21], [26],
[22], [2], system identification [30], [9], [29], [19], and
machine learning [8], [10], [24], [17]. Moreover, the theoret-
ical development of the approach has benefitted from many
contributions along various directions, [1], [12], [27], [15],
[23], [31], [16].
When applied in practice, the scenario solution will face new
instances of uncertainty, different from those used in (1), and
a fundamental question for its use is how guaranteed x∗N is
in relation to the satisfaction of the constraints x ∈ Xδ for
out-of-sample instances of δ ∈ ∆. The following notion of
risk formalizes this idea.

Definition 1 (risk): The risk of a given x ∈ X is defined
as V (x) = P{δ ∈ ∆ : x /∈ Xδ}. The risk of the scenario
solution x∗N is V (x∗N ). �
It is important to remark that the risk cannot be directly
computed because it depends on the probability P, which
is unknown. The studies in [6], [7], [11] have pioneered a
theory that allows one to link the sample size N to V (x∗N ).
Specifically, the risk of the scenario solution V (x∗N ) is a
random variable defined over the product1 probability space
(∆N ,DN ,PN ) because of the dependence of x∗N on the
random sample δ1, . . . , δN and the result of [11] states
that V (x∗N ) is bigger than ε with a probability which is
always upper-bounded by a Beta distribution according to
the following formula:

PN{V (x∗N ) > ε} ≤
d−1∑
i=0

(
N

i

)
εi(1− ε)N−i. (2)

Bound (2) is valid for any scenario optimization problem in
the form of (1) and for any P; interestingly enough, this result
is not improvable since it is exact, i.e., PN{V (x∗N ) > ε} =∑d−1
i=0

(
N
i

)
εi(1 − ε)N−i, for the class of “fully-supported”

problems (see Definition 2.3 in [11]).
The result in (2) provides a quantitative tool to properly
assess the size N of the sample δ1, δ2, . . . , δN so as to

1It is a product probability space because of the independence of
scenarios.
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guarantee that the risk x∗N is no bigger than a user-chosen
value ε with a suitable confidence level 1−β. To this purpose,
it is enough to choose the smallest N such that

d−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β. (3)

The above assessment of N comes with a drawback though:
it is based on a worst-case evaluation (only tight for fully-
supported problems) and, as such, can be conservative in
various cases. Indeed, optimization problems encountered
in practice are often not fully-supported and some post-
analysis reveals that the actual risk is much smaller than the
prescribed threshold ε, indicating that less scenarios would
have been sufficient to achieve the required level of violation
V (x∗N ) ≤ ε. This is unfortunate for two reasons:

i. the bigger N , the more the computational effort to solve
problem (1);

ii. more importantly, when scenarios are data obtained
from experiments, they can be valuable and expensive
resources. Hence, over-sizing N has a cost in terms of
the effort that is required to obtain the scenarios.

A. Paper contribution

The objective of this paper is that of introducing a new
scheme to obtain guaranteed solutions (i.e. solutions with
a prescribed level of risk) for (1) with fewer scenarios.
Given the above discussion on fully-supported problems, this
result cannot be achieved by solving (1) in one-shot. The
idea is to instead resort to a sequential scheme where the
solution is iteratively computed with a sample size that is
progressively increased through iterations, until a suitable
termination condition is satisfied. Hence, the number of
required scenarios is not fixed beforehand and it becomes
a random variable. The sequential scheme marks a positive
result whenever this random variable distributes on values
smaller than the N value prescribed by (3), for which the
termination condition is key to achieve the goal.
The idea of sequential algorithms is not new and it appeared
already in relation to randomized methods, see [20], [3],
[4], [28], [25] and references therein. In the context of
scenario optimization, this idea has been used in the recent
contributions [18] and [5]. However, in these works the focus
is on point (i) above and the intent is that of reducing
the computational burden. Correspondingly, the termination
condition in the sequential schemes of [18] and [5] is based
on a validation rule, i.e., at each iteration one checks whether
the current solution satisfies all (or a preset part of) the
constraints associated to new scenarios that are not used in
the optimization phase. The underlying idea is that validating
a solution is computationally inexpensive and repeatedly
computing a solution with a small amount of scenarios is
less computationally demanding than computing the scenario
solution in one-shot with all the N scenarios in place. Thus,
the schemes of [18] and [5] can, and often do, offer a big
computational saving. On the other hand, if these algorithms
are analyzed from the perspective of point (ii), one may

wonder why a valuable resource such as a scenario should
not be employed for design purposes and it is instead just
used for validation. Moreover, upon counting how many
scenarios are used in total, the algorithms of [18] and [5]
can be very demanding, because they can go through many
validation phases resulting in a total number of scenarios that
is even bigger than the N prescribed by (3).
In this paper, we specifically focus on point (ii) above
and we leverage the recent results of [13] to propose a
sequential algorithm whose termination condition is not
based on validation, but rather on a notion of complexity
of the scenario solution. In this way, at each iteration, the
available scenarios are all used to optimize, without any
waste of resources. Moreover, a mathematical analysis is also
developed to properly size the number of scenarios that are
required at each iteration in order to minimize the usage of
scenarios while ensuring that the risk of the solution is below
threshold ε with high confidence 1− β. In the end, the total
number of scenarios that are used is typically smaller than the
N prescribed by (3), and in some cases it is much smaller.
Hence, the proposed algorithm offers an attractive way to
find guaranteed solutions with a (possibly large) saving of
data with respect to the one-shot computation of x∗N in (1).

B. Structure of the paper

The new sequential algorithm is presented in Section II,
while its theoretical analysis is given in Section III. The
proofs are in Section IV, while a numerical example in
Section V concludes the paper.

II. INCREMENTAL SCENARIO OPTIMIZATION

We start by introducing an assumption of existence and
uniqueness of the scenario solution.

Assumption 1 (existence and uniqueness): For every N
and for every sample δi, i = 1, . . . , N , program (1) admits
solution. If more than one solution exists, one solution is
singled out by the application of a convex tie-break rule,
which breaks the tie by minimizing an additional convex
function t1(x), and, possibly, other convex functions t2(x),
t3(x), . . . if the tie still occurs. The so-obtained solution is
denoted by x∗N . �
The approach for breaking the tie in Assumption 1 is the
same as in [6]. An example of a tie-break function is the
norm of x, t1(x) = ‖x‖, which alone always suffices to break
the tie. Another example is the lexicographic rule, which
consists in minimizing the components of x in succession,
i.e. t1(x) = x1, t2(x) = x2, . . . , td(x) = xd.
We now briefly revisit the result of [13], which provides
the fundamental framework to build the new sequential
algorithm. Paper [13] has established that in all scenario
problems there exists a profound link between risk and
complexity, where the notion of complexity is the following.

Definition 2 (support constraint and complexity): A con-
straint x ∈ Xδi of the scenario optimization problem (1) is
called a support constraint if its removal (while all other
constraints are maintained) changes the solution x∗N . The
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complexity s∗N of the scenario optimization problem (1) is
the number of its support constraints. �
The complexity s∗N depends on the random sample
δ1, δ2, . . . , δN , and hence it is a random variable defined over
(∆N ,DN ,PN ) that takes value in the set {0, 1, . . . , d}. It is
indeed a well known fact that the complexity cannot be larger
than d in a convex setup, [6], and fully-supported problems
are those problems for which s∗N = d with probability 1.
Problems that are not fully-supported instead show a varied
behavior of s∗N . Note that, differently from V (x∗N ), s∗N is
accessible, which means that it can be computed according
to its definition for a given sample δ1, δ2, . . . , δN .
In a nutshell, the result of [13] says that the random
variables V (x∗N ) and s∗N have always a strong probabilistic
dependence, irrespective of the problem at hand and of
the probability P. This result has an important conceptual
implication: validation with new scenarios is not necessary
to assess the risk of the scenario solution; rather, V (x∗N ) can
be judged from s∗N , and the smaller s∗N , the smaller V (x∗N ).
Going back to the goal of devising a suitable sequential
algorithm whose termination condition does not depend on
validation, the link between risk and complexity discussed
above suggests the following sequential Algorithm 1 (in the
algorithm, the sizes N0, N1, . . . , Nd are left undefined and
their choice is discussed later in the light of the theory).

Algorithm 1 (Incremental scenario optimization): input
:= an increasing sequence of integers N0, N1, . . . , Nd;
output := x∗.

0. Set j := 0 and N−1 := 0.
1. Collect scenarios δNj−1+1, δNj−1+2 and add them to

the sample of scenarios.
2. Compute

x∗Nj
= arg min

x∈X⊆Rd
c(x) (4)

subject to: x ∈ Xδi , i = 1, 2, . . . , Nj .

Compute the complexity s∗Nj
of problem (4).

3. IF s∗Nj
≤ j THEN halt the algorithm and RETURN

x∗ := x∗Nj
;

ELSE set j := j + 1 and GOTO step 1. �
In Algorithm 1 the size of the scenario sample is pro-
gressively increased through iterations (that is, at the first
iteration just N0 scenarios are used; if a second iteration is
needed, new scenarios are added so as to have N1 scenarios
in all; and so on and so forth). The termination test is based
on an evaluation of the current solution complexity and, as
iterations progress, the condition becomes less and less strict
since more scenarios become available. The algorithm has
been named “Incremental” because all the scenarios that
are used in one iteration are then re-used in subsequent
iterations, with the addition of new scenarios. Moreover,
at each iteration, all the available scenarios are used to
optimize.
The fundamental issue that we need to explore now is how
N0, N1, . . . , Nd must be selected so that upon termination
the algorithm returns a solution x∗ whose risk is below
the threshold ε with high confidence 1 − β. The result in

the next section provides values for N0, N1, . . . , Nd as a
function of the chosen ε and β and rigorously characterizes
the advantages of the proposed incremental approach. The
technically complex proof of this result is postponed to
Section IV to improve readability.

III. SIZING OF N0, N1, . . . , Nd

The analysis is conducted under the following non-
degeneracy assumption introduced in [13].

Assumption 2 (non-degeneracy): For every N , the solu-
tion x∗N to program (1) coincides with probability 1 with the
solution that is obtained after eliminating all the constraints
that are not of support. �
Assumption 2 is a mild condition that excludes that the
constraints accumulate anomalously at the solution. See [13]
for more comments on degeneracy.
Towards the goal of sizing N0, N1, . . . , Nd, start by defining
M̄0 = 1 and

M̄j = min

{
N :

j−1∑
`=0

(
N

`

)
ε`(1− ε)N−` ≤ β

}
,

for j = 1, . . . , d. Note that
∑j−1
`=0

(
N
`

)
ε`(1 − ε)N−` is the

probability that V (x∗N ) > ε for a fully-supported problem in
dimension j (i.e. with x ∈ Rj), see equation (2). Note also
that given any fully-supported problem in dimension j, this
problem can be embedded in an augmented d-dimensional
optimization domain by adding d−j dummy variables so that
the number of support constraints remains equal to j with
probability 1 and the probability that V (x∗N ) > ε remains∑j−1
`=0

(
N
`

)
ε`(1 − ε)N−` as before. When Algorithm 1 is

used for one of these augmented fully-supported problems,
the algorithm will systematically stop at the j-th step and,
given the interpretation of M̄j defined above, it must be that
Nj ≥ M̄j in order to obtain V (x∗) ≤ ε with confidence
1− β. This set M̄j as a lower bound to the value taken by
Nj .
Next, the following theorem provides the sought quantifica-
tion of N0, N1, . . . , Nd and is the main achievement of this
section.

Theorem 1: Given a confidence parameter β ∈ (0, 1) and
a risk parameter ε ∈ (0, 1), let x∗ be the solution returned
by Algorithm 1 where Nj , j = 0, 1, . . . , d, is given by:2

Nj = min
{
N : N ≥ M̄j and (5)(

N

j

)
(1− ε)N−j ≤ β

(d+1)(M̄j+1)

M̄j∑
m=j

(
m

j

)
(1− ε)m−j

}
.

Then, under Assumptions 1 and 2, it holds that
PNd{V (x∗) > ε} ≤ β. �

Proof: see Section IV.
Figures 1-4 profiles the Nj’s obtained from Theorem 1 for
various values of ε and d and for β = 10−6 (blue dots).

2It is worth noticing that the definition of Nj is always well-posed since(N
j

)
(1 − ε)N−j → 0 as N → +∞. An effective way to compute Nj is

via bisection.
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Fig. 1. Nj (blue dots) vs M̄j (red crosses) and N (dashed black line) -
d = 40, ε = 0.05, and β = 10−6
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Fig. 2. Nj (blue dots) vs M̄j (red crosses) and N (dashed black line) -
d = 40, ε = 0.025, and β = 10−6

The plots also display through a black dashed line the N
computed from (3), which is the size required for the one-
shot solution of the scenario program (1) to attain the same
risk level ε with confidence β = 10−6. As it appears, Nj is
smaller than N for most values of j, while it is moderately
bigger than N for j values that are close to d. In large-scale
problems where it is likely to observe a number of support
constraints that is significantly smaller than d, the algorithm
comes to termination at early stages when Nj � N and a
large saving of scenarios is obtained.
Further, it is interesting to compare the Nj of Theorem 2 with
the insurmountable lower limits given by M̄j , which are also
profiled in Figures 1-4 for easy comparison (red crosses).
One can see that the Nj and M̄j curves are close to each
other, showing the tightness of the result. The comparison
between Nj and M̄j also suggests an additional interesting
observation: knowing in advance that the number of support
constraints is always equal to j provides a relatively moderate
advantage as compared to running the algorithm and waiting
that it stops when the termination condition is reached. This
result embodies the essence of the so called “wait-and-judge”
paradigm of [13]: exploiting the information contained in the
scenarios δ1, δ2, . . . , δN by a-posteriori assessing the number
of support constraints in a given program levels the advantage
that comes from an a-priori knowledge on the complexity.

IV. PROOF OF THEOREM 1

Given the structure of Algorithm 1, it is clear that V (x∗) >
ε corresponds to the occurrence for some j of the fact that
s∗N`

> ` for ` < j, s∗Nj
≤ j (so that x∗ = x∗Nj

), and
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Fig. 3. Nj (blue dots) vs M̄j (red crosses) and N (dashed black line) -
d = 80, ε = 0.05, and β = 10−6
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Fig. 4. Nj (blue dots) vs M̄j (red crosses) and N (dashed black line) -
d = 80, ε = 0.025, and β = 10−6

V (x∗Nj
) > ε. From this, we have

PNd{V (x∗) > ε}

=

d∑
j=0

PNj{s∗N0
> 0 ∧ . . . ∧ s∗Nj−1

> j − 1

∧ s∗Nj
≤ j ∧ V (x∗Nj

) > ε}

≤
d∑
j=0

PNj{s∗Nj
≤ j ∧ V (x∗Nj

) > ε}

=

d∑
j=0

j∑
k=0

PNj{s∗Nj
= k ∧ V (x∗Nj

) > ε} (6)

Define ε̄(k) = ε for k ≤ j and ε̄(k) = 1 for k > j. Then, the
inner sum in the last expression of (6) can also be written as

j∑
k=0

PNj{s∗Nj
= k ∧ V (x∗Nj

) > ε}

=

d∑
k=0

PNj{s∗Nj
= k ∧ V (x∗Nj

) > ε̄(k)}

= PNj{V (x∗Nj
) > ε̄(s∗Nj

)}. (7)

By an application of Theorem 1 in [13], it now holds that

PNj{V (x∗Nj
) > ε̄(s∗Nj

)} ≤ γ∗j , (8)

where γ∗j is obtained as the solution of the following
variational problem (Cd[0, 1] denotes the set of continuous
functions with continuous derivative up to order d and
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d0

dt0 ξ(t) has to be intended as ξ(t)):

γ∗j = inf
ξ(·)∈Cd[0,1]

ξ(1) (9)

subject to:
1

k!

dk

dtk
ξ(t) ≥

(
Nj
k

)
tNj−k · 1[0,1−ε)(t),

t ∈ [0, 1], k = 0, 1, . . . , j,

1

k!

dk

dtk
ξ(t) ≥ 0,

t ∈ [0, 1], k = j + 1, . . . , d.

In what follows we will show that for each j = 0, 1, . . . , d,
γ∗j ≤

β
d+1 , so that, using (8) in (7) and, in turn, (7) in (6),

one obtains

PNd{V (x∗) > ε} ≤
d∑
j=0

γ∗j ≤
d∑
j=0

β

d+ 1
= β, (10)

which is the statement of the theorem.

Fix a j in 0, 1, . . . , d and consider problem (9). Let
ξ̄(t) = β

(d+1)(M̄j+1)

∑M̄j

m=0 t
m. We want to show that ξ̄(t)

is feasible for (9) so that it must be that

γ∗j ≤ ξ̄(1) =
β

(d+ 1)(M̄j + 1)

M̄j∑
m=0

1 =
β

d+ 1
, (11)

which is the sought conclusion. To this purpose, note that

1

k!

dk

dtk
ξ̄(t) =

β

(d+ 1)(M̄j + 1)

M̄j∑
m=k

(
m

k

)
tm−k (12)

is non-negative in [0, 1] for all k so that the constraints in (9)
for k = j+1, . . . , d are satisfied. Consider now the constraint
for k = j: it can be verified by computing for which t the
inequality

β

(d+ 1)(M̄j + 1)

M̄j∑
m=j

(
m

j

)
tm−j ≥

(
Nj
j

)
tNj−j (13)

is true (note that the left-hand side of (13) is equal to
1
j!

dj

dtj ξ̄(t), see (12)). Inequality (13) can be also written as

β

(d+ 1)(M̄j + 1)

M̄j∑
m=j

(
m
j

)(
Nj

j

) 1

tNj−m
≤ 1,

where, recalling that Nj ≥ M̄j by (5), the left-hand side is
clearly a strictly decreasing function that tends to +∞ for
t → 0 and that tends to 0 for t → ∞. This yields that the
inequality (13) is always satisfied over an interval of the type
[0, τ ]. Since

β

(d+ 1)(M̄j + 1)

M̄j∑
m=j

(
m

j

)
(1−ε)m−j ≥

(
Nj
j

)
(1−ε)Nj−j

by (5), the interval [0, τ ] includes [0, 1 − ε), which means
that the constraint in (9) for k = j is satisfied.
Having proved the feasibility for k = j, the feasibility for
all the remaining constraints corresponding to k < j easily

follows by induction, because if the constraint for a given
k ≤ j is satisfied, then we have that

1

(k − 1)!

dk−1

dtk−1
ξ̄(t)

= k ·
[

1

k!

dk

dtk
ξ̄(0) +

∫ t

0

1

k!

dk

dtk
ξ̄(τ)dτ

]
≥ [

1

k!

dk

dtk
ξ̄(0) ≥ 0]

≥ k ·
∫ t

0

1

k!

dk

dtk
ξ̄(τ)dτ

≥ [the constraint in (9) for k holds true]

≥ k ·
∫ t

0

(
Nj
k

)
τNj−k · 1[0,1−ε)(τ)dτ

≥
(
Nj
k − 1

)
tNj−k+1 · 1[0,1−ε)(t),

that is, the constraint for k − 1 is satisfied as well.
Thus, in conclusion, it remains proven that ξ̄(t) is feasible
for (9), which by (11) and (10) concludes the proof. �

V. NUMERICAL EXAMPLE

Suppose that a number of points pi are independently
sampled from R50 according to the following mechanism:
pi = qi + ci where the qi is a vector drawn from a
50-dimensional Gaussian distribution with zero mean and
identity covariance matrix, while ci is a 50-dimensional
vector whose components are all identical with value equal
to 0 with probability 95% and a value taken from a Gaussian
distribution G(0, 4) with probability 5%. Consider then the
problem of translating the negative orthant in R50 (i.e., the
domain where all components are negative or zero) so that
the translated orthant contains all the given points while the
translation shift is minimized. This amounts to solving the
scenario optimization problem

min
x∈R50

50∑
j=1

xj

subject to: xj ≥ pi,j , i = 1, . . . , N, (14)

where δ = p and j denotes component. Repeated exper-
iments reveal that, for various value of N , the scenario
optimization problem (14) has a complexity that is subject to
large variability, spanning with high probability almost the
whole range of admissible values.
In this context, the risk corresponds to the probability that
a next extracted point p is not within the computed orthant,
and, in order to guarantee that the risk is below ε = 5% with
high confidence β = 10−6, an application of (3) with d = 50
gives N = 1801.
In order to reduce the number of scenarios, Algorithm 1 was
applied in repeated simulation trials: we ran the algorithm
1000 times, and each time we recorded the total number
of scenarios used at the termination of the algorithm. The
resulting histogram for the numbers of scenarios used is
depicted in Figure 5, where the number N = 1801 prescribed
by the standard one-shot application of scenario optimization
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Fig. 5. Histogram of the number of used scenarios in 1000 runs of
Algorithm 1

is also shown through a dashed red line. On average, the
number of scenarios used by Algorithm 1 is 802.

VI. CONCLUSIONS

We have introduced a new scheme for scenario optimiza-
tion that is able to sequentially learn the sample size required
to obtain prescribed levels of risk. The proposed scheme does
not rely on validation; rather, all data are used to optimize,
while the risk is evaluated by leveraging recent results that
link the risk to the scenario solution complexity. A solid
theoretical analysis has been presented to obtain a calibration
of the algorithm that has been shown to be nearly optimal.
The proposed approach allows for a (often large) saving of
scenarios as compared to non sequential schemes.
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