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Foreword: This text contains a treatment of some specific topics in probability theory.
The selection of the topics has followed the goal of presenting in a self-contained man-
ner all material that is necessary to understand the fundamental results in the theory of
stochastic linear systems in discrete time, including prediction, filtering and control. In
preparing these notes, I have put a significant amount of effort into combining require-
ments of conciseness and mathematical rigor with those of readability and clarity of
presentation. I shall be grateful to anyone who will provide comments and suggestions
on how to improve these notes.
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Chapter 1

MEASURE SPACES AND
INTEGRATION

1.1 Measurable spaces and measurable functions

Measurable spaces

The notion of measurable space makes use of the concept of σ -algebra. A σ -algebra
is a collection of subsets of a given set, with certain set-theoretic properties specified
in the following definition.

DEFINITION 1.1 (σ -algebra) Given a set X, a collection X of subsets of X is
called a σ -algebra if

(a) X ∈X ;
(b) if Ak ∈X , k = 1,2, . . ., then ∪∞

k=1Ak ∈X ;
(c) if A ∈X , then Ac ∈X (Ac is the complement o f set A). 2

Condition (b) states that a σ -algebra is closed under countably infinite union, that is
union of an infinite number of subsets Ak, where k runs over the integers. Since the
empty set /0 equals Xc and X ∈X by (a), condition (c) implies that /0 ∈X . Taking
An+1 = An+2 = · · · = /0 in (b), we see that ∪n

k=1Ak ∈ X , that is X is also closed
under finite union. Moreover, a σ -algebra is also closed under intersection (finite or
countably infinite), as it follows from relation ∩kAk = (∪kAc

k)
c.

Given any collection A of subsets of a set X , consider all σ -algebras containing A .
Their intersection (that is the collection of the sets that belong to all σ -algebras) is
easily seen to be a σ -algebra too. It is called the minimal σ -algebra containing A and
is denoted by σ(A ).
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We can now introduce the notion of measurable space.

DEFINITION 1.2 (measurable space) A couple (X ,X ) where X is any set and
X is a σ -algebra of subsets of X is called a measurable space. 2

It is sometimes important to consider measurable spaces that are the product of other
measurable spaces. This is formalized in the following definition.

DEFINITION 1.3 (product measurable space) Given the measurable spaces
(Xk,Xk),k = 1,2, . . . ,n, their product measurable space is (X1×X2×·· ·×Xn,X1⊗
X2⊗·· ·⊗Xn), where X1×X2×·· ·×Xn is the direct product of the Xk’s, i.e. the set of
ordered n-tuples (x1,x2, · · · ,xn) with xk ∈ Xk, k = 1,2, . . . ,n, and X1⊗X2⊗·· ·⊗Xn
is the direct product of the Xk’s, i.e. the smallest σ -algebra in X1×X2×·· ·×Xn that
contains all sets of the form A1×A2×·· ·×An = {(x1,x2, · · · ,xn) such that xk ∈Ak,k =
1,2, . . . ,n}. 2

Measurable functions

DEFINITION 1.4 (measurable function – see Figure 1.1) Given two measur-
able spaces (X ,X ) and (X

′
,X

′
), a function g : X → X

′
is measurable if, for all

A
′ ∈X

′
, the inverse image of A

′
through g, that is g−1(A

′
) := {x ∈ X : g(x) ∈ A

′},
belongs to X . 2

Sometimes, we emphasize one or both σ -algebras by writing X -measurable or
X /X

′
-measurable.

The importance of measurability becomes apparent when speaking of measures and
measure spaces, as we shall do in the next section.

The next two theorems study the measurability of functions constructed from other
measurable functions.

THEOREM 1.5 (composition of measurable functions) Given three measur-
able spaces (X ,X ), (X

′
,X

′
), and (X

′′
,X

′′
), and two measurable functions g : X →

X
′
and h : X

′→ X
′′
, the composition of g and h, i.e. the function h ·g : X → X

′′
defined

through relation h ·g(x) := h(g(x)), is a X /X
′′
-measurable function.
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Figure 1.1: Measurable function.

PROOF. For any A
′′ ∈X

′′
, we have

(h ·g)−1(A
′′
) = g−1(h−1(A

′′
)). (1.1)

Since h is X
′
/X

′′
-measurable, h−1(A

′′
) ∈X

′
; in turn, the X /X

′
-measurability of

g implies that g−1
(

h−1
(

A
′′
))
∈X , which shows the X /X

′′
-measurability of h ·g.

2

THEOREM 1.6 (product and marginal measurable function)
Consider the measurable space (X ,X ) and two other measurable spaces (X1,X1),
and (X2,X2) along with their product (X1×X2,X1⊗X2).
i) Given two measurable functions g1 : X → X1 and g2 : X → X2, the function
g : X → X1×X2 defined according to the relation g(x) = (g1(x),g2(x)),x ∈ X, is a
X /X1⊗X2-measurable function from X to X1×X2;
ii) conversely, if g : X → X1×X2 is X /X1⊗X2-measurable, then g1 : X → X1 such
that g1(x) is the first component of g(x) and the similarly defined g2 : X→ X2 are mea-
surable functions from X to X1 and from X to X2, respectively.
The theorem extends in an obvious way to the product of more measurable spaces.

PROOF.

i) We need to show that g−1(A) ∈X ,∀A ∈X1⊗X2.

Consider the collection D of all sets A⊆ X1×X2 such that g−1(A)∈X . We prove the
following two facts:

(a) D contains all sets of the form A = A1×A2, A1 ∈X1 and A2 ∈X2;
(b) D is a σ -algebra.
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Facts (a) and (b) imply the theorem thesis. Indeed, since X1⊗X2 is the smallest σ -
algebra that contains the sets of the form A1×A2, A1 ∈X1 and A2 ∈X2, it follows
from (a) and (b) that X1⊗X2 ⊆D , so that any set in X1⊗X2 has an inverse image
through g−1 which is in X .

(a) and (b) are proven as follows:

(a) g−1(A1 × A2) = g−1((A1 × X2) ∩ (X1 × A2)) = g−1(A1 × X2) ∩ g−1(X1 × A2) =
g−1

1 (A1)∩g−1
2 (A2) ∈X ;

(b) if A = ∪∞
k=1Ak with Ak ∈ D , k = 1,2, . . ., then g−1(A) = g−1(∪∞

k=1Ak) =
∪∞

k=1g−1(Ak) ∈X , so that D is closed under union. The fact that D is closed un-
der complementation and contains the entire set X1×X2 is proven in a similar way.

ii) For any A1 ∈X1, we have that g−1
1 (A1) = g−1(A1×X2)∈X , so that g1 is X /X1-

measurable. Similarly, g2 is X /X2-measurable. 2

1.2 Measures and measure spaces

A measure is a function that associates to any set belonging to a σ -algebra a non-
negative number, the measure of the set. It must satisfy a certain set-theoretic property
called σ -additivity.

DEFINITION 1.7 (measure) Let X be a σ -algebra. A function m : X → [0,∞]
is called a measure if, for any countable collection of pairwise disjoint sets Ak ∈
X , k = 1,2, . . ., the following property (σ -additivity) holds

m(∪∞
k=1Ak) =

∞

∑
k=1

m(Ak) . (1.2)

2

Definition 1.7 forces m( /0) = 0 (the empty set has measure zero). To see this, take
A1 = A and A2 = A3 = · · ·= /0 in (1.2). Moreover, by taking Ak+1 = Ak+2 = . . .= /0 in
(1.2) we see that the measure of the union of a finite number of sets equals the sum of
their measures.

DEFINITION 1.8 (measure space) A triple (X ,X ,m), where X is any set, X
is a σ -algebra of subsets of X, and m is a measure on X is called a measure space. 2
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Image measures

Consider two measurable spaces (X ,X ) and (X ′,X ′) and a measurable function g :
X → X ′. If the first space is endowed with a measure m, i.e. (X ,X ,m) is a measure
space, then function g permits to define a measure m′ on X ′ according to the following
definition:

m′(A
′
) := m(g−1(A

′
)), A

′
∈X

′
. (1.3)

(Here, one should note the importance of the fact that g is measurable: if g were not
measurable, then g−1(A

′
) would need not be a set of X so that m(g−1(A

′
)) could be

undefined.) Measure m
′
is named the image measure of m through g.

Methods for introducing measures on measurable spaces

When defining a measure on a σ -algebra, it is sometimes convenient to first define the
measure on a simpler system of sets and then to extend it to the σ -algebra.

A typical case is when the simpler system is an algebra A (an algebra is a system of
sets with the same properties as for a σ -algebra - see Definition 1.1 - where, however,
property (b) is only required to hold for a finite number of sets) and the σ -algebra is
σ(A ), the smallest σ -algebra containing A . This situation is studied in the funda-
mental Theorem 1.9 below.

Before stating the theorem, we need some terminology. Given an algebra A , a func-
tion m0 : A → [0,∞] satisfying (1.2) for all (possibly countably infinite) collection of
pairwise disjoint sets Ak ∈A , k = 1,2, . . ., is called a premeasure (namely, a premea-
sure has identical properties as a measure but it is defined over an algebra instead of
a σ -algebra). The reason for calling it a premeasure is that it extends naturally to a
measure, as Theorem 1.9 states. A premeasure on A is called σ -finite if there exits a
sequence of sets Ak ∈ A , k = 1,2, . . ., such that ∪∞

k=1Ak = X (i.e. the entire set) and
m0(Ak)< ∞,∀k.

THEOREM 1.9 (Caratheodory’s) Consider a σ -finite premeasure m0 on an al-
gebra A . Then, there is one and only one measure m that extends m0 to σ(A ), that
is, a measure on σ(A ) such that

m(A) = m0(A), f or A ∈A . (1.4)

2

A proof can be found e.g. in the texts [3], [5] and [2, Theorem 3.1] for the specific
case of probability measures.
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As an application of Caratheodory’s theorem, we next introduce the notion of product
measure space.

Product measure spaces

Let us consider the product (X1×X2×·· ·×Xn,X1⊗X2⊗·· ·⊗Xn) of n measurable
spaces (Xk,Xk),k = 1,2, . . . ,n. We assume that each space (Xk,Xk) is endowed with
a σ -finite measure mk and we want to introduce a product measure m1×m2×·· ·×mn
on the product space.

For notational convenience, assume n = 2, the extension to n > 2 is straightforward.
Consider the system of subsets of X1×X2 of the form A1×A2, with A1 ∈ X1 and
A2 ∈X2. Such a system is not an algebra since it is not closed under union. However,
it is easily seen that the system of subsets consisting of finite unions of disjoint sets
of the form A1 × A2 is indeed an algebra (though, not a σ -algebra.) For each set
A = ∪p

k=1(A
k
1×Ak

2) of this algebra we define m0(A) = ∑
p
k=1 m1(Ak

1)m2(Ak
2). It is a

simple (but cumbersome) exercise to show that m0 is a σ -finite premeasure. Thus,
by Caratheodory’s extension Theorem 1.9, m0 can be extended in a unique way to a
measure on the σ -algebra X1⊗X2. This measure is by definition the product measure
and is denoted by m1×m2.

DEFINITION 1.10 (product measure space) Given n measure
spaces (Xk,Xk,mk),k = 1,2, . . . ,n, the measure space (X1×X2×·· ·×Xn,X1⊗X2⊗
·· ·⊗Xn,m1×m2×·· ·×mk) is called their product measure space. 2

The measure space (Rn,B(Rn),λ n)

We start by considering the measure space (R,B(R),λ ), i.e. we take n = 1, a space
that plays a prominent role in measure theory.

Here, R is the set of real numbers and B(R) is the σ -algebra generated by all open
intervals (a,b). B(R) is named the Borel σ -algebra on the real line. Measure λ is
the Lebesgue measure on the real line and is defined as follows. Consider the intervals
of the form (a,b] := {x ∈ R : a < x ≤ b}, or (−∞,b] := {x ∈ R : x ≤ b}, or (a,∞) :=
{x ∈ R : a < x}. Next, consider the system A of subsets A of R that are finite unions
of disjoint intervals Ak, where each Ak has one of the indicated forms: A = ∪p

k=1Ak.
A is an algebra. Define λ0(A) := ∑

p
k=1(bk− ak), where ak, bk are the extremes of

interval Ak. It can be seen that λ0 is a σ -finite premeasure, so that, by Caratheodory’s
Theorem 1.9, it can be extended in a unique way to a measure on σ(A ). Finally, it is
an easy fact to prove that σ(A ) =B(R), so that the above construction has generated
a measure on B(R), to which the name of Lebesgue measure λ is given.

NOTE: In many textbooks, the Lebesgue measure λ is defined over an extended
σ -algebra obtained by augmenting B(R) with all subsets of sets in B(R) with zero
λ measure. The λ measure of all these subsets is set to the zero value. This extended
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σ -algebra is said to be “complete”, an adjective that refers to the circumstance that
any subset of a zero measure set is always measurable.

For n ≥ 2, (Rn,B(Rn),λ n) is simply defined as the n-fold product measure space of
(R,B(R),λ ).

Sometimes, it is of interest to consider the restriction of (R,B(R),λ ) to a set in B(R).
An example is ([0,1],B[0,1],λ ). Here, by definition, B[0,1] is the σ -algebra of all
sets of the form A∩ [0,1], A ∈B(R) and λ is the restriction of the Lebesgue measure
to these sets.

1.3 Integration

Given a measure space (X ,X ,m) and a X /B(R)-measurable function g : X → R,
we want to define the integral of g with respect to the measure m, for which we use the
symbol

∫
X

g(x)dm(x). (1.5)

This is done in 3 steps. For the first step we need the following definition.

DEFINITION 1.11 (simple measurable function) Given a measurable space
(X ,X ), a measurable function g : X → R is said to be simple if it has the form

g =
N

∑
k=1

αk ·1(Ak), Ak ∈X , αk ∈ R, k = 1,2, . . . ,n, (1.6)

where N is finite and 1(Ak) is the indicator function of set Ak. 2

STEP 1: Integral of non-negative simple measurable functions.

Consider function g of the form in (1.6) and assume αk ≥ 0, k = 1,2, . . . ,n. Then, we
define

∫
X g(x)dm(x) = ∑

N
k=1 αkm(Ak) (if αk = 0 and m(Ak) = ∞, we let αkm(αk) =

0 ·∞ = 0).

STEP 2: Integral of non-negative measurable functions.

Let now g : X → R be measurable and g≥ 0. Consider a sequence of simple measur-
able functions gn such that gn(x) ↑ g(x),∀x (that is, for all x, gn(x) tends to g(x) and is
increasing with n; in other words, it converges from below.) One such sequence is the
following:
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gn :=
n2n

∑
k=1

k−1
2n ·1(An,k)+n ·1(An), (1.7)

where An,k := {x : (k− 1)/2n ≤ g(x) < k/2n} and An := {x : g(x) ≥ n}. Clearly,∫
X gn(x)dm(x) increases with n, so that it converges (either to a finite value or to +∞.)

We let
∫

X g(x)dm(x) := limn→∞

∫
X gn(x)dm(x). One can prove that this definition is

consistent, that is the limit is independent of the choice of the approximating sequence
gn.

STEP 3: Integral of measurable functions.

Let g+ := max{g,0} and g− :=−min{g,0} and note that g = g+−g−. By definition,
the integral of g is given by the formula

∫
X

g(x)dm(x) =
∫

X
g+(x)dm(x)−

∫
X

g−(x)dm(x), (1.8)

provided that not both integrals in the right-hand side are +∞ (in which case we say
that the integral is not defined).

Notations

– When this generates no confusion, we drop the domain of integration and/or the
arguments in the integral. So, for example, we write

∫
gdm for

∫
X g(x)dm(x).

– When the integral is performed over R with respect to the Lebesgue measure λ , it is
customary to write

∫
R g(x)dx for

∫
R g(x)dλ (x).

– Take a set A ∈X . Then, g · 1(A) (where 1(A) is the indicator function of set A)
is measurable, provided that g is. We write

∫
A gdm for

∫
X g · 1(A)dm. When A is the

interval [a,b] and integration is with respect to the Lebesgue measure, we also write∫ b
a g(x)dx.

Functions with value in R̄ = [−∞,∞]

It is often of interest to integrate functions taking value on the extended real line
[−∞,∞]. let B(R̄) be the σ -algebra generated by all intervals of the type (a,b),
[−∞,b), and (a,∞] and consider a X /B(R̄)-measurable function g. The definition
of integral extends to this case with no modifications with the agreement that 0 ·∞ = 0.

Properties of the integral

The following properties of the integral are easy to prove (all integrals appearing in the
formulas are assumed to exist by hypothesis).

1.
∫

1(A)dm = m(A);
2. if g1 ≤ g2, then

∫
g1dm≤

∫
g2dm;
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3.
∫
(αg1+βg2)dm = α

∫
g1dm+β

∫
g2dm, provided that the right-hand side does

not result in the indeterminate form ∞−∞;
4. if g = 0 m-almost surely (i.e. m({g 6= 0}) = 0), then

∫
gdm = 0;

5. if
∫

g ·1(A)dm = 0,∀A ∈X , then g = 0 m-almost surely.

Change of space of integration

The following theorem permits to change space of integration in integrals.

THEOREM 1.12 (change of space of integration in integrals)
Consider the three measurable spaces (X ,X ), (X

′
,X

′
), and (R,B(R)), and two

measurable functions g : X → X
′

and h : X
′ → R. Further, assume that (X ,X ) is

endowed with a measure m. Then,

∫
X

h(g(x))dm(x) =
∫

X ′
h(x

′
)dm

′
(x
′
), (1.9)

where m
′

is the image measure of m through g, in the sense that if one integral exists,
then the other one also exists and the two are equal.

PROOF. For a simple non-negative function h = ∑
N
k=1 αk ·1(Ak), we have

∫
X

h(g(x))dm(x) =
N

∑
k=1

αkm(g−1(Ak)) (1.10)

=
N

∑
k=1

αkm
′
(Ak) (1.11)

=
∫

X ′
h(x

′
)dm

′
(x
′
). (1.12)

For a generic non-negative h, take a sequence of non-negative simple measurable func-
tions hn converging to h from below. Then, hn ·g is a sequence of non-negative simple
measurable functions defined on X converging from below to h ·g and, from what we
have proven above, we obtain

∫
X

hn(g(x))dm(x) =
∫

X ′
hn(x

′
)dm

′
(x
′
), ∀n. (1.13)

Since the limit of the left-hand side as n→∞ is by definition
∫

X h(g(x))dm(x) and that
of the right-hand side is

∫
X ′ hn(x

′
)dm

′
(x
′
), (1.9) is proven for non-negative h’s.
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Finally, for a generic h, the result follows from the usual decomposition h = h+−h−.
2

Integration with respect to a product measure

The following theorem permits to reduce the integral over X1×X2 to an iterated integral
(the proof can be found e.g. in [?], [5], [7], [2]).

THEOREM 1.13 (Fubini’s) Let (X1,X1,m1) and (X2,X2,m2) be measure
spaces with σ -finite measures m1 and m2 (a measure on (X ,X ) is σ -finite if X is
the countable union of sets Ak ∈X with m(Ak)< ∞.) Further, let g : X1×X2→ R be
a X1⊗X2-measurable function and assume that

∫
X1×X2

|g|d(m1×m2)< ∞. (1.14)

Then,

i) g(x1,x2) is a X1-measurable function of x1 for each fixed x2 and a X2-measurable
function of x2 for each fixed x1;
ii) the integral

∫
X1

g(x1,x2)dm1 is defined m2-almost surely (i.e. the set where it is not
defined is in X2 and has m2 measure zero.) Moreover, if we define

∫
X1

g(x1,x2)dm1
to be zero - or, equivalently, any other real number - where the integral is unde-
fined, then

∫
X1

g(x1,x2)dm1 is a X2-measurable function. A similar statement holds
for
∫

X2
g(x1,x2)dm2;

iii) ∫
X1×X2

g(x1,x2)d(m1×m2) =
∫

X1

[∫
X2

g(x1,x2)dm2

]
dm1 (1.15)

=
∫

X2

[∫
X1

g(x1,x2)dm1

]
dm2, (1.16)

in the sense that the integral in the left-hand-side and the external integrals in the
right-hand-side exist and equality holds.
The integral on the left is often referred to as the “double integral”, while those on the
right are called the “iterated integrals”. 2

If we assume that g is nonnegative, the same result as in Fubini’s theorem holds without
requiring that the integral of |g| be bounded:

THEOREM 1.14 (Tonelli’s) Let (X1,X1,m1) and (X2,X2,m2) be measure
spaces with σ -finite measures m1 and m2 (a measure on (X ,X ) is σ -finite if X is
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the countable union of sets Ak ∈X with m(Ak)< ∞.) Further, let g : X1×X2→ R be
a X1⊗X2-measurable function with g≥ 0. Then,

i) g(x1,x2) is a X1-measurable function of x1 for each fixed x2 and a X2-measurable
function of x2 for each fixed x1;
ii)

∫
X1

g(x1,x2)dm1 is a X2-measurable function and
∫

X2
g(x1,x2)dm2 is a X1-

measurable function;
iii) ∫

X1×X2

g(x1,x2)d(m1×m2) =
∫

X1

[∫
X2

g(x1,x2)dm2

]
dm1 (1.17)

=
∫

X2

[∫
X1

g(x1,x2)dm1

]
dm2. (1.18)

2
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Chapter 2

RANDOM VARIABLES

In this Appendix, we make continuous reference to notions like measure, measurable
space, and integration that are discussed in Appendix 1.

2.1 Random variables

DEFINITION 2.1 (probability and probability space) Given a measurable
space (Ω,F ), a probability P is a measure on the σ -algebra F such that P(Ω) = 1.
The measure space (Ω,F ,P) is called a probability space. 2

DEFINITION 2.2 (random variable) Given a probability space (Ω,F ,P), a
F/B(Rn)-measurable function v : Ω→ Rn is called a n-dimensional random vari-
able. When n = 1, we simply speak of a random variable. 2

From Theorem 1.6, it is clear that n random variables form a n-dimensional random
variable and viceversa.

Interpretation and use of random variables

Random variables are used to describe phenomena in which a quantity of interest takes
a value that remains unspecified at the moment the model is used, and yet one wants to
incorporate in the model some beliefs on the chance with which the quantity will take
value, beyond a set-theoretic description of its range of variability. According to Def-
inition 2.2, corresponding to different points in Ω, v assumes different real values and
one can ask the question: what is the probability that v takes value in a given interval
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[a,b]? This probability is computable thanks to the assumption that v is F/B(R)-
measurable: the set of ω ∈ Ω such that v(ω) ∈ [a,b] is an element of F and so prob-
ability P(ω : v(ω) ∈ [a,b]) is provided by the model. Often, the value assumed by v
is the only object of interest, while Ω and P are used as instruments to describe the
probabilistic law with which different occurrences of the phenomenon take place.

More on B(Rn) and the measurability of random variables

By definition, B(R) contains all open intervals (a,b). Since any open set on the real
line is the countable union of open intervals, it is clear that B(R) contains all open
sets and it is in fact the σ -algebra generated by open sets (in measure theory, the
term “Borel σ -algebra” is assigned to the σ -algebra generated by open sets in a given
topological space. Thus, B(R) is the Borel σ -algebra on R). Similarly, B(Rn) is the
σ -algebra generated by the open sets in Rn.

Suppose we want to prove that a given function v : Ω→ Rn is a random variable, i.e.,
it is F/B(Rn)-measurable. In principle, we have to show that the inverse image of
any set A ∈B(Rn) is in F . However, an easier test can be formulated: verify that
the inverse image of just any open set is in F . To see that this is enough, note that
the system D of all sets A in Rn such that v−1(A) ∈ F is a σ -algebra (indeed, if
A =∪∞

k=1Ak with Ak ∈D , then v−1(A) = v−1(∪∞
k=1Ak) =∪∞

k=1v−1(Ak)∈F , so that D
is closed under union. The fact that D is closed under complementation and contains
the entire Rn can be proven in a similar way). Now, since B(Rn) is the smallest σ -
algebra that contains the open sets, it is clear that B(Rn)⊆D , showing that the inverse
image of any set in B(Rn) is in F , that is, the measurability of v.

Following the same reasoning, it is possible to conclude that v is measurable provided
that the inverse image of any set in a system generating B(Rn) is in F . For example,
for n = 1 this leads to the following test:

TEST OF MEASURABILITY 2.3 v : Ω → R is measurable provided that
v−1(a,b) ∈F for any a,b ∈ R. 2

Suppose now that f : R2→R is continuous and v1, v2 are two random variables. Then,
f (v1,v2) is a random variable. So, e.g. v1+v2, v1 ·v2, sin(v1 ·v2) are random variables.
To see this, recall the definition of a continuous function: f is continuous if the inverse
image of any open set is an open set. Thus, if f is continuous, it is B(R2)/B(R)-
measurable. Appealing to Theorem 1.5 on the measurability of composition functions,
we then conclude that f (v1,v2) is measurable. This fact extends in a natural way to
functions f : Rn→ R.

Probability distribution function and probability density function

To make notations easier, we consider first the case of 1-dimensional random variables.
The extension to the n-dimensional case is discussed later in this section.
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DEFINITION 2.4 (probability distribution function) The probability distri-
bution function (or, more simply, the distribution function) of a 1-dimensional random
variable v is the function F : R→ [0,1] defined as F(x) = P(v−1(−∞,x]). 2

The following properties of F are a direct consequence of the properties of P (the
reader may want to try to detail a proof):

(a) F(x) is nondecreasing;
(b) F(x) is continuous on the right;
(c) limx→−∞ F(x) = 0 and limx→∞ F(x) = 1.

If we let P′ be the image probability of P on B(R) induced by v (P′ is called the prob-
ability distribution or, more simply, the distribution), it is clear that F(x) = P′(−∞,x],
so that the probability distribution can be calculated from the image probability. It is
an important fact that the converse is also true: the image probability P′ can be com-
pletely reconstructed from F . To see this, note that the system of subsets consisting
of finite unions of disjoint sets of the form (a,b], or (−∞,b], or (a,∞) is an algebra
(let us call it A ) and an element A := ∪n

k=1Ak of this algebra has a probability that
can be computed from F by the formula P′(A) = ∑

n
k=1[F(bk)−F(ak)] (here, ak, bk

are the extremes of interval Ak and F(∞) is short for limx→∞ F(x) = 1 and similarly
for F(−∞).) Then, by virtue of Caratheodory’s Theorem 1.9, this probability can be
extended in a unique way to σ(A ) = B(R), so reconstructing P′.

Next, we define the probability density function.

DEFINITION 2.5 (probability density function) Suppose there exists a mea-
surable function p : R → R such that F(x) =

∫ x
−∞

p(t)dt, where F is the probability
distribution function of a random variable v. Then, p is called the probability density
function (or, more simply, the density function) of the random variable v. 2

Given a random variable v : Ω→R with distribution F and image probability P
′
and a

measurable function g : R→ R, sometimes the notation
∫
R g(x)dF(x) is used in place

of
∫
R g(x)dP′(x). It is easy to see that, if v admits density p, then

∫
R g(x)dF(x) is also

equal to
∫
R g(x)p(x)dx in the sense that if one integral exists, also the other one exists

and the two are equal (prove this by first considering simple non-negative g’s, then
non-negative g’s and finally arbitrary measurable g’s.)

From the definition of probability density function, it follows that, if p exists, then
F is the integral of p and is therefore an absolute continuous function. But then F
is λ -almost surely differentiable and p is λ -almost surely the derivative of F (this is
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the “fundamental theorem of calculus”, see e.g. Theorem 7.20 in [6]). Moreover, p
is unique up to a set of zero Lebesgue measure, that is, if p1 and p2 are two densities
associated with the same distribution F , then λ (x : p1(x) 6= p2(x)) = 0. We refer to
different densities as “versions” of the density and a phrase like “consider the density
of v” means: “consider a version of the density of v”.

It is also worth mentioning that the density needs not exist. An example is given by a
random variable taking always value 0. In this case

F(x) =
{

0, x < 0
1, x≥ 0, (2.1)

and p clearly does not exist.

The above is an example of discrete distribution function. In general, we can identify
three classes of distributions (discrete, absolutely continuous, and singular) and it turns
out that any distribution is the convex combination of elements of these classes. This
classification is made explicit in the following.

1. DISCRETE DISTRIBUTIONS

A distribution function F is discrete if it is piecewise constant, that is it is constant
except for certain points where it is discontinuous. The density p is not defined for
discrete distributions.

By the following simple argument, it is possible to see that the number of points of
discontinuity is countable, that is they can be enumerated as x1,x2, . . .: there can be
at most one point of discontinuity with jump bigger than 1/2 (with two jumps bigger
than 1/2, F would reach a value bigger than 1); similarly, there can be at most three
points of discontinuity with jump whose size belongs to (1/4,1/2] and seven points
with jump whose size belongs to (1/8,1/4] and so on. Summing up, the points of
discontinuity can be at most countable.

2. ABSOLUTELY CONTINUOUS DISTRIBUTIONS

A distribution function F is absolutely continuous if it has probability density function.

Importantly, discrete and absolutely continuous distribution functions, or a combina-
tion of them, do not cover the set of all possibilities, that is, not all F can be written
as F = αFd +(1−α)Fac, for some α ∈ [0,1], with Fd discrete and Fac absolutely con-
tinuous. A universal decomposition is obtained by the introduction of a a third type of
distributions, called singular:

F = αFd +βFac +(1−α−β )Fs, (2.2)

where Fs is a singular distribution function.

3. SINGULAR DISTRIBUTIONS
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A distribution function F is singular if it is continuous (and therefore any single point x
has probability zero) but there exist a set of zero Lebesgue measure whose probability
is 1.

Though singular distributions have a somehow peculiar behavior, examples of singular
distributions are not difficult to construct, see e.g. [7]. Decomposition (2.2) is proven
in many textbooks, among which [7]. 2

More on probability distribution functions

Consider a probability measure P on (R,B(R). Following the discussion after Defi-
nition 2.4 (in the discussion after Definition 2.4 we had the symbol P′ in place of P),
we see that function F(x), x ∈ R, defined as F(x) = P(−∞,x] satisfies properties (a),
(b), (c), which we report here for the reader’s convenience:

(a) F(x) is nondecreasing;
(b) F(x) is continuous on the right;
(c) limx→−∞ F(x) = 0 and limx→∞ F(x) = 1.

Moreover, P can be reconstructed from F .

Let us now ask a converse question: is it true that to an F satisfying (a), (b), (c), there
always corresponds a (unique) probability P such that P(−∞,x] = F(x)? The answer
is indeed positive.

THEOREM 2.6 If F(x), x ∈ R, satisfies (a), (b), (c), then there exists a unique
probability measure P on (R,B(R) such that P(−∞,x] = F(x), ∀x ∈ R. 2

Thus, there is a one-to-one correspondence between functions F(x) satisfying (a), (b),
(c) and probability measures on (R,B(R).
Moreover, given a function F(x) satisfying (a), (b), (c) and the corresponding prob-
ability measure P, the identity function v(x) = x is a random variable between
(R,B(R),P) and R with distribution F(x). We thus see that any function F(x) satis-
fying (a), (b), (c) is a distribution function and conditions (a), (b), (c) characterize the
set of all distribution functions.

PROOF. Consider the system of subsets of R consisting of finite unions of disjoint
sets of the form (a,b], or (−∞,b], or (a,∞) and note that it is an algebra (let us call it
A ). To ease the notation, we write (a,∞] for (a,∞), so that all intervals are written as
(a,b] where a can possibly be −∞ and b can possibly be +∞. For any set in A , define

P0
(
∪p

k=1(ak,bk]
)
=

p

∑
k=1

[F(bk)−F(ak)] (2.3)
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(F(∞) is short for limx→∞ F(x) = 1 and similarly for F(−∞)). If we prove that P0 is
countably additive, then by Caratheodory’s Theorem 1.9 it can be extended in a unique
way to a measure P defined over σ(A ) =B(R). Moreover, for such a P the following
holds:

- P(−∞,x] = F(x)−0 = F(x);

- P(−∞,∞) = F(∞)−F(−∞) = 1, showing that P is a probability;

- no other probability P1 6= P exists which satisfies P1(−∞,x] = F(x), x ∈ R.
Indeed, the restriction of P1 to A would satisfy (2.3) (with P1 replacing P0);
since P also satisfies (2.3) (with P replacing P0), by the uniqueness of the
Caratheodory’s extension we would have P1 = P.

Thus, what is left to prove is that P0 is countably additive on A .

Let

A = ∪p
k=1(ak,bk], A j = ∪

p j
k=1(a

j
k,b

j
k], j = 1,2, . . . , (2.4)

where the A j’s are disjoint and ∪∞
j=1A j = A. Proving the countable additivity of P0

amounts to show that

P0(A) =
∞

∑
j=1

P0(A j). (2.5)

Rewriting (2.5) as follows

0 = P0(A)−
∞

∑
j=1

P0(A j) = P0(A)− lim
m→∞

m

∑
j=1

P0(A j) = lim
m→∞

P0(A−∪m
j=1A j) (2.6)

and observing that A−∪m
j=1A j =: Bm ↓ /0 (“↓” means that Bm ⊇ Bm+1, m = 1,2, . . .,

and ∩∞
m=1Bm = /0, the empty set), we see that (2.5) can be rewritten as

lim
m→∞

P0(Bm) = 0, for any sequence Bm ∈A ,m = 1,2, . . . , such that Bm ↓ /0. (2.7)

The proof is now completed by showing the validity of (2.7).

Let us suppose first that Bm ∈ [−M,M], m = 1,2, . . ., for some M < ∞. Since F(x) is
continuous on the right, the left extremes of the intervals forming Bm can be slightly
moved to the right without a significant change of the F value. Therefore, we can
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find sets Cm ∈ A such that closure(Cm) ⊆ Bm and P0(Bm−Cm) ≤ 1
2m ε , where ε > 0

is a preassigned small number. One fundamental property of the sets closure(Cm),
m = 1,2, . . ., is that the intersection of a finite number of them is already empty:

∩r
m=1closure(Cm) = /0, r < ∞. (2.8)

The reason is that sets [−M,M]−closure(Cm), m = 1,2, . . ., form an open covering of
[−M,M]. But, [−M,M] is compact (by Heine-Borel theorem) so that a finite subcov-
ering exists:

∪r
m=1([−M,M]− closure(Cm)) = [−M,M], (2.9)

and this implies (2.8).

Thus,

P0(Br) = P0(Br−∩r
m=1Cm) (use (2.8)) (2.10)

≤ P0(∪r
m=1(Bm−Cm)) (2.11)

≤
r

∑
m=1

P0(Bm−Cm) (2.12)

≤
r

∑
m=1

1
2m ε (2.13)

= ε, (2.14)

from which (2.7) follows.

Suppose now that sets Bm are not confined to an interval [−M,M]. Then, conclusion
(2.7) can still be drawn by taking an interval [−M,M] such that F(−M) and 1−F(M)
are smaller than ε and then following the same line of reasoning as before (details are
left to the reader). 2

Multidimensional random variables

The notions of distribution function and density function can be extended with just
some notational complications to multidimensional random variables, while maintain-
ing all the fundamental properties valid for the 1-dimensional case. Here, it suffices to
say that the probability distribution function is defined as

F(x1,x2, . . . ,xn) = P(v−1
1 (−∞,x1]∩ v−1

2 (−∞,x2]∩ . . .∩ v−1
n (−∞,xn]) (2.15)

= P
′
((−∞,x1]× (−∞,x2]×·· ·× (−∞,xn]), (2.16)
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where vk is the k-th component of the n-dimensional random variable v and P′ is the
image probability. Again, it is possible to see that F uniquely defines P′.

In the multidimensional case, the probability distribution has the following properties
that extend those valid for the 1-dimensional case:

(a) Given two points x(1) = (x(1)1 ,x(1)2 , . . . ,x(1)n ) and x(2) = (x(2)1 ,x(2)2 , . . . ,x(2)n ) in Rn

with x(2)1 ≥ x(1)1 ,x(2)2 ≥ x(1)2 , . . . ,x(2)n ≥ x(1)n , and a function f :Rn→R, introduce the no-

tation ∆
x(1)k ,x(2)k
k f := f (x1, . . . ,xk−1,x

(2)
k ,xk+1, . . . ,xn)− f (x1, . . . ,xk−1,x

(1)
k ,xk+1, . . . ,xn).

Then, it is a matter of a cumbersome computation to show

that ∆
x(1)1 ,x(2)1
1 (∆

x(1)2 ,x(2)2
2 (· · ·(∆x(1)n ,x(2)n

n F))) = P
′
((x(1)1 ,x(2)1 ]× (x(1)2 ,x(2)2 ]×·· ·× (x(1)n ,x(2)n ]).

Since the right-hand side is clearly nonnegative, we then have

∆
x(1)1 ,x(2)1
1 · · ·∆x(1)n ,x(2)n

n F ≥ 0. (2.17)

To help visualize the situation, for n = 2 we have ∆
x(1)1 ,x(2)1
1 (∆

x(1)2 ,x(2)2
2 F) = F(x(2)1 ,x(2)1 )−

F(x(1)1 ,x(2)2 )−F(x(2)1 ,x(1)2 )+F(x(1)1 ,x(1)2 ) and it represents the measure P
′

of the rect-
angle in Figure 2.1.

~
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2. rfd)

1
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"". 1 1
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Figure 2.1: ∆
x(1)1 ,x(2)1
1 (∆

x(1)2 ,x(2)2
2 F) is the measure P′ of the rectangle.

For n = 1, (2.17) is equivalent to say that F(x) is nondecreasing;
(b) F(x1,x2, . . . ,xn) is continuous on the right in the sense that if xk ↓ x̄k, k = 1,2, . . . ,n,
then F(x1,x2 . . . ,xn)→ F(x̄1, x̄2 . . . , x̄n);
(c) if xk→ x̄k, k = 1,2, . . . ,n, and at least one of the x̄k’s is−∞, then F(x1,x2, . . . ,xn)→
0. Moreover, limx1→∞,...,xn→∞ F(x1,x2, . . . ,xn) = 1. 2

A n-dimensional probability density function is a nonnegative measurable function P
such that F(x1,x2, . . . ,xn) =

∫ x1
−∞

[
∫ x2
−∞
· · · [

∫ xn
−∞

p(t1, t2, . . . , tn)dtn] · · ·dt2]dt1.
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Expectation, variance and moments

Given a random variable v, the integral
∫

Ω
vdP (assuming it is defined) is called the

expectation (or mean) of v and is also written E[v]. Other significant integral charac-
teristics of v are its moment or order r : E[vr] (that is the expectation of the random
variable obtained by the composition of v with the R→ R function of elevation to the
r-th power), and its variance: E[(v−E[v])2]. To indicate the variance of v, the symbol
var(v) is also used.

When v is a matrix of random variables with entries vk j, by the symbol E[v] we mean
the matrix with entries E[vk j]. If v is a n-dimensional random variable, E[v] is the
vector listing the expectation of its components. Similarly, var(v) is a matrix with
entries E[(v j−E[v j])(vk−E[vk])], where v j, vk are the components of v.

Note that the expectation and the other integral quantities can be computed in different
ways. For example, letting F(v) be the probability distribution of v and F(v2) that of v2,
we have

E[v2] =
∫

Ω

v2dP =
∫
R

x2dF(v)(x) =
∫
R

xdF(v2)(x), (2.18)

where the last two equalities are justified in the light of Theorem 1.12.

2.2 Independence and uncorrelation

We start by considering two 1-dimensional random variables v1 and v2.

DEFINITION 2.7 (independence) We say that v1 and v2 are independent if

P(v−1
1 (A1)∩ v−1

2 (A2)) = P(v−1
1 (A1)) ·P(v−1

2 (A2)), ∀A1,A2 ∈B(R). (2.19)

2

Hence, if v1 and v2 are independent, then the probability that they simultaneously take
value in given ranges A1 and A2 equals the product of the probabilities that the first one
takes value in A1 and that the second one takes value in A2.

If v1 and v2 are independent, so are f (v1) and g(v2), with f and g are arbitrary mea-
surable functions (show this).

Let P′1 and P′2 be the image probabilities on R induced by two independent ran-
dom variables v1 and v2, respectively. Also, consider the 2-dimensional random



24 2.2 Independence and uncorrelation

variable defined through relation v = (v1,v2) and let P′ be the corresponding im-
age probability on R2. It turns out that P′ = P′1×P′2. To prove this, it suffices to
show that P′ and P′1×P′2 agrees over the algebra of finite unions of disjoint sets of
the form A1×A2 with A1,A2 ∈ B(R). In fact, by Caratheodory’s theorem 1.9 we
then have that the extension to B(R2) is unique and, therefore, coincident. Take
A = ∪p

k=1(A
k
1 × Ak

2). We have: P′(A) = P′(∪p
k=1(A

k
1 × Ak

2)) = ∑
p
k=1P

′(Ak
1 × Ak

2) =

[due to independence of v1 and v2] = ∑
p
k=1P

′
1(A

k
1) ·P′2(Ak

2) = (P′1×P′2)(A), so that P′
and P′1×P′2 indeed agree over the considered algebra.

Letting F1 and F2 be the probability distribution functions of v1 and v2 and F that of v,
as a direct consequence of (2.19) we have that F(x1,x2) = F1(x1) ·F2(x2). Moreover,
if F1 and F2 admit density function, say p1 and p2, we then have that v has density
function too and it is given by p(x1,x2) = p1(x1) · p2(x2), as it is shown by direct
inspection:

∫ x1

−∞

[∫ x2

−∞

p1(t1)p2(t2)dt2

]
dt1 =

∫ x1

−∞

p1(t1)
[∫ x2

−∞

p2(t2)dt2

]
dt1 (2.20)

=
∫ x1

−∞

p1(t1)F2(x2)dt1 (2.21)

= F1(x1) ·F2(x2) (2.22)
= F(x1,x2). (2.23)

The converse also holds true: if F(x1,x2) = F1(x1) · F2(x2), or p(x1,x2) = p1(x1) ·
p2(x2), then v1 and v2 are independent (providing details is a useful exercise).

DEFINITION 2.8 (uncorrelation) We say that v1 and v2 are uncorrelated if
E[v1v2], E[v1] and E[v2] exist finite and

E[v1v2] = E[v1] ·E[v2]. (2.24)

2

Uncorrelation is an integral notion. Not surprisingly, independence is a stronger notion
than uncorrelation and the former implies the latter, while the opposite is in general
false. More precisely, suppose that v1 and v2 are independent and that E[v1v2], E[v1]
and E[v2] exist finite; then, v1 and v2 are uncorrelated, as the following calculation
shows:
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E[v1v2] =
∫

Ω

v1(ω)v2(ω)dP(ω) (2.25)

=
∫
R2

xy dP′(x,y) (use T heorem 1.12) (2.26)

=
∫
R2

xy d(P′1×P2)(x,y) (2.27)

=
∫
R

[∫
R

xy dP′1(x)
]

dP′2(y) (use T heorem 1.13) (2.28)

=

[∫
R

x dP′1(x)
][∫

R
y dP′2(y)

]
(2.29)

= E[v1]E[v2]. (2.30)

An example of two random variables that are uncorrelated but not independent is
shown in Figure 2.2.

0 10 0 1

Figure 2.2: Probability space: (Ω,F ,P) = ([0,1],B[0,1],λ ). Solid line = v1; dashed line =
v2. Left: v1 and v2 are uncorrelated, but not independent; right: v1 and v2 are independent, and
therefore also uncorrelated.

The notions of independence and uncorrelation carry over to the multidimensional case
in a straightforward way. Given v1 : Ω→Rn1 and v2 : Ω→Rn2 , we say that v1 is inde-
pendent of v2 if P(v−1

1 (A1)∩v−1
2 (A2)) =P(v−1

1 (A1)) ·P(v−1
2 (A2)),∀A1 ∈B(Rn1),A2 ∈

B(Rn2). Note that this definition only establish a cross-property of v1 and v2; different
components of e.g. v1 can well be dependent one on the others. By identifying v1
and v2 with the vectors of their components, we say that v1 and v2 are uncorrelated if
E[v1vT

2 ] = E[v1]E[vT
2 ].

2.3 Characteristic functions

The method of characteristic functions is one of the main tools in probability theory.
Though a characteristic function carries exactly the same information content as the
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corresponding probability distribution, in many contexts it is more handy to use than
the distribution itself. Here, we merely define characteristic functions and derive some
basic properties of use in the book. The interested reader is referred to textbooks on
probability for a broader treatment.

To define the characteristic function, we need to use complex-valued random variables.
A complex-valued random variable v is, by definition, given by v = vR+ ivI , where vR
and vI are (real-valued) random variables. We also let E[v] = E[vR ]+ iE[vI ].

DEFINITION 2.9 (characteristic function) The characteristic function of a
random variable v is defined as ϕ(t) := E[eitv], t ∈ R. 2

For a given t, E[eitv] is a complex number; as t varies over R, ϕ(t) = E[eitv] is
a complex-valued function. It is clear that ϕ(t) can also be expressed as ϕ(t) =∫
R eitxdF(x), where F is the distribution function of v. Thus, ϕ is determined by F . It

is a crucial fact that the converse is also true: F can be completely reconstructed from
ϕ , as the next theorem states.

THEOREM 2.10 Let F and G be probability distribution functions on R with the
same characteristic function, viz.,∫

R
eitxdF(x) =

∫
R

eitxdG(x), ∀t ∈ R. (2.31)

Then, F(x) = G(x), ∀x ∈ R.

PROOF. Consider the function f ε in Figure 2.3, where β > α are arbitrary and
ε > 0 is smaller than β −α .

f 
ε

β+εβα+εα

Figure 2.3:

We first prove that

∫
R

f εdF =
∫
R

f εdG, (2.32)
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and then show that the thesis of the theorem follows from this equality.

Consider a sequence of real numbers ρn ↓ 0 and pick a n large enough so that [α,β +
ε] ⊆ [−n,n]. In [−n,n], f ε can be uniformly approximated by a finite trigonometric
sum (Weierstrass theorem). Precisely, there exists a function

f ε
n (x) :=

N(n)

∑
k=−N(n)

akeiπ k
n x, (2.33)

where ak are complex coefficients, such that

sup
−n≤x≤n

| f ε(x)− f ε
n (x)| ≤ ρn. (2.34)

Observe also that function f ε
n (x) is periodic so that

sup
x
| f ε

n (x)|= sup
−n≤x≤n

| f ε
n (x)| ≤ 1+ρn, (2.35)

and that, by (2.31),

∫
R

f ε
n dF =

∫
R

f ε
n dG. (2.36)

Thus,

∣∣∣∣∫R f εdF−
∫
R

f εdG
∣∣∣∣ (2.37)

=

∣∣∣∣∫
[−n,n]

f εdF−
∫
[−n,n]

f εdG
∣∣∣∣ (2.38)

≤
∣∣∣∣∫

[−n,n]
f ε
n dF−

∫
[−n,n]

f ε
n dG

∣∣∣∣+2ρn (use (2.34)) (2.39)

≤
∣∣∣∣∫R f ε

n dF−
∫
R

f ε
n dG

∣∣∣∣+(1+ρn)
∫
[−n,n]c

dF +(1+ρn)
∫
[−n,n]c

dG+2ρn(2.40)

(use (2.35); let[−n,n]cbethecomplement o f [−n,n])(2.41)

≤ (1+ρn)
∫
[−n,n]c

dF +(1+ρn)
∫
[−n,n]c

dG+2ρn (use (2.36)). (2.42)

The right-hand side tends to zero as n→ ∞. Since the left-hand side does not depend
on n, it must then be equal to zero and (2.32) is proven.

We turn now to prove that (2.32) implies that F = G. As ε → 0,
∫
R f εdF → F(β )−

F(α) and
∫
R f εdG→ G(β )−G(α). Hence, from (2.32), F(β )−F(α) = G(β )−
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G(α). Letting α →−∞, we conclude that F(β ) = G(β ), ∀β ∈ R. 2

Why are characteristic functions so widely used in probability? One important reason
is that the characteristic function of the sum of independent random variables is simply
given by the product of the characteristic functions of the variables:

- If v1 and v2 are independent, then ϕv1+v2(t) = ϕv1(t) ·ϕv2(t).

To see that this is the case, write: ϕv1+v2(t) = E[eit(v1+v2)] = E[eitv1eitv2] =
[since v1 and v2 are independent, so are eitv1 and eitv2 and independence implies uncorrelation] =
E[eitv1]E[eitv2] = ϕv1(t) ·ϕv2(t). So, when dealing with independent variables, we can
move from distributions (for which independence translates into the awkward condi-
tion that the distribution of v1 + v2 is the convolution of the distributions of v1 and v2)
to characteristic functions and use the handy product rule. In doing so, no informa-
tion is lost, as the distribution can be reconstructed from the characteristic function, as
stated in Theorem 2.10.

We know that ϕ1(t) =ϕ2(t) implies F1(x) =F2(x). Now, we ask: suppose that ϕn(t)→
ϕ(t); is it true that Fn(x)→ F(x)? A precise answer is given by the following theorem,
which plays an important role in proving limit results in probability theory.

THEOREM 2.11 Let Fn be a sequence of probability distribution functions on R
and let ϕn be the corresponding sequence of characteristic functions.

(a) If Fn→ F weakly (see Section 3.5 for the notion of weak convergence) and ϕ is
the characteristic function of F, then ϕn(t)→ ϕ(t), ∀t ∈ R;

(b) if ϕn(t)→ ϕ(t), ∀t ∈ R, and ϕ(t) is continuous at t = 0, then ϕ(t) is a charac-
teristic function (i.e., ϕ(t) =

∫
R eitxdF(x) for some distribution function F) and

Fn→ F weakly.

PROOF.
(a) Write ϕn(t) =

∫
R(cos(tx) + isin(tx))dFn(x). The weak convergence of Fn → F

means that
∫
R f (x)dFn(x)→

∫
R f (x)dF(x), for any continuous and bounded function

f (x). The thesis then follows by taking in turn f (x) = cos(tx) and f (x) = sin(tx).

(b) The proof proceeds as follows. Thanks to the continuity of ϕ(t) at t = 0, we prove
that Fn is tight (see Theorem 3.24 for the definition of tighteness). Due to tightness, by
Theorem 3.24, Fn admits a subsequence weakly convergent to some F and this F has
ϕ(t) as characteristic function. Finally, by the convergence ϕn(t)→ ϕ(t) we establish
that the whole sequence Fn converges to F .
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To prove the tightness of Fn, pick any real M and let β := inf|α|≥1
(
1− sinα

α

)
(note that

β > 0). We have

β

∫
|x|≥M

dFn(x) = inf
|α|≥1

(
1− sinα

α

)∫
|x|≥M

dFn(x) (2.43)

≤
∫
|x|≥M

(
1− sin(x/M)

x/M

)
dFn(x) (2.44)

≤
∫
R

(
1− sin(x/M)

x/M

)
dFn(x) (2.45)

( f or x = 0, let
sin(x/M)

x/M
be 1) (2.46)

=
∫
R

[
M
∫ 1/M

0
(1− cos(tx))dt

]
dFn(x) (2.47)

= M
∫ 1/M

0

[∫
R
(1− cos(tx))dFn(x)

]
dt (2.48)

(use Fubini′s T heorem 1.13) (2.49)

= M
∫ 1/M

0
(1−Re(ϕn(t))) dt (2.50)

n→∞

−→ M
∫ 1/M

0
(1−Re(ϕ(t))) dt (2.51)

(use a slight variation o f the dominated (2.52)
convergence T heorem 3.9). (2.53)

The right-hand side represents the mean value of 1−Re(ϕ(t)) in a right neighborhood
of the origin. Since ϕ(0) = E[ei0x] = 1 and ϕ(t) is continuous at t = 0, we have

M
∫ 1/M

0
(1−Re(ϕ(t)))dt→ 0, as M→ ∞. (2.54)

We show that (2.54) implies the tightness of Fn. Indeed, given an arbitrarily small
ε > 0, take M(ε) such that M(ε)

∫ 1/M(ε)
0 (1− Re(ϕ(t)))dt ≤ ε

2 . Then, by (2.53),
β
∫
|x|≥M(ε) dFn(x) ≤ ε for any n large enough, say n ≥ n(ε). Since β

∫
|x|≥M dFn(x)

is decreasing with M, we then have supn≥n(ε)β
∫
|x|≥M dFn(x) ≤ ε , as M → ∞.

On the other hand, over the finite set of integers n with n < n(ε), we have
maxn<n(ε)β

∫
|x|≥M dFn(x)→ 0, as M → ∞. Putting together these two facts yields:

supn β
∫
|x|≥M dFn(x) ≤ ε , as M→ ∞. Owing to the arbitrariness of ε , the tightness of

Fn follows.

Having proven the tightness of Fn, appeal now to Helly’s Theorem 3.24 to conclude
that there exists a subsequence Fnk of Fn that converges weakly to some limit distribu-
tion function F . Since Fnk → F weakly, from part (a) of this theorem, we also have
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that ϕnk(t) tends for every t to the characteristic function of F . But, by assumption,
ϕnk(t)→ ϕ(t), ∀t ∈ R, so that ϕ(t) must be the characteristic function of F .

We conclude the proof by showing that the whole sequence Fn→ F weakly. Suppose
not. Then, there exists a subsequence Fn′k

of Fn and a continuous and bounded f : R→
R such that, for some ε > 0,∣∣∣∣∫R f dFn′k

−
∫
R

f dF
∣∣∣∣≥ ε, k = 1,2, . . . . (2.55)

But Fn′k
is tight (being a subsequence of Fn), so that again by Helly’s theorem there

is a subsequence of indeces {n′′k} ⊆ {n′k} such that Fn′′k
converges weakly to some

distribution Q. Certainly, Q 6= F , since, otherwise, (2.55) would be violated. Now,
ϕnk(t)→ ϕF(t), the characteristic function of F , and ϕn′′k

(t)→ ϕQ(t), where ϕF(t) 6=
ϕQ(t) since F 6= Q. These two convergences are contradictory since, by hypothesis,
the whole ϕn(t) sequence converges to the same limiting function ϕ(t). Thus, Fn→ F
weakly and this completes the proof. 2

EXAMPLE 2.12 It is possible that ϕn(t)→ ϕ(t), ∀t ∈ R, but: ϕ(t) is not con-
tinuous at t = 0; ϕ(t) is not a characteristic function; and Fn is not weakly convergent
to a distribution function F. The reader can gain insight in this fact by considering
the distribution function Fn associated with the uniform distribution on [−n,n], whose
characteristic function is

ϕn(t) =
{

1, t = 0
1
nt sin(tn), t 6= 0.

(2.56)

Here, ϕn(t)→ ϕ(t) with

ϕ(t) =
{

1, t = 0
0, t 6= 0, (2.57)

but ϕ(t) is not a characteristic function (as it can be easily shown, a characteristic
function is always a continuous function) and Fn does not converge weakly to any F.

Thus, ϕn(t)→ ϕ(t) is not sufficient to conclude that Fn converges weakly to some F.
However, part (b) of Theorem 2.11 tells us that, whenever convergence fails, ϕ(t) has
to be discontinuous in 0. 2
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2.4 Gaussian random variables

A n-dimensional random variable is “Gaussian” (or “normal”) if it has density function

p(x) =
1

(2π)n/2|V |1/2 e−
1
2 (x−m)TV−1(x−m), (2.58)

where x = [x1 x2 · · · xn]
T ∈ Rn, m ∈ Rn, V ∈ Rn×n is symmetric and positive definite

(we write V � 0), and | · | indicates determinant.

It can be computed that

m = E[v]; (2.59)
V = Var(v). (2.60)

Thus, the density function of a Gaussian random variable is fully described by its mean
and its variance.

Gaussian random variables have notable properties, as listed below.

(i) If an n-dimensional random variable v is Gaussian, then, given a matrix
A ∈ Rm×n such that AAT � 0, Av is Gaussian too.

This can be proven by a direct computation, which we here omit. Condition AAT � 0
prevents Av from concentrating in a subspace of Rm, in which case the density function
of Av does not exist. Also, we have: E[Av] = AE[v] = Am and Var(Av) = E[(Av−
Am)(Av−Am)T ] = AE[(v−m)(v−m)T ]AT = AVAT .

(ii) Uncorrelation implies independence.

Suppose that the variance matrix V has the form

V =

[
V11 0
0 V22

]
, (2.61)

where V11 and V22 are matrices of size n1× n1 and n2× n2, respectively, that is v is
formed by two uncorrelated components v1 ∈ Rn1 and v2 ∈ Rn2 . Then, by splitting
x−m into two components of suitable dimensions, we have

p(x) =
1

(2π)n/2|V |1/2 e−
1
2 (x−m)TV−1(x−m) (2.62)

=
1

(2π)n1/2|V11|1/2(2π)n2/2|V22|1/2 e−
1
2 [(x1−m1)

TV−1
11 (x1−m1)+(x2−m2)

TV−1
22 (x2−m2)](2.63)

= p1(x1)p2(x2), (2.64)
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where p1(x1) and p2(x2) are the density functions of v1 and v2, so proving that v1 and
v2 are independent.

The above two properties are certainly one reason of the success of Gaussian vari-
ables: because of these properties, many statistical problems find an easier solution
within the Gaussian framework. A second reason of success is that Gaussian variables
provide a universal paradigm for the description of natural phenomena that involve
many stochastic sources, a fact that has a theoretical foundation in the central limit
Theorem (see Section 3.4).

Thus far, we have considered Gaussian variables that have a positive definite variance
V . Sometimes it is convenient to have at our disposal a more general definition that
allows for a positive semidefinite variance as well. In this case, however, a density
function does not exist and we have to move to distribution functions or – as we prefer
to do – to characteristic functions.

Let us start by observing that the characteristic function of a Gaussian variable with
mean m and variance V � 0 is given by (we omit the lengthy and conceptually unin-
teresting derivation):

ϕ(t1, t2, . . . , tn) := E[eitT v] = eitT m− 1
2 tTVt (2.65)

(in fact we have referred here to the characteristic function of a multidimensional ran-
dom variable, a definition which naturally extends that valid for the 1-dimensional
case. Similarly to Theorem 2.10, multidimensional distributions are in a 1-to-1 cor-
respondence with multidimensional characteristic functions). Suppose now that V is
only positive semidefinite and consider again expression

eitT m− 1
2 tTVt . (2.66)

(2.66) still identifies a characteristic function (i.e., it equals
∫
R eitT xdF(x) for some

n-dimensional probability distribution F). To show this, consider

eitT m− 1
2 tT (V+ 1

n I)t , (2.67)

where I is the identity matrix. Since V + 1
n I � 0, (2.67) is the characteristic function

ϕn(t) of a Gaussian distribution G(m,V + 1
n I). When we let n→ ∞, (2.67)→ (2.66),

and the limit ϕ(t) = (2.66) is continuous at t = 0. Then, by appealing to Theorem 2.11
(actually, to an extension of this theorem to multidimensional distribution functions),
we conclude that (2.67) is indeed the characteristic function of some distribution func-
tion. This justifies the following definition.

DEFINITION 2.13 (Gaussian random variable)
A n-dimensional random variable is “Gaussian” (or “normal”) if it has character-
istic function
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ϕ(t1, t2, . . . , tn) := E[eitT v] = eitT m− 1
2 tTVt , (2.68)

where t = [t1 t2 · · · tn]T ,m ∈ Rn, 0�V ∈ Rn×n. 2

2.5 Computing the density induced by a function

Sometimes, it is necessary to compute the density function of a random variable ob-
tained by applying a function f to another random variable whose density function is
known. The following theorem provides an answer to this problem.

THEOREM 2.14 (density function of f(v)) Consider a n-dimensional random
variable v with density function P. Given a function f : Rn → Rn such that: i) f is
1-to-1; and ii) g = f−1 is everywhere differentiable, then v′ = f (v) is a n-dimensional
random variable and it has a density function given by the relation

p′(y) = p(g(y)) ·
∣∣Jg
∣∣ , (2.69)

where Jg is the Jacobian of g, namely

Jg = det


∂g1
∂y1

· · · ∂g1
∂yn

... . . . ...
∂gn
∂y1

· · · ∂gn
∂yn

 (2.70)

(subscript denotes component) and | · | is absolute value.

PROOF. The proof uses results on absolute continuous functions which we take
here for granted. Moreover, we only consider the 1-dimensional case since the multi-
dimensional case is conceptually similar but notationally more complicated.

For n = 1, the thesis writes

p′(y) = p(g(y))
∣∣∣∣dg
dy

∣∣∣∣ . (2.71)

We first establish that v′ is a random variable. Start by observing that f , being the
inverse of a differentiable and therefore continuous function g, is continuous, so that,
by definition of continuity, the inverse image through f of an open set is open, and
therefore in B(R). Now, it is not difficult to see that the collection of all sets whose
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inverse image through f is in B(R) is a σ -algebra. Since Borel sets are the smallest
σ -algebra containing the open sets, we conclude that the inverse image of any Borel set
is in B(R), i.e. f is B(R)/B(R)-measurable. Hence, v′ = f (v) is a random variable
in view of Theorem 1.5.

We turn now to prove the validity of (2.71).

Since g is 1-to-1, it is either increasing or decreasing. Suppose g is increasing (the de-
creasing case goes through similarly). Fix an interval [−M,M], where M is an integer.
Then,

g(x)−g(−M) =
∫ x

−M

dg
dy

dy f or −M ≤ x≤M (2.72)

(this follows from Lemma 7.25 and Theorem 7.18 in [6] that prove that a g increasing
and everywhere differentiable over [−M,M] is absolutely continuous over the same in-
terval and from the fact that, for an absolutely continuous function g, dg

dy is measurable
and (2.72) holds - Theorem 7.20 in [6]).

Now, put µ(B) = λ (g(B)), B ∈B[−M,M] (λ is Lebesgue measure). The σ -additivity
of λ implies the σ -additivity of µ , so that µ is a measure on B[−M,M]. g(x)−g(−M)

is its distribution and, by virtue of (2.72), dg
dy is its density function (the notions of

distribution and density functions used here are the same as in Definitions 2.4 and 2.5
expect for the scaling factor µ[−M,M].) Thus,

λ (g(B))= µ(B)=
∫
[−M,M]

1(B)dµ =
∫
[−M,M]

1(B)
dg
dy

dy=
∫

B

dg
dy

dy, ∀ B∈B[−M,M],

(2.73)

where 1(·) is the indicator function and the third “=” is justified in view of the comment
that follows Definition 2.5.

Turn now to consider the density P. Assume first that p = 1(A)/λ (A), where A is a
Borel set with λ (A)> 0. Then

∫ x

−M
p(g(y))

dg
dy

dy =
1

λ (A)

∫
[−M,x]∩ f (A)

dg
dy

dy (2.74)

=
1

λ (A)
λ (g([−M,x]∩A)) (using (2.73)) (2.75)

= P{g(−M)≤ v≤ g(x)} (2.76)
= P

{
−M ≤ v′ ≤ x

}
. (2.77)

Let M→ ∞ to conclude that
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∫ x

−∞

p(g(y))
dg
dy

dy = P
{

v′ ≤ x
}
, (2.78)

from which we see that p(g(y))dg
dy is the density of v′, that is, (2.71) is established.

In the case of a generic density P, to arrive to equation (2.78) one has to first extend
the derivation in (2.77) to simple functions, and then pass to the limit by the monotone
convergence Theorem 3.8. 2

Theorem 2.14 can also be applied to functions f : Rn→Rm, with m < n, provided that
Rm can be augmented with dummy variables such that the augmented transformation
becomes invertible. This is illustrated by an example.

EXAMPLE 2.15 Given a bi-dimensional v with density function P, suppose we
want to compute the density function of η defined as the sum of the two components
of v: η = v1 + v2. Since the transformation v→ η is from R2 to R1, Theorem 2.14
cannot be directly applied. However, introducing the dummy variable ξ = v2 and
letting v′ = [η ξ ]T , we have

v′ = Av, (2.79)

where A =

[
1 1
0 1

]
, and (2.79) is an invertible transformation. Now, A−1 =[

1 −1
0 1

]
, so that

∣∣Jg
∣∣= ∣∣∣∣det

[
1 −1
0 1

]∣∣∣∣= 1, and Theorem 2.14 gives:

p′(y1,y2) = p(y1− y2,y2). (2.80)

The density function of η can then be recovered by integration:

pη(y1) =
∫
R

p(y1− y2,y2)dy2. (2.81)

The reader is invited to complete this example by computing pη when v is uniformly
distributed in [0,1]2. 2
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Chapter 3

STOCHASTIC CONVERGENCE

3.1 Probabilistic notions of convergence

We introduce a number of probabilistic notions of convergence of a sequence of ran-
dom variables vn to a limit random variable v and relate each one to the others.

DEFINITION 3.1 (stochastic convergence) Given a sequence of random vari-
ables vn and an additional random variable v defined on a probability space (Ω,F ,P),
we say that vn→ v

(a) uniformly, if supω∈Ω |vn(ω)− v(ω)| → 0;
(b) surely, if vn(ω)− v(ω)→ 0, ∀ω ∈Ω;
(c) almost surely, if P{ω such that vn(ω)− v(ω)→ 0} = 1 (when we want to
emphasize probability P we write P-almost surely.) Another expression equiva-
lent to “almost surely” is “with probability 1”;
(d) in L2, if E[(vn− v)2]→ 0;
(e) in L1, if E[|vn− v|]→ 0;
(f) in probability, if ∀ε > 0, P{ω such that |vn(ω)− v(ω)| ≥ ε}→ 0;
(g) weakly, if for any continuous and bounded function f : R → R, we have
E[ f (vn)]→ E[ f (v)]. “vn→ v weakly” is also expressed as “vn→ v in distribu-
tion”. When vn converges in distribution to a variable with distribution F, we
also write vn ∼ AsF. 2

Definitions (a)-(f) are concerned with the behavior of vn− v and require that this dif-
ference goes to zero as n→ ∞ in different ways as specified by the different defini-
tions. Thus, for instance, vn tends to v almost surely if vn− v tends to zero almost
surely. In contrast, the fact that vn → v weakly in no way implies that vn− v→ 0.
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To understand this, suppose e.g. that vn = ξ , n = 1,2, . . ., where ξ is a fixed ran-
dom variable different from v but sharing with v the same distribution. Then clearly
E[ f (vn)] = E[ f (ξ )] = E[ f (v)], ∀n, so that vn→ v weakly, but vn− v = ξ − v does not
converge to zero.

Weak convergence is in fact a property of the distribution of the random variables.
Indeed, E[ f (vn)]→ E[ f (v)] can be rewritten as

∫
R f dFn →

∫
R f dF (where Fn is the

distribution function of vn and F that of v) and we see that weak convergence means
that Fn approaches F . Weak convergence is discussed in detail in Section 3.5.

The different notions of convergence are related to each other by the following theo-
rem.

THEOREM 3.2 The implications shown in Figure 3.1 hold true.

(a) (f ) (g)

(c)

(e)(d)

(b)

Figure 3.1: Implications among various notions of stochastic convergence.

PROOF. Implications (a)⇒ (b)⇒ (c) and (a)⇒ (d) are obvious.

Let ξn := vn− v.

(d)⇒ (e)] By Schwarz inequality 4.7 applied to L2 (see Example 4.4): E[|ξn|] = E[1 ·
|ξn|]≤ (E[12])1/2(E[ξ 2

n ])
1/2 =(E[ξ 2

n ])
1/2, showing that E[ξ 2

n ]→ 0 implies E[|ξn|]→ 0.
(c)⇒ ( f )] Let Aε

j := {ω such that |ξn| < ε,∀n ≥ j}. Aε
j is increasing with j and

∪ jAε
j =: Aε is the set where the tail of |ξn| is below ε . Since ξn → 0 almost surely,

P(Aε) = 1, from which P(Aε
j)→ 1 as j→ ∞. Now, since {ω such that |ξ j| ≥ ε} ⊆

Ω−Aε
j , we obtain that P{ω such that |ξ j| ≥ ε}→ 0.

(e)⇒ ( f )] From (e), εP{ω such that |ξn| ≥ ε} ≤ E[|ξn|] → 0 and (f) follows.
( f )⇒ (g)] Given ε1,ε2 > 0, fix M and ε such that P{ω such that |v| ≥ M} ≤ ε1
and | f (x)− f (y)| ≤ ε2 for |y| < M and |x− y| < ε (such ε exists since a continuous
function is uniformly continuous on a bounded set). Then,

|E[ f (vn)]−E[ f (v)]| (3.1)
≤ E [| f (vn)− f (v)|] (3.2)
≤ (2max

x
| f (x)|) [ε1 +P{ω such that |vn− v| ≥ ε}]+ ε2. (3.3)
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Since ε1 and ε2 are arbitrarily small, f is bounded, and P{ω such that |vn−v| ≥ ε}→ 0
by assumption, (g) follows. 2

No other implications than the ones stated in Theorem 3.2 hold true. In particular,
almost sure convergence does not imply and is not implied by L2-convergence, as the
following example shows.

EXAMPLE 3.3 Consider the following sequence of random variables defined on
the probability space ([0,1],B[0,1],λ ):

vn =

{ √
n, on [0,1/n]

0, otherwise. (3.4)

Letting v := 0, clearly vn → v almost surely, but E[(vn− v)2] = 1
nn = 1 6→ 0, so that

almost sure convergence does not imply L2-convergence.

Conversely, consider the sequence v1
1,v

1
2,v

2
2,v

1
3,v

2
3,v

3
3, . . . with

vk
n =

{
1, on [k−1

n , k
n ]

0, otherwise.
(3.5)

This sequence is L2-convergent to zero, but, for every ω ∈ [0,1], the sequence keeps
oscillating between 0 and 1 so that it does not converge for any ω . 2

The reason why we had L2-convergence but not almost sure convergence in the latter
example was that the intervals where vk

n = 1 in (3.5) had two properties: i) their size
shrinks (so that L2 convergence to zero takes place); and ii) each point in [0,1] falls
infinitely many times in the intervals (and, thus, almost sure convergence fails). Fact
ii) is possible because the sum of the interval lengths 1, 1

2 ,
1
2 ,

1
3 ,

1
3 ,

1
3 , . . . where vk

n = 1
is diverging. The following theorem, which shows a converse result that when certain
sums are finite then almost sure convergence takes place, is important to assess almost
sure convergence in various contexts.

THEOREM 3.4 Let vn, n = 1,2, . . ., and v be random variables. Suppose that for
any ε > 0,

∞

∑
n=1

P{ω such that |vn− v| ≥ ε}< ∞, (3.6)

then vn→ v almost surely.
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PROOF. Letting

Ak
j := {ω such that |vn− v| ≥ 1

k
, for some n≥ j}, (3.7)

we have that {ω such that vn− v 6→ 0}= ∪∞
k=1∩∞

j=1 Ak
j. Thus,

P{ω such that vn− v 6→ 0} ≤
∞

∑
k=1

lim
j→∞

∞

∑
n= j

P{ω such that |vn− v| ≥ 1
k
}. (3.8)

Since (3.6) holds, each single term lim j→∞ ∑
∞
n= jP{ω such that |vn− v| ≥ 1

k} is zero
and the right-hand side of the previous inequality is null, so proving that vn→ v almost
surely. 2

3.2 Measurability of the limit of random variables

The next result relates the measurability of a sequence of random variables to that of
its limit.

THEOREM 3.5 Let vn be a sequence of random variables on (Ω,F ,P) (so that
each vn is F -measurable) and let v be an additional variable that is not required to be
F -measurable by assumption. If vn(ω)→ v(ω), ∀ω ∈Ω, then v is F -measurable.

PROOF. For any a,b ∈ R, we have

{ω such that v ∈ (a,b)}= ∪∞
p=1∩n≥p {ω such that vn ∈ (a,b)}. (3.9)

Since {ω such that vn ∈ (a,b)} ∈ F and a σ -algebra is closed under countable in-
tersection and union, we have that {ω such that v ∈ (a,b)} ∈ F , from which the
measurability of v follows by applying the test of measurability 2.3. 2

The almost sure limit of vn

The set {vn→}where the limit of a sequence of random variables exists finite is always
measurable, i.e., it belongs to F .

To see that this is the case, le us consider the complementary set where vn does not
converge to a finite limit, i.e., where vn diverges or it oscillates. The set where vn→ ∞

can be written as ∩∞
M=1∪∞

p=1∩n≥p{ω such that vn≥M}, where the curly bracket is the
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set of the ω’s where, for any fixed M, the tail of vn from a certain p onward is above M.
Since {ω such that vn ≥M} is measurable and a σ -algebra is closed under countable
intersection and union, we have that {ω such that vn→ ∞} is measurable. Similarly,
{ω such that vn → −∞} is measurable. Consider then a ω where vn(ω) oscillates.
Then, there exist two rational numbers α and β with α < β such that vn(ω) is below
α infinitely many times and above β infinitely many times. The set of ω’s where
vn(ω) < α infinitely many times can be written as ∩∞

p=1 ∪n≥p {ω such that vn < α}
and it is measurable. Likewise is measurable the set where vn(ω)> β infinitely many
times, so that we obtain the measurability of the set where vn(ω) oscillates between
α and β infinitely many times, which is the intersection of the two previous sets. The
set where vn oscillates is obtained as union over all rationals α and β and is therefore
measurable. In conclusion, the set where vn does not converge to a finite limit is the
union of measurable sets and is measurable, and so its complementary set {vn→} is
also measurable.

Suppose now that the measurable set {vn→} has probability 1: P{vn→}= 1, that is,
the sequence vn admits almost surely a limit. If we let

v̄n =

{
vn, where vn converges to a f inite value
0, otherwise, (3.10)

this v̄n is measurable and it converges for any ω ∈Ω to

v =
{

limn→∞ vn, where vn converges to a f inite value
0, otherwise, (3.11)

and, by an application of Theorem 3.5 we see that such a v is a random variable. v is
an “almost sure limit of vn”. Notice also that any other random variable obtained as
v+η , with η = 0 almost surely, is also an almost sure limit of vn. Since two almost
sure limits only differ on a zero probability set, to many purposes specifying which
limit one is considering is immaterial, and it is customary to speak of “almost sure
limit of vn”, where it is meant that one refers to anyone among the random variables
that are almost sure limits of vn.

For easy reference, we summarize the discussion in the following theorem.

THEOREM 3.6 Consider a sequence of random variables vn. Then,

v =
{

limn→∞ vn, where vn converges to a f inite value
0, otherwise, (3.12)

is a random variable (i.e. it belongs to F ). The set {vn→} where vn converges to a
finite value is measurable. If P{vn→}= 1, then v is called the almost sure limit of vn.
Any other random variable v+η obtained by adding to v a random variable η with
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η = 0 almost surely is also called an almost sure limit of vn. 2

Measurability with respect to a sub σ -algebra G ⊆F

THEOREM 3.7 Let vn be a sequence of random variables on (Ω,F ,P) that are
G -measurable for some σ -algebra G ⊆ F and let v be an additional random vari-
able. If vn → v in probability, then v need not be G -measurable, but there exists a
G -measurable v̄ such that P{v 6= v̄}= 0.

PROOF. Fix a sequence of real numbers εk ↓ 0 (i.e., εk is decreasing and tends to
zero) and extract from vn a subsequence vnk such that

∞

∑
k=1

P{ω such that |vnk− v| ≥ εk}< ∞, (3.13)

(such a sequence exists since vn → v in probability). Equation (3.13) implies that
vnk → v almost surely, as it can be proven by applying Theorem 3.4. Indeed, given
ε > 0, let k̄ be such that εk̄ ≤ ε and write

∞

∑
k=1

P{ω such that |vnk− v| ≥ ε} (3.14)

=
k̄−1

∑
k=1

P{ω such that |vnk− v| ≥ ε}+
∞

∑
k=k̄

P{ω such that |vnk− v| ≥ ε} (3.15)

≤
k̄−1

∑
k=1

P{ω such that |vnk− v| ≥ ε}+
∞

∑
k=k̄

P{ω such that |vnk− v| ≥ εk}(3.16)

< ∞, (3.17)

so that the assumption (3.6) of Theorem 3.4 is satisfied.

Now, vnk is G -measurable and therefore we can see vnk as a sequence of random vari-
ables on the probability space (Ω,G ,P). Moreover, vnk is almost surely convergent to
v, so that P{vnk →} = 1. The almost sure limit v̄ of vnk is also G -measurable and it
coincides almost surely with v. 2

The reader may have noticed that the reason why we have to introduce v̄ is that v can
possibly exhibit some “strange” behavior where vnk 6→ v so that v is not G -measurable.
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3.3 Limit under the sign of expectation

Suppose that vn→ v almost surely. Under what conditions is it true that E[vn]→ E[v]?
The following theorems provide an answer.

THEOREM 3.8 (monotone convergence) Let vn,n = 1,2, . . ., and v be random
variables such that vn ↑ v almost surely (i.e. vn is increasing and tends to v almost
surely), and assume that vn ≥ z,n = 1,2, . . ., for some random variable z with E[z] >
−∞. Then,

E[vn] ↑ E[v]. (3.18)

2

THEOREM 3.9 (dominated convergence) Let vn,n = 1,2, . . ., and v be random
variables such that vn → v almost surely, and assume that |vn| ≤ z,n = 1,2, . . ., for
some random variable z with E[z]< ∞. Then,

E[vn]→ E[v]. (3.19)

2

A proof of these theorems can be found in any textbook on probability.

In the statements of the theorems, two types of conditions are present: vn is required
to approach v; and vn is bounded by z. The latter condition serves the purpose to limit
the importance of the mismatch between vn and v on events of small probability. An
example clarifies this matter.

EXAMPLE 3.10 (Example 3.3 continued) Consider again the vn’s in (3.4).
Clearly, v2

n→ 0 almost surely, but E[v2
n] = 1 6→ E[0] = 0. Here, no dominating z exists

with E[z]< ∞, so that the conditions of Theorem 3.9 are violated. 2

3.4 Convergence results for independent random vari-
ables

We commence by proving probabilistic inequalities. Besides being useful to prove
convergence results, these inequalities are of interest in their own right.
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MARKOV’S INEQUALITY 3.11

For any nonnegative random variable v and real number ε > 0,

P{v≥ ε} ≤ E[v]
ε

. (3.20)

PROOF. The proof is elementary: E[v] =
∫

Ω
vdP≥

∫
{v≥ε} vdP≥ εP{v≥ ε}. 2

An application of Markov’s inequality gives

CHEBYSHEV’S INEQUALITY 3.12

For any ε > 0,

P{|v| ≥ ε} ≤ E[v2]

ε2 . (3.21)

PROOF.

P{|v| ≥ ε} = P(v2 ≥ ε
2) (3.22)

≤ E[v2]

ε2 (use (3.20)). (3.23)

2

In Markov’s inequality, the idea is to lowerbound E[v] by squeezing the tail of v to the
boundary value ε . Thus, the bound is tight only when the tail rapidly vanishes after ε .
A similar observation applies to Chebyshev’s inequality. Better bounds can be found
by “redressing” the random variable distribution through some transformation before
Markov’s inequality is applied. One such example is given by the following inequality
due to Chernoff. In this inequality, s is a free parameter that can be used to tune the
distribution obtained after transformation and an example of use of s is found in the
proof of Hoeffding’s inequality (Theorem 3.15.)

CHERNOFF’S INEQUALITY 3.13

For any s > 0 and ε > 0,

P{v≥ ε} ≤ E[esv]

esε
. (3.24)
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PROOF.

P{v≥ ε} = P{esv ≥ esε} (3.25)

≤ E[esv]

esε
. (use (3.20)). (3.26)

2

Concentration inequalities

Consider a sequence of independent random variables vk,k = 1,2, . . .. Concentration
inequalities study how a function f (v1,v2, . . . ,vn) of the first n variables in the se-
quence concentrates around its expected value E[ f (v1,v2, . . . ,vn)].

Here, we are mainly concerned with the deviation of the normalized sum of ran-
dom variables (empirical mean) from its mean, that is, our interest is on function
f (v1,v2, . . . ,vn) =

1
n ∑

n
k=1 vk and we study the behavior of

Mn :=
1
n

n

∑
k=1

vk−E

[
1
n

n

∑
k=1

vk

]
. (3.27)

A first bound is obtained by means of Chebyshev’s inequality:

P{|Mn| ≥ ε} ≤ E[M2
n ]

ε2 =
1
n2 ∑

n
k=1Var(vk)

ε2 . (3.28)

EXAMPLE 3.14 For an independent and identically distributed sequence of
Bernoulli random variables (i.e. P{vk = 1}= 1−P{vk = 0}= p), from (??) we have

P

{∣∣∣∣∣1n n

∑
k=1

vk− p

∣∣∣∣∣≥ ε

}
≤ p(1− p)

nε2 . (3.29)

2

Do we expect that bound (3.28) is tight? (remember that Chebyshev’s inequality is
tight when the distribution tail vanishes rapidly after ε). Applying the central limit
Theorem 3.20 leads to the conclusion that, under mild assumptions, the distribution
of Mn tends weakly to a Gaussian, a long-tailed distribution. For example, in the case
of the Bernulli sequence of Example 3.14, letting Φ(x) =

∫ x
−∞

(2π)−1/2e−r2/2dr, the
central limit theorem states that
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P

{√
n

p(1− p)

(
1
n

n

∑
k=1

vk− p

)
≥ x

}
→ 1−Φ(x)≤ e−x2/2

x
√

2π
, (3.30)

from which we would expect something like

P

{∣∣∣∣∣1n n

∑
k=1

vk− p

∣∣∣∣∣≥ ε

}
∼ e−

nε2
2p(1−p) , (3.31)

that is the probability decays exponentially fast with n. The gap between inverse-linear
( as in (3.29)) and exponential convergence in n is truly large; this gap can be filled in
by resorting to Hoeffding’s inequality.

THEOREM 3.15 (Hoeffding’s inequality) Let vk,k = 1,2, . . ., be independent
bounded random variables taking value in [αk,βk] and let Sn be defined as in (3.27).
Then, for any ε > 0,

P{Mn ≥ ε} ≤ e
− 2n2ε2

∑
n
k=1(βk−αk)

2 ; (3.32)

and

P{Mn ≤−ε} ≤ e
− 2n2ε2

∑
n
k=1(βk−αk)

2
. (3.33)

PROOF. For ease of notation, we assume [αk,βk] = [0,1], in which case we prove
that

P{Mn ≥ ε} ≤ e−2nε2
; (3.34)

and

P{Mn ≤−ε} ≤ e−2nε2
. (3.35)

The extension is easy.

We start by observing that, for any random variable v with E[v] = 0 and α ≤ v≤ 1+α

and for any h > 0, it holds that

E[ehv]≤ e
h2
8 . (3.36)

In fact, by convexity of the exponential function, ehv≤ (v−α)e(1+α)h+(1+α−v)eαh,
so that
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E[ehv] ≤ E
[
(v−α)e(1+α)h +(1+α− v)eαh

]
(3.37)

= E
[
−αe(1+α)h +(1+α)eαh

]
(since E[v] = 0) (3.38)

= −αe(1+α)h +(1+α)eαh (3.39)

= eΓ(h), (3.40)

where Γ(h) = αh+ ln(1+α −αeh). The derivative of Γ(h) is Γ
′
(h) = α −α/[(1+

α)e−h−α], so that Γ
′
(0) = 0. Moreover,

Γ
′′
(h) =

−α(1+α)e−h

[(1+α)e−h−α]2
(3.41)

=
ab

[a+b]2
(where we let a = (1+α)e−h,b =−α) (3.42)

≤ 1
4
, ∀h. (3.43)

Thus, by Taylor series expansion, for some ξ ∈ [0,h]:

Γ(h) = Γ(0)+Γ
′
(0)h+

1
2

Γ
′′
(ξ )h2 ≤ h2

8
, (3.44)

which, used in (3.40), yields (3.36).

Thanks to (3.36), equation (3.34) is now easily obtained from Chernoff’s inequality:

P{Sn ≥ ε} ≤ E[esSn]

esε
(use Cherno f f ′s inequality (3.24)) (3.45)

=
E[es 1

n ∑
n
k=1(vk−E[vk])]

esε
(3.46)

=
Πn

k=1E[e
s 1

n (vk−E[vk])]

esε
(by the independence o f the v′ks) (3.47)

≤
Πn

k=1e
s2

8n2

esε
(use (3.36) with h = s/n) (3.48)

≤ e−2nε2
(choose s = 4εn). (3.49)

Equation (3.35) is obtained similarly. 2
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EXAMPLE 3.16 (Example 3.14 continued) Using Hoeffding’s inequality
yields

P

{∣∣∣∣∣1n n

∑
k=1

vk− p

∣∣∣∣∣≥ ε

}
≤ 2e−2nε2

(3.50)

(compare with (3.31).) 2

Hoeffding’s inequality deals specifically with empirical means, showing that the em-
pirical mean rapidly concentrates around the true mean value. The reason why this is
so is that in the empirical mean each single variable has a moderate influence on the
computation of the overall empirical mean value and, moreover, different variables do
not cooperate because they are independent.

It is a fact that Hoeffding’s inequality can be extended to more general functions pro-
vided that each variable has a marginal importance in determining the value of the
function, as the following theorem states (for a proof see e.g. [4].)

THEOREM 3.17 (the bounded difference inequality) Let vk,k = 1,2, . . ., be
independent random variables taking value in a set A and assume that ∀x1, . . . ,xn ∈ A,
x′k ∈ A, and ∀k ∈ [1,n], the measurable function f : Rn→ R satisfies the condition:

| f (x1, . . . ,xk−1,xk,xk+1, . . . ,xn)− f (x1, . . . ,xk−1,x′k,xk+1, . . . ,xn)| ≤ γk. (3.51)

Then, for any ε > 0,

P{ f (v1,v2, . . . ,vn)−E[ f (v1,v2, . . . ,vn)]≥ ε} ≤ e
− 2ε2

∑
n
k=1 γ2

k ; (3.52)

and

P{ f (v1,v2, . . . ,vn)−E[ f (v1,v2, . . . ,vn)]≤−ε} ≤ e
− 2ε2

∑
n
k=1 γ2

k ; (3.53)

2

Note that (3.52) and (3.53) reduce to (3.32) and (3.33) when we consider empirical
means.
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Laws of large numbers

The laws of large numbers study the convergence of 1
n ∑

n
k=1 vk to E

[1
n ∑

n
k=1 vk

]
. This

is probably the most studied problem in probability theory and the literature offers
an abundant supply of results under various assumptions and according to different
notions of convergence. Here, we only present a standard result and prove it by means
of concentration inequalities.

THEOREM 3.18 (law of large numbers) Let vk,k = 1,2, . . ., be independent
random variables with uniformly bounded variance: var(vk)≤C,∀k. Then,

1
n

n

∑
k=1

vk→ E

[
1
n

n

∑
k=1

vk

]
almost surely. (3.54)

Before proving the theorem, we would like to note that the result is immediate from
Hoeffding’s inequality if the variables are uniformly bounded. In fact if vk ∈ [α,β ],
∀k, then

P{|Mn| ≥ ε} ≤ 2e
− 2nε2

(β−α)2 , (3.55)

where Mn := 1
n ∑

n
k=1 vk−E

[1
n ∑

n
k=1 vk

]
, so that almost sure convergence Mn→ 0 almost

surely follows from Theorem 3.4. On the other hand, if we only assume the bounded-
ness of the variance of the vk’s (as is done in the theorem), Hoeffding’s inequality does
not apply. On the other hand, resorting to Chebyshev’s inequality (3.28) yields

P{|Mn| ≥ ε} ≤ E[M2
n ]

ε2 =
C

nε2 , (3.56)

which is not enough to prove that Mn→ 0 almost surely by way of Theorem 3.4 since
∑

∞
n=1

C
nε2 = ∞. The proof of Theorem 3.18 given below suggests a way to get around

this difficulty.

Instead of directly proving the theorem, we prefer to state the following Lemma 3.19
(from which the theorem immediately follows) because the lemma is more general and
useful in other contexts as well.

LEMMA 3.19 Consider the doubly indexed set of random variables Sp
r such that

Sp
r = 0 for r > p and assume that E[(Sp

r )
2] ≤ C(p+ 1− r) for some constant C and

that, for m < n, |Sn
1| ≤ |Sm

1 |+ |Sn
m+1|. Then,

1
n

Sn
1→ 0 almost surely. (3.57)
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Note that Theorem 3.18 immediately follows from the lemma by the position Sp
r :=

∑
p
k=r(vk−E[vk]).

PROOF OF THE LEMMA. Given an integer n, let N be the integer such that
N2 ≤ n < (N +1)2 and write:∣∣∣∣1nSn

1

∣∣∣∣≤ 1
N2

∣∣∣SN2

1

∣∣∣+ 1
N2

∣∣∣Sn
N2+1

∣∣∣ . (3.58)

The lemma is proven by showing that both terms in the last expression go to zero
almost surely.

As for the first term, by Chebyshev’s inequality we have

∞

∑
N=1

P
{

1
N2

∣∣∣SN2

1

∣∣∣≥ ε

}
≤

∞

∑
N=1

Var
(

1
N2

∣∣∣SN2

1

∣∣∣)
ε2 (3.59)

≤
∞

∑
N=1

CN2

N4ε2 (3.60)

< ∞, (3.61)

from which almost sure convergence to zero follows using Theorem 3.4. For the sec-
ond term in (3.58), again using Chebyshev’s inequality, we instead have

∞

∑
n=1

P
{

1
N2

∣∣∣Sn
N2+1

∣∣∣≥ ε

}
≤

∞

∑
n=1

Var
(

1
N2

∣∣∣Sn
N2+1

∣∣∣)
ε2 (3.62)

≤
∞

∑
n=1

C(n−N2)

N4ε2 (3.63)

≤
∞

∑
N=1

(N+1)2−1

∑
n=N2

C(n−N2)

N4ε2 (3.64)

≤
∞

∑
N=1

((N +1)2−N2)
C((N +1)2−1−N2)

N4ε2 (3.65)

≤
∞

∑
N=1

(2N +1)
C2N
N4ε2 (3.66)

< ∞ (3.67)

and, again, Theorem 3.4 can be resorted to to prove almost sure convergence to zero.
Hence, the two terms in the right-hand side of (3.58) tends to zero almost surely and
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this completes the proof. 2

Central limit theorems

The literature on central limit theorems is truly vast. We only provide some fundamen-
tal results.

Theorem 3.18 shows that, for independent random variables with boundend variance,
the following convergence takes place

1
n

n

∑
k=1

vk→ E

[
1
n

n

∑
k=1

vk

]
almost surely, (3.68)

or, equivalently,

1
n

n

∑
k=1

(vk−E[vk])→ 0 almost surely. (3.69)

A question that arises naturally is as to how fast convergence to zero takes place. This
question is answered by the following central limit theorem.

NOTE: In condition (3.70) of the theorem, the integral has to be intended as fol-
lows. Consider the total variation H(x) of function f := Fk −Φk, namely H(x) :=
sup∑

N
i=1 | f (ti)− f (ti−1)| where supremum is taken over all N and over all choices of

ti such that t0 < t1 < · · ·< tn = x. H(x) is nondecreasing and tends to a finite constant
α as x→ ∞. If α = 0 (which only happens if Fk = Φk), then the integral is taken with
respect to the zero measure and its value is zero. Otherwise, H(x)/α is a probability
distribution function. Integration is with respect to this measure and, to compensate
for the division by α , the integrand is multiplied by this same α value.

THEOREM 3.20 (central limit theorem) Let vk,k = 1,2, . . ., be independent
random variables with probability distribution function Fk, zero mean and variance
σ2

k , and let V 2
n := ∑

n
k=1 σ2

k . Assume that, for n large enough, V 2
n > 0, that is, at least

one variable vk has non-zero variance (this only serves the purpose of avoiding di-
vision by zero). Moreover, let Φk(x) =

∫ x
−∞

(2π)−1/2σ
−1
k e−r2/2σ2

k dr be the Gaussian
distribution function with zero mean and the same variance as vk. If

∀ε > 0,
1

V 2
n

n

∑
k=1

∫
|x|>εVn

x2d|Fk−Φk| → 0, as n→ ∞ (3.70)

(see the NOTE before the theorem on how this integral must be interpreted), then,
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1
Vn

n

∑
k=1

vk ∼ AsG(0,1). (3.71)

Based on the results in Appendix 2.4, we know that the sum of jointly Gaussian random
variables is Gaussian too. In words, Gaussianity is a “closed world”: once we are in
it, we cannot get out by applying linear operations. Theorem 3.20 tells us more: this
world is also “attractive” and the sum of independent variables tends to be Gaussian
under general conditions.

Before proving the theorem we make an observation on the theorem assumptions.

Observation

Assumption (3.70) in the theorem is implied by each of the following handier sufficient
conditions:

1. ∀ε > 0, 1
V 2

n
∑

n
k=1

∫
|x|>εVn

x2dFk(x)→ 0, as n→ ∞ (Lindeberg’s condi-
tion);

2. 1
V 2+δ

n
∑

n
k=1E[|vk|2+δ ]→ 0, for some δ > 0 (Lyapunov’s condition).

We show that Lyapunov’s condition implies Lindeberg’s condition which, in turn, im-
plies (3.70).

Lyapunov’s condition⇒ Lindeberg’s condition) We have:

E[|vk|2+δ ] ≥
∫
|x|>εVn

|x|2+δ dFk(x) (3.72)

≥ ε
δV δ

n

∫
|x|>εVn

x2dFk(x), (3.73)

which gives

1
V 2

n

n

∑
k=1

∫
|x|>εVn

x2dFk(x) ≤
1

εδV 2+δ
n

n

∑
k=1

E[|vk|2+δ ] (3.74)

→ 0, (useLyapunov′scondition) (3.75)

that is Lindeberg’s condition.

Lindeberg’s condition⇒ (3.70)) Note first that Lindeberg’s condition implies

max1≤k≤n σ2
k

V 2
n

→ 0. (3.76)
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Indeed,

max1≤k≤n σ2
k

V 2
n

≤
∑

n
k=1

∫
|x|>εVn

x2dFk(x)+ ε2V 2
n

V 2
n

(3.77)

→ ε
2, (3.78)

where Lindeberg’s condition has been applied in computing the limit. Since ε is arbi-
trary, (3.76) follows. Now, letting Φ(x) be the Gaussian distribution with zero mean
and unitary variance, we have:

1
V 2

n

n

∑
k=1

∫
|x|>εVn

x2dΦk(x) =
1

V 2
n

n

∑
k=1....,n

σk 6=0

∫
|x|>εVn

x2dΦk(x) (3.79)

=
1

V 2
n

n

∑
k=1

∫
|z|> εVn

σk

σ
2
k z2dΦ(z) (where z = x/σk)(3.80)

≤ 1
V 2

n

n

∑
k=1

∫
|z|> εVn

max1≤k≤nσk

σ
2
k z2dΦ(z) (3.81)

=
∫
|z|> εVn

max1≤k≤nσk

z2dΦ(z) · 1
V 2

n

n

∑
k=1

σ
2
k (3.82)

=
∫
|z|> εVn

max1≤k≤nσk

z2dΦ(z) (3.83)

→ 0, (3.84)

where convergence to zero holds because (3.76) implies divergence of the boundary
of integration: εVn

max1≤k≤nσk
→ ∞. Finally, observing that 1

V 2
n

∑
n
k=1

∫
|x|>εVn

x2d|Fk(x)−
Φk(x)| ≤ 1

V 2
n

∑
n
k=1

∫
|x|>εVn

x2dFk(x) + 1
V 2

n
∑

n
k=1

∫
|x|>εVn

x2dΦk(x), (3.70) follows from
Lindeberg’s condition and (3.84), so concluding the proof of the implication.

To help an intuitive understanding of the conditions, we note that Lindeberg’s con-
dition implies (3.76) and this means that, for large n, the largest variable variance
becomes negligible as compared to the total variance. This fact can be interpreted by
saying that each variable is infinitesimal if compared to the sum of the others. One the
other hand, this infinitesimal behavior is not necessary for the central limit theorem to
hold and condition (3.70) is for example satisfied by

v1 ∼ G(0,1), v2 = 0, v3 = 0, . . . . (3.85)

PROOF OF THEOREM 3.20. For a given n, let fk(t) and φk(t) be the characteristic
functions of vk/Vn and zk/Vn (where the zk’s are independent and G(0,σ2

k ) distributed),
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and let fn(t) and φ(t) be the characteristic functions of ∑
n
k=1 vk/Vn and ∑

n
k=1 zk/Vn (see

Section 2.3 for the notion of characteristic function; note that we have not used the
index n in φ(t) since ∑

n
k=1 zk/Vn has G(0,1) distribution for any n). Note also that, due

to independence, fn(t) = Πn
k=1 fk(t) and φ(t) = Πn

k=1φk(t).

In the following derivations, the notation
∫

f d(Fk−Φk) is short for
∫

f dFk−
∫

f dΦk.
Moreover, we use the following equalities:

∫
R

dFk =
∫
R

dΦk = 1;
∫
R

xdFk =
∫
R

xdΦk = 0;
∫
R

x2dFk =
∫
R

x2dΦk = σ
2
k (3.86)

and the following bounds:

∣∣∣∣e itx
Vn −1− it

x
Vn

+
1
2

t2 x2

V 2
n

∣∣∣∣≤ t2 x2

V 2
n

; (3.87)

∣∣∣∣e itx
Vn −1− it

x
Vn

+
1
2

t2 x2

V 2
n

∣∣∣∣≤ 1
6
|t|3 |x|

3

V 3
n

(3.88)

(the first bound follows from the Taylor expansion e
itx
Vn = 1 + it x

Vn
− 1

2t2 ξ (x)2

V 2
n

, with

|ξ (x)| ≤ x, and the second one from the Taylor expansion e
itx
Vn = 1+ it x

Vn
− 1

2t2 x2

V 2
n
−

1
6 it3 ξ (x)3

V 3
n

, again with |ξ (x)| ≤ x.) Finally, we also make use of the elementary inequal-
ity

|Πn
k=1αk−Π

n
k=1βk| ≤

n

∑
k=1
|αk−βk|, (3.89)

valid for αk’s and βk’s with |αk|, |βk| ≤ 1. In order to prove (3.89), start with n = 2 and
write

|α1α2−β1β2| = |α1α2−β1α2 +β1α2−β1β2| (3.90)
≤ |(α1−β1)α2|+ |β1(α2−β2)| (3.91)
≤ |α1−β1|+ |α2−β2|. (3.92)

The general case is obtained by repeated application of this same inequality.

We now have:
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| fn(t)−φ(t)| (3.93)
= |Πn

k=1 fk(t)−Π
n
k=1φk(t)| (3.94)

≤
n

∑
k=1
| fk(t)−φk(t)| (use (3.89) since | fk(t)|, |φk(t)| ≤ 1) (3.95)

=
n

∑
k=1

∣∣∣∣∫R eitx/Vnd(Fk−Φk)

∣∣∣∣ (3.96)

=
n

∑
k=1

∣∣∣∣∫R
(

e
itx
Vn −1− it

x
Vn

+
1
2

t2 x2

V 2
n

)
d(Fk−Φk)

∣∣∣∣ (use (3.86)) (3.97)

≤
n

∑
k=1

∫
|x|≤εVn

∣∣∣∣e itx
Vn −1− it

x
Vn

+
1
2

t2 x2

V 2
n

∣∣∣∣d|Fk−Φk| (3.98)

+
n

∑
k=1

∫
|x|>εVn

∣∣∣∣e itx
Vn −1− it

x
Vn

+
1
2

t2 x2

V 2
n

∣∣∣∣d|Fk−Φk| (3.99)

≤
n

∑
k=1

∫
|x|≤εVn

1
6
|t|3 |x|

3

V 3
n

d|Fk−Φk|+
n

∑
k=1

∫
|x|>εVn

t2 x2

V 2
n

d|Fk−Φk| (3.100)

(use (3.87) and (3.88))(3.101)

≤ 1
6
|t|3ε

1
V 2

n

n

∑
k=1

∫
|x|≤εVn

x2d|Fk−Φk)|+ t2 1
V 2

n

n

∑
k=1

∫
|x|>εVn

x2d|Fk−Φk|(3.102)

≤ 1
6
|t|3ε

1
V 2

n

n

∑
k=1

2σ
2
k + t2 1

V 2
n

n

∑
k=1

∫
|x|>εVn

x2d|Fk−Φk| (3.103)

=
1
3
|t|3ε + t2 1

V 2
n

n

∑
k=1

∫
|x|>εVn

x2d|Fk−Φk| (3.104)

n→∞−→
1
3
|t|3ε (use (3.70)), (3.105)

which, by the arbitrariness of ε , implies that

| fn(t)−φ(t)| → 0. (3.106)

The result of the theorem now follows from Theorem 2.11. 2

3.5 Weak convergence on R

Weak convergence is a very rich and important topic in measure theory. We discuss
only facts related to probability measures on R and refer the reader to standard text-
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books for more comprehensive treatments.

From Definition 3.1 we know that weak convergence of vn to v means that E[ f (vn)]→
E[ f (v)] (or, equivalently,

∫
R f dPn→

∫
R f dP, where Pn and P are the image probabil-

ities of vn and v) for any continuous and bounded function f : R → R. Thus, weak
convergence is in fact a property of the image probabilities of the random variables.
Making a step towards generality, it should not come as a surprise that weak conver-
gence can also be directly defined for sequences of probability measures.

DEFINITION 3.21 (weak convergence of probability measures on R) A
probability measure sequence Pn on R converges weakly to a probability measure

P (Pn
w→ P) if, for any continuous and bounded function f : R→ R, it holds that

∫
R

f dPn→
∫
R

f dP. (3.107)

2

When Pn
w→ P, we also write Fn

w→ F , where Fn and F are the distribution functions

associated to Pn and P.

Thus, weak convergence of vn to v can be rephrased by saying that the image proba-
bility of vn converges weakly to the image probability of v.

Convergence (3.107) is softened by the smoothing properties of integral and, as a con-
sequence, weak convergence can take place among probabilities of very different na-
ture, as the next example illustrates.

EXAMPLE 3.22 Let Pn be the discrete probability with equal mass concentrated

in 1
n ,

2
n , . . . ,

n
n (see Figure 3.2.) It follows from Theorem 3.23 below that Pn

w→ P =

λ [0,1], the uniform distribution in [0,1]. For any n, Pn is a discrete distribution and
we see that it converges to a distribution of totally different nature: P is an absolutely
continuous distribution.

2

The next theorem relates weak convergence on R to the behavior of distribution func-
tions.
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0 1 0 1 xx

w

Figure 3.2: An example of weak convergence: Fn on the left converges weakly to F , displayed
on the right.

THEOREM 3.23 Let Pn and P be probability measures on R. Then Pn
w→ P if

and only if the distribution function Fn(x) of Pn converges to the distribution function

F(x) of P at every x where F(x) is continuous (in which case we also write Fn
w→ F).

In general, Pn
w→ P does not imply that Fn(x)→ F(x) for those x where F is not

continuous. One example is shown in Figure 3.3 where Pn is the concentrated mass

in 1
n and P is the concentrated mass in 0 (show that Pn

w→ P.) Clearly, Fn(0) = 0 6→

F(0) = 1.

F F",

~ r

, I

I \

/ I

f I

I I

j: ~

o ..!-- X

11

Figure 3.3:

PROOF.

Pn
w→ P⇒ Fn(x) w→ F(x), fat every x where F(x) is continuous)

With x a given point where F is continuous and f ε
+ and f ε

− as represented in Figure
3.4, we have:

limsup
n→∞

Fn(x)≤ limsup
n→∞

∫
R

f ε
+dPn =

∫
R

f ε
+dP≤ F(x+ ε) ε↓0−→ F(x); (3.108)

liminf
n→∞

Fn(x)≥ liminf
n→∞

∫
R

f ε
−dPn =

∫
R

f ε
−dP≥ F(x− ε) ε↓0−→ F(x), (3.109)
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Figure 3.4:

so that Fn(x)→ F(x).

Fn(x)→ F(x) at every x where F(x) is continuous⇒ Pn
w→ P)

Let A ∈ B(R) be a set in R with P(∂A) = 0 (∂A is the boundary of A: ∂A =
(closure A)∩ (closure Ac)). We want to prove that

Pn(A)→ P(A). (3.110)

Let A0 = interior A (“interior A” is the set of points x in A such that x ∈ (a,b) for
some (a,b)⊆ A). Since A0 is open, it can be represented as the union of disjoint open
intervals: A0 = ∪∞

k=1(ak,bk). Choose an ε > 0 and, for each interval (ak,bk) select
a subinterval (a′k,b

′
k] such that a′k and b′k are points where F(x) is continuous and

P(ak,bk) ≤ P(a′k,b
′
k] + 2−k · ε (since F(x) has at most finitely many discontinuities,

such a′k and b′k certainly exist). Also, fix q such that P(A0−∪q
k=1(ak,bk))≤ ε . Now,

P(A0) = P(∪∞
k=1(ak,bk)) =

∞

∑
k=1

P(ak,bk)≤
q

∑
k=1

P(ak,bk)+ ε (3.111)

≤
q

∑
k=1

(P(a′k,b
′
k]+2−k · ε)+ ε =

q

∑
k=1

(F(b′k)−F(a′k)+2−k · ε)+ ε(3.112)

≤
q

∑
k=1

(F(b′k)−F(a′k))+2ε =
q

∑
k=1

lim
n→∞

(Fn(b′k)−Fn(a′k))+2ε (3.113)

= lim
n→∞

q

∑
k=1

Pn(a′k,b
′
k]+2ε ≤ liminf

n→∞
Pn(A0)+2ε, (3.114)

which, due to the arbitrariness of ε , gives

P(A0)≤ liminf
n→∞

Pn(A0). (3.115)

The same derivation can be applied to Ac
0 (the interior of the complement of A) leading

to
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P(Ac
0)≤ liminf

n→∞
Pn(Ac

0). (3.116)

Moreover, it holds that

P(∂A) = 0≤ liminf
n→∞

Pn(∂A), (3.117)

where P(∂A) = 0 is by assumption and 0≤ liminfn→∞Pn(∂A) is just because a prob-
ability cannot be negative. From (3.115), (3.116), and (3.117) it follows that

P(A0) = lim
n→∞

Pn(A0), P(Ac
0) = lim

n→∞
Pn(Ac

0), 0 = lim
n→∞

Pn(∂A). (3.118)

To prove this, suppose that one of these equations is false. Say the first one. Using
(3.115) we have

P(A0)≤ liminf
n→∞

Pn(A0)≤ limsup
n→∞

Pn(A0), (3.119)

and equality cannot
hold throughout since P(A0) = liminfn→∞Pn(A0) = limsupn→∞Pn(A0) implies that
limn→∞Pn(A0) exists and it is equal to P(A0), which is the first equation in (3.118).
Thus, it must be true that P(A0) < limsupn→∞Pn(A0). Now, this latter fact gives us
the possibility of extracting a subsequence nk such that P(A0)< limk→∞Pnk(A0). But
this, used together (3.116) and (3.117), leads to an absurd inequality:

1 = P(A0∪Ac
0∪∂A) = P(A0)+P(Ac

0)+P(∂A) (3.120)
< lim

k→∞
Pnk(A0)+ liminf

n→∞
Pn(Ac

0)+ liminf
n→∞

Pn(∂A) (3.121)

≤ lim
k→∞

Pnk(A0)+ liminf
k→∞

Pnk(A
c
0)+ liminf

k→∞
Pnk(∂A) (3.122)

≤ liminf
k→∞

(Pnk(A0)+Pnk(A
c
0)+Pnk(∂A)) = liminf

k→∞
Pnk(A0∪Ac

0∪∂A)(3.123)

= liminf
k→∞

1 = 1. (3.124)

Thus, our initial assumption that the first equation in (3.118) was false cannot be cor-
rect; proceeding similarly for the other equations in (3.118), (3.118) remains proven.

Result (3.110) now immediately follows from (3.118):

lim
n→∞

Pn(A) ≤ lim
n→∞

Pn(A0∪∂A) = lim
n→∞

Pn(A0)+ lim
n→∞

Pn(∂A) (3.125)

= P(A0)+0≤ P(A). (3.126)



60 3.5 Weak convergence on R

and

lim
n→∞

Pn(A) ≥ lim
n→∞

Pn(A0) = P(A0) = Pn(A0)+P(∂A)≥ P(A). (3.127)

We now move to prove that Pn
w→ P.

Pick any continuous and bounded f : R→ R and a number M such that | f (x)| < M,
∀x. Let T := {t ∈ [−M,M] such that P{ f−1(t)} 6= 0}. T is at most countable.

Consider a partition of [−M,M]

−M = t1 < t2 < · · ·< tq = M, (3.128)

with tk 6∈ T , k = 1,2, . . . ,q, and let Ak = f−1[tk, tk+1) (i.e. Ak is the set where f ∈
[tk, tk+1)). Since f is continuous, f−1(tk, tk+1) (the inverse image of the open interval
(tk, tk+1)) is open, so that ∂Ak ⊆ f−1{tk} and, being tk ∈ T , P(∂Ak) = 0, k = 1, . . . ,q.
So,

∣∣∣∣∫R f dPn−
∫
R

f dP
∣∣∣∣ (3.129)

≤

∣∣∣∣∣
∫
R

f dPn−
q−1

∑
k=1

tkPn(Ak)

∣∣∣∣∣+
∣∣∣∣∣q−1

∑
k=1

tkPn(Ak)−
q−1

∑
k=1

tkP(Ak)

∣∣∣∣∣+
∣∣∣∣∣q−1

∑
k=1

tkP(Ak)−
∫
R

f dP

∣∣∣∣∣(3.130)

≤ 2 max
1≤k≤q−1

(tk− tk−1)+

∣∣∣∣∣q−1

∑
k=1

tk(Pn(Ak)−P(Ak))

∣∣∣∣∣ (3.131)

n→∞−→ 2 max
1≤k≤q−1

(tk− tk−1), (3.132)

where we have used (3.110) when taking the limit. Since the tk’s can be selected to
be one close to the next at will, max1≤k≤q−1(tk− tk−1) can be made arbitrarily small,
leading to the conclusion that

∫
R f dPn→

∫
R f dP as n→∞, and this ends the proof. 2

Suppose we are given a sequence of probability distributions Fn on R. It is true that
we can certainly extract a subsequence Fnk converging weakly to some probability F?
The answer is no, as it can be readily verified by taking Fn to be a step function in n.

The reason why Fnk fails to exist in the above example is that the mass escapes to
infinity. It is an important fact that if such an “escape to infinity” behavior does not
take place, then the Fn’s are packed in such a way that a converging Fnk certainly exists.
This result is stated in the next theorem (the theorem is a particular case of Prokhorov’s
theorem, which is valid in generic metric spaces).
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THEOREM 3.24 (Helly) A sequence of probability distribution functions Fn on
R is tight if

sup
n

∫
|x|≥M

dFn(x)→ 0, as M→ ∞. (3.133)

Given a tight sequence of probability distribution functions Fn, there always exists a
subsequence Fnk of Fn that converges weakly to a limit probability distribution function
F.

PROOF. Let X = {x j, j = 1,2, . . .} be a countable dense subset of R.

Since Fn(x1) ∈ [0,1], we can find a sequence of integers n(1) := {n(1)1 ,n(1)2 , . . .} such
that F

n(1)k
(x1) is convergent. Let us denote by F̄(x1) the limiting value. We now restrict

attention to sequence F
n(1)k

and extract a subsequence n(2) := {n(2)1 ,n(2)2 , . . .} of n(1)

such that F
n(2)k

(x2) converges to a limiting value, say F̄(x2). Clearly, being F
n(2)k

a sub-

sequence of F
n(1)k

, F
n(2)k

(x1) still converges to F̄(x1). Proceeding along this scheme, we

keep constructing nested subsequences of the original sequence Fn with the property
that they converge on an increasing number of points x j.

Now, consider the “diagonal” sequence of integers nk := n(k)k . Then, for each x j we
have

Fnk(x j)→ F̄(x j). (3.134)

The limit probability distribution F can now be defined based on F̄ . For all x ∈ R let

F(x) = inf
x j>x

F̄(x j). (3.135)

It is not difficult (though it requires some verification) to show that the so constructed
F is a probability distribution function (in particular, limx→∞ F(x) = 1 follows from
the tightness condition which guarantees that Fn(x) > 1− ε , ∀n, for x large enough)

and that Fnk(x)→ F(x) for all x where F is continuous. Then Fnk
w→ F by virtue of

Theorem 3.23 and this completes the proof. 2
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Chapter 4

THE PROJECTION THEOREM

4.1 Hilbert spaces

The natural framework to state the projection theorem is a Hilbert space, hence Hilbert
spaces are introduced first. A Hilbert space is an inner product space (with a com-
pleteness property), and in turn a inner product space is a vector space (with an inner
product). We here introduce these notions in a bottom-up fashion, from vector spaces
to Hilbert spaces.

DEFINITION 4.1 (vector space) A complex vector space (or a vector space
over the complex field C) is a triple (V,+, ·) where V is a set and +,· are two op-
erations. The first operation, called addition, applies two any pair of vectors x,y ∈ V
and returns a vector x+ y ∈ V , while the second operation, called scalar multiplica-
tion, applies to a pair α,x, with α ∈ C and x ∈V , and returns a vector α · x ∈V . The
following rules apply to the two operations:

(a) x+ y = y+ x;
(b) x+(y+ z) = (x+ y)+ z;
(c) there exists a vector 0 (the zero vector) such that x+0 = x, ∀x ∈V ;
(d) to each x ∈ V , there corresponds a vector −x (called the opposite vector)
such that x+(−x) = 0;
(e) 1 · x = x, ∀x ∈V ;
(f) α · (β · x) = (αβ ) · x;
(g) α · (x+ y) = α · x+α · y;
(h) (α +β ) · x = α · x+β · x. 2

In the following, we often use the terminology “the vector space V ”, which is a short-
hand used for “the vector space (V,+, ·)” whenever the operations are either clear from
the context or their specification is unimportant.



64 4.1 Hilbert spaces

2

We derive some immediate consequences of Definition 4.1.

(I) Because of (b), we can write x+ y+ z with no ambiguity;
(II) there is no other vector y besides the zero vector such that x+ y = x, ∀x ∈ V .

Indeed, take x = 0 in relation x+ y = x and write:

0 = 0+ y (4.1)
= y+0 (4.2)
= y, (4.3)

showing that y has to be the zero vector;
(III) 0 · x = 0,∀x ∈V (note that 0 in the left-hand side is the number zero, while 0 in

the right-hand side is the vector zero). In fact:

y+0 · x = y+0 · x+1 · x+(−x) (4.4)
= y+(0+1) · x+(−x) (4.5)
= y+1 · x+(−x) (4.6)
= y, ∀y ∈V, (4.7)

so that, by the uniqueness of the zero vector shown in (II), 0 · x has to be 0;
(IV) the opposite of a vector x is unique. Suppose there are two: x1 and x2. Then,

x1 = x1 +0 (4.8)
= x1 +(x+ x2) (4.9)
= (x1 + x)+ x2 (4.10)
= 0+ x2 (4.11)
= x2, (4.12)

so that x1 = x2;
(V) −x =−1 · x,∀x. In fact:

x+(−1) · x = (1−1) · x (4.13)
= 0 · x (4.14)
= 0 (using (III)). (4.15)

Since the opposite vector is unique (see (IV)), the conclusion follows.

For short, x+(−y) is also written x− y.
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DEFINITION 4.2 (inner product space) A inner product space is a vector
space V where, to each ordered pair of vectors x and y, there is associated a com-
plex number (x,y) called the inner product (or the scalar product) of x and y, with the
following properties:

(i) (x,y) = (y,x) overbar denotes complex conjugation);
(l) (x+ y,z) = (x,z)+(y,z);
(m) (α · x,y) = α(x,y);
(n) (x,x)≥ 0, and (x,x) = 0 implies x = 0. 2

A vector space over the real field R is defined identically to a complex vector space,
except that α and β are real numbers. In this case, the scalar product (x,y) is a real
number too. Throughout, we use notations for the complex case, particularization to
the real case is straightforward.

EXAMPLE 4.3 (Rm) For any fixed m, the set Rm of real valued p-dimensional
vectors with addition and scalar multiplication defined in the usual componentwise
manner is a real vector space. It becomes a inner product space by the definition:

(x,y) =
m

∑
k=1

xkyk, (4.16)

where xk [yk] are the components of vector x [y]. 2

EXAMPLE 4.4 (L2) Consider the set of square integrable random variables
(i.e., random variables ξ with E[ξ 2]< ∞) defined over a probability space (Ω,F ,P).
This set is indicated with L2. With the usual operations of addition and scalar multi-
plication, L2 is a real vector space.

We can try to endow L2 with an inner product by defining

(ξ ,η) = E[ξ η ]. (4.17)

Along this line, however, a difficulty is encountered. Such a difficulty is merely techni-
cal, and we prefer to make it explicit to remove any possibility of confusion.

Conditions (i), (l), (m) and the first part of (n) ((x,x) ≥ 0) in Definition 4.2 are easy
to verify. Instead, a problem turns up with the second part of (n): (x,x) = 0 implies
x = 0. In fact, condition (ξ ,ξ ) = E[ξ 2] = 0 does not imply that ξ = 0, ∀ω ∈ Ω, the
0 vector in L2; it only implies that ξ = 0 almost surely. Thus, the condition in (n) of
Definition 4.2 that (x,x) = 0 implies x = 0 is violated in this case. Nevertheless, we
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insist with the definition (ξ ,η) = E[ξ η ] with the understanding that L2 is not a inner
product space in the standard sense of Definition 4.2. It is instead a generalized inner
product space where (n) is substituted by:

(n’) (x,x) ≥ 0, and (x,x) = 0 for all x in a set Z, where Z is a set containing the 0
vector.

Z has to be interpreted as the set of vectors that are indistinguishable from 0 in the
adopted inner product; in L2, it is the set of random variables ξ = 0 almost surely.
Adopting this generalized point of view only introduces minor modifications in the
theory of inner product spaces and we will make them explicit in relation to the space
L2 when it will be reconsidered at later stages of this appendix.

It is worth mentioning that a different route can also be adopted to fix this difficulty
in an alternative way: instead of viewing L2 as a space of random variables, it can
be seen as a space of equivalence classes of random variables, where each class con-
tains all variables that differ only on a zero probability set. This corresponds to a
coarser-grained viewpoint where one aggregates all variables that are almost surely
coincident. This approach, however, introduces some extra complications with mea-
surability issues and we prefer to adopt the first approach where condition (n’) sub-
stitutes (n). Still, it should be clear that this choice is purely utilitarian, and has no
conceptual motivation. 2

EXAMPLE 4.5 (C[0,1]) The set of continuous real functions defined on [0,1]
with the usual addition and scalar multiplication operations is a real inner product
space by the definition

( f ,g) =
∫ 1

0
f (r)g(r)dr. (4.18)

2

Geometry of inner product spaces

Quantity

‖x‖ :=
√

(x,x) (4.19)

is called the norm of vector x.

PARALLELOGRAM LAW 4.6
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x

x+y

x-y

y

Figure 4.1: The parallelogram law.

‖x+ y‖2 +‖x− y‖2 = 2‖x‖2 +2‖y‖2 (see Figure 4.1) (4.20)

PROOF. Note first that

(x,−y) = (x,−1 · y) (using (V )) (4.21)
= −1(y,x) (using (i) and (m)) (4.22)
= −(x,y). (4.23)

and, similarly,

(−x,−y) = (x,y). (4.24)

By the properties of the inner product and (4.23) and (4.24), we then have

‖x+ y‖2 +‖x− y‖2 (4.25)
= (x+ y,x+ y)+(x− y,x− y) (4.26)
= ‖x‖2 +‖y‖2 +(x,y)+(y,x)+‖x‖2 +‖y‖2− (x,y)− (y,x) (4.27)
= 2‖x‖2 +2‖y‖2. (4.28)

2

SCHWARZ INEQUALITY 4.7

|(x,y)| ≤ ‖x‖‖y‖ (see Figure 4.2) (4.29)

PROOF. If ‖x‖= 0, then x = 0 (use (n)), so that (x,y) = (0,y) = (0 ·x,y) = 0(x,y) =
0, and (4.29) is true. Suppose ‖x‖ 6= 0, then



68 4.1 Hilbert spaces

x

y

1
||x||

|(x,y)|

{
Figure 4.2: The Schwarz inequality.

0 ≤
(

y− (y,x)
‖x‖2 x,y− (y,x)

‖x‖2 x
)

(4.30)

= ‖y‖2 +
|(y,x)|2

‖x‖2 −
(y,x)
‖x‖2 (x,y)−

(y,x)
‖x‖2 (y,x) (4.31)

= ‖y‖2− |(x,y)|
2

‖x‖2 , (4.32)

from which (4.29) follows. 2

THE TRIANGLE INEQUALITY 4.8

‖x+ y‖ ≤ ‖x‖+‖y‖ (see Figure 4.3) (4.33)

x

y
x+y

Figure 4.3: The triangle inequality.
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PROOF.

‖x+ y‖2 = (x+ y,x+ y) (4.34)
= ‖x‖2 +‖y‖2 +(x,y)+(y,x) (4.35)
≤ ‖x‖2 +‖y‖2 +2|(x,y)| (4.36)
≤ ‖x‖2 +‖y‖2 +2‖x‖‖y‖ (use (4.29)) (4.37)

= (‖x‖+‖y‖)2 , (4.38)

which implies (4.33). 2

DEFINITION 4.9 (orthogonality) We say that two vectors x and y are orthogo-
nal (and write x⊥ y) if (x,y) = 0. 2

PITAGORA’S THEOREM 4.10

If x⊥ y, then ‖x+ y‖2 = ‖x‖2 +‖y‖2 (see Figure 4.4) (4.39)

x

y

x+y

Figure 4.4: The Pitagora’s theorem.

PROOF.

‖x+ y‖2 = (x+ y,x+ y) (4.40)
= ‖x‖2 +‖y‖2 +(x,y)+(y,x) (4.41)
= ‖x‖2 +‖y‖2. (4.42)

2

Convergence in inner product spaces
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DEFINITION 4.11 (distance) Given any two vectors x and y, the quantity

ρ(x,y) := ‖x− y‖ (4.43)

is called the distance between x and y. 2

It is easy to verify that ρ(·, ·) in the above definition is indeed a distance, that is, it
satisfies the following usual properties of a distance:

ρ(x,y)≥ 0 and ρ(x,y) = 0 implies x = y;
ρ(x,y) = ρ(y,x);
ρ(x,y)≤ ρ(x,z)+ρ(z,y).

We say that a sequence xn, n = 1,2, · · · , converges to x (and write xn→ x) if ρ(xn,x)→
0. It is easy to see that the limit is unique (if xn→ x and xn→ y, then x = y).

THEOREM 4.12 If xn→ x, then (xn,y)→ (x,y), ∀y (this is expressed in words
by saying that the inner product is a continuous operator).

PROOF. By assumption ‖xn− x‖= ρ(xn,x)→ 0. Then, by the Schwarz inequality
4.7,

|(xn,y)− (x,y)| = |(xn− x,y)| (4.44)
≤ ‖xn− x‖‖y‖ (4.45)
→ 0. (4.46)

2

Hilbert spaces

A sequence xn is said to be a Cauchy (or “fundamental”) sequence if, ∀ε > 0,∃N(ε)
such that ∀p,q ≥ N(ε) it holds that ρ(xp,xq) ≤ ε . The following definition is funda-
mental.

DEFINITION 4.13 (completeness - Hilbert space) A inner product space V is
complete if every Cauchy sequence converges to a limit point in V . A complete inner
product space is called a Hilbert space. 2
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In words, a Cauchy sequence is a sequence where any two vectors in its tail are arbi-
trarily close to each other. If any such sequence converges, we then say that the space
is complete.

The following examples illustrate the concept of completeness.

EXAMPLE 4.14 (Example 4.3 continued - Rm is complete) Suppose xn ∈ Rm

is a Cauchy sequence. Hence, ∀ε > 0,∃N(ε) such that ∀p,q ≥ N(ε) it holds that
ρ(xp,xq) = ‖xp− xq‖ = (

(
∑

m
k=1(xpk− xqk)

2)1/2 ≤ ε (indexes k identify components).
This relation implies |xpk− xqk| ≤ ε , k = 1,2, . . . ,m, so that xnk→ xk for some xk ∈ R
(this is because the real line is complete, see any text on real analysis), from which
xn→ x, where x is the vector in Rm whose components are xk. 2

EXAMPLE 4.15 (Example 4.4 continued - L2 is complete) In standard inner
product spaces where condition (n) in Definition 4.2 holds, if the limit of a sequence
exists, then it is unique, and Definition 4.13 requires that such a limit point actually
exists for any Cauchy sequence. In the L2 space, property (n) has been substituted by
property (n’) in Example 4.4. Consequently, if ξn→ ξ in L2, ξn also tends to any other
variable ξ +η , with η = 0 almost surely, and the uniqueness of the limit is lost. In
this context, by completeness it is meant that any Cauchy sequence has (at least) one
limit point. If so, all other variables almost surely equal to this limit point will be limit
points as well.

Let us then prove that the limit point of a Cauchy sequence always exists. Suppose ξn
is a Cauchy sequence in L2, so that ∀ε > 0,∃N(ε) such that ∀p,q ≥ N(ε) we have
E[(ξp−ξq)

2]1/2 ≤ ε . Then, it is possible to find a sequence of indexes nk such that

E[(ξnk+1−ξnk)
2]1/2 ≤ 1

2k . (4.47)

To this end, let n1 = N(1
2), so that, for any choice of n2, E[(ξn2−ξn1)

2]1/2 ≤ 1
2 holds.

Then, take n2 = N(1
4) and so on with n3,n4, . . .. For sequence ξnk we then have

∞

∑
k=1

E[|ξnk+1−ξnk |] ≤
∞

∑
k=1

E[(ξnk+1−ξnk)
2]1/2 (4.48)

(use Schwarz inequality (4.7) with x = 1 and y = |ξnk+1−ξnk | )(4.49)

≤
∞

∑
k=1

1
2k (use (4.47)) (4.50)

= 1. (4.51)
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Using (4.51), we first prove that ξnk is almost surely convergent to some random vari-
able ξ and then that ξ is the L2-limit of the initial sequence ξn, which shows that a
Cauchy sequence in L2 has limit, so concluding the proof.

Consider the sequence

ζk := |ξn1|+ |ξn2−ξn1|+ · · ·+ |ξnk−ξnk−1 |. (4.52)

This sequence is increasing and, therefore, convergent (either to a finite value or to
infinity). The set A where ζk → ∞ can be expressed as A = ∩∞

p=1 ∪∞
k=1 {ζk ≥ p}.

Since {ζk ≥ p} is measurable (i.e., it belongs to F ) and a σ -algebra is closed un-
der countable union and intersection, we have that A is measurable too. Moreover,
(4.51) implies that P(A) = 0 (why?). Consider now

ξnk = ξn1 +(ξn2−ξn1)+ · · ·+
(
ξnk−ξnk−1

)
. (4.53)

Certainly, ξnk converges everywhere on Ac (the complement of A) since a sequence is
always convergent whenever the corresponding absolute sequence converges to a finite
value. Let ξ be the limit. On A, define ξ = 0. Then, ξ is the almost sure limit of ξnk

and it is a random variable, i.e., it is measurable (apply Theorem 3.6.)

Finally, we show that ξn→ ξ in L2. Fix ε > 0 and an integer n≥ N(ε) and let

η j := in fk≥ j (ξnk−ξn)
2 . (4.54)

Clearly, η j ≤ (ξn j −ξn)
2, so that

E[η j]≤ ε
2, for any j large enough. (4.55)

On the other hand, η j ↑ (ξ −ξn)
2 almost surely as j→ ∞ and η j ≥ 0, which, by the

monotone convergence Theorem 3.8, implies

E[η j] ↑ E
[
(ξ −ξn)

2
]
. (4.56)

Putting together (4.55) and (4.56) gives E
[
(ξ −ξn)

2
]
≤ ε2, which, by the arbitrari-

ness of ε , implies that ξn→ ξ in L2. 2

EXAMPLE 4.16 (Example 4.5 continued - C[0,1] is not complete) The inner
product space C[0,1] of Example 4.5 is not complete. In fact the sequence
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fn(x) =


1, x ∈

[
0, 1

2

]
−(n+1)

(
x− 1

2

)
+1, x ∈

(1
2 ,

1
2 +

1
n+1

]
0, otherwise,

(4.57)

is Cauchy (verify this), but does not converge to a continuous function. 2

Subspaces

DEFINITION 4.17 (subspace) A subspace S of a vector space V is a subset of
V that is itself a vector space, relative to the operations defined in V . 2

It is easy to verify that a subset S of a vector space V is a subspace if and only if
addition and scalar multiplication of vectors in S are still in S: x+ y ∈ S if x,y ∈ S and
α · x ∈ S if x ∈ S.

DEFINITION 4.18 (closed subspace) A subspace S of a Hilbert space is closed
if any convergent sequence xn ∈ S has limit in S. 2

EXAMPLE 4.19 In L2, the limit point of a convergent sequence is not unique
(see Example 4.15). We say that S is closed if any convergent sequence has at least
one limit point in S.

The vector space L2[0,1] of measurable functions defined on [0,1] such that∫ 1
0 f (r)2dr < ∞ is complete (in fact, this is the L2 space defined over (Ω,F ,P) =
([0,1],B[0,1],λ ) and completeness has been proven in Example 4.15). The space
C[0,1] of Example 4.16 is a subspace of L2[0,1], but it is not closed (to verify this,
recall that (4.57) does not converge to any function in C[0,1]). 2

In a Hilbert space H, let x⊥ denote the set of all vectors y orthogonal to x. It is easy
to prove that x⊥ is a closed subspace. In fact, (y1 + y2,x) = (y1,x)+ (y2,x) = 0 and
(α ·y,x) = α(y,x) = 0, ∀y1,y2,y ∈ x⊥, showing that x⊥ is a subspace. Its closedness is
proven by observing that if yn→ y and yn ∈ x⊥, then 0 = limn→∞(yn,x) = (y,x) (where
the last equality follows from Theorem 4.12), that is, y ∈ x⊥ too.

If A is a subset of H, by the symbol A⊥ we indicate the set of all vectors orthogonal to
every x∈ A. Since A⊥=∩x∈Ax⊥, it is immediate to verify that A⊥ is a closed subspace.
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4.2 The projection theorem

THEOREM 4.20 (projection theorem) Let S be a closed subspace of a Hilbert
space H. Every vector x ∈ H has a unique decomposition

x = s+ z, (4.58)

where s∈ S and z∈ S⊥ (s is called the projection of x onto S). Moreover, s is the unique
vector in S nearest to x: ‖x− s‖= mins′∈S ‖x− s′‖.

PROOF. To prove the uniqueness of the decomposition, take a hypothetic alternative
decomposition x = s1 + z1, with s1 ∈ S,z1 ∈ S⊥, and observe that

0 = ‖x− x‖2 (4.59)
= ‖s− s1 + z− z1‖2 (4.60)
= ‖s− s1‖2 +‖z− z1‖2 (use Pitagora′s T heorem 4.10); (4.61)
⇒ ‖s− s1‖2 = 0 and ‖z− z1‖2 = 0 (4.62)
⇒ s = s1 and z = z1, (4.63)

so that the two decompositions must coincide.

To prove the existence of the decomposition, note first that if there exists a vector s∈ S
at nearest distance from x, then such a s gives the sought decomposition with z := x−s.
To show this, we only have to prove that x− s ∈ S⊥. Suppose not. Then, take y ∈ S
such that (x− s,y) 6= 0 and compute

∥∥∥∥x− s− (x− s,y)
‖y‖2 y

∥∥∥∥2

=

(
x− s− (x− s,y)

‖y‖2 y,x− s− (x− s,y)
‖y‖2 y

)
(4.64)

= ‖x− s‖2− |(x− s,y)|2

‖y‖2 , (4.65)

which shows that s+ (x−s,y)
‖y‖2 y ∈ S would be closer to x than s, so contradicting the

assumption that s is the vector at nearest distance.

Thus, to prove existence of the decomposition, all we need to show is the existence of
a vector s ∈ S at nearest distance from x, which is established in the following.

Let δ := infs′∈S ‖x−s′‖, and consider a sequence of vectors sn ∈ S such that ‖x−sn‖→
δ . We show that sn is a Cauchy sequence and that it converges to the sought vector s.
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By the parallelogram law 4.6, we have

‖sp− sq‖2 = ‖(x− sq)− (x− sp)‖2 (4.66)

= 2‖x− sq‖2 +2‖x− sp‖2−4
∥∥∥∥x−

sq + sp

2

∥∥∥∥2

. (4.67)

Since sq+sp
2 belongs to S, the last term 4

∥∥∥x− sq+sp
2

∥∥∥2
is no smaller that 4δ 2. On the

other hand, the first two terms tend to 2δ 2 by construction. Thus, ‖sq− sp‖2 is arbi-
trarily small for any p and q large enough, that is, sn is indeed a Cauchy sequence.
Letting s be its limit point (which is in S by the assumption that S is closed), a straight-
forward application of the triangular inequality now shows that ‖x− s‖ = δ , that is, s
is at nearest distance: ‖x− s‖ ≤ ‖x− sn‖+‖sn− s‖→ δ +0 = δ , but ‖x− s‖ does not
depend on n so that ‖x− s‖ ≤ δ ; on the other hand, ‖x− s‖ cannot be smaller than δ

since δ is a lower bound to ‖x− s′‖, ∀s′ ∈ S, hence ‖x− s‖= δ .

Summing up, we have shown that decomposition x = s+ z exists and is unique. More-
over, by construction, ‖x− s‖= δ = mins′∈S ‖x− s′‖.
Before closing this proof note that the theorem statement contains a very last point:
the vector s ∈ S nearest to x is unique. This final point is readily established from what
we have already proven: suppose for the purpose of contradiction that a second s1 6= s
exists in S at nearest distance; then, z1 := x− s1 would belong to S⊥, so providing a
second decomposition x = s1 + z1. But this is in contradiction with the already proven
uniqueness of the decomposition. 2

Interpretation of the projection theorem

The projection theorem tells us two things.

1. If s is the projection of x onto S (i.e. z := x−s is orthogonal to all vectors in S),
then s minimizes the distance of the subspace S from x (see Figure 4.5). Thus, if
we are given the projection, the problem of finding the vector in S closest to x is
automatically solved.

2. In addition, the theorem tells us that such a projection actually exists (and is
unique) in full generality. The idea in the proof is to construct a sequence sn ∈ S
whose distance from x tends to the minimal distance δ := infs′∈S ‖x− s′‖. Such
a sequence tends to accumulate (i.e. it is a Cauchy sequence), so that, by the
fundamental closedness assumption of S, it converges to a vector s, and this s is
the projection (see Figure 4.6).
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0

x

s

S

Figure 4.5: The decomposition of x.

0

x

sn
S

δ=  inf  ||x-s'||   
     s'∈S

Figure 4.6: Construction of s.

4.3 Applications of the projection theorem

We discuss two applications of the projection theorem. The first one refers to Rm and
is presented mostly for pedagogical reasons. The second, concerning L2, is of great
importance in estimation theory.

Application 1: Rm

As we know, Rm is a Hilbert space (see Example 4.14). Given x ∈ Rm and r (r ≤ m)
linearly independent vectors y1,y2, . . . ,yr in Rm, consider the problem of finding the
vector s closest to x and belonging to S := span{y1,y2, . . . ,yr}, the subspace linearly
spanned by y1,y2, . . . ,yr (this is certainly a closed subspace, since any finite dimen-
sional subspace is closed).

In matrix notations, vectors s ∈ S can be expressed as

s = Y α, (4.68)

where Y is the matrix [y1 y2 · · ·yr] stacking the yk vectors and α ∈ Rr is the vector of
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unknowns.

In view of the projection theorem, s is the projection of x onto S. Thus, we have to im-
pose that x− s is orthogonal to all vectors in S or, equivalently, to vectors y1,y2, . . . ,yr:

(yk,x− s) = 0, k = 1,2, . . . ,r. (4.69)

Using the definition of inner product in Rm and relation s = Y α , we then have

yT
k x = yT

k Y α, k = 1,2, . . . ,r, (4.70)

which can be written in a more compact form as

Y T x = Y TY α. (4.71)

Solving this equation yields α .

Clearly, the same result can be achieved by direct minimization of ‖x− s‖. Along this
route, we write:

‖x− s‖2 = xT x+α
TY TY α−2xTY α, (4.72)

whose minimization gives again (4.71).

Application 2: L2

In Example 4.15, we have seen that the space L2 of square integrable random variables
is complete. Strictly speaking, however, it is not a Hilbert space since condition (n) in
Definition 4.2 has been substituted by condition (n’) in Example 4.4, so that L2 is not
a standard inner product space. In particular, this implies that in L2 the limit point of a
convergent sequence is not unique.

In this context, we say that a subspace S is closed if any sequence belonging to S that
is convergent has at least one limit point in S.

By inspecting the proof of the projection Theorem 4.20, we see that the results of
this theorem are still valid in the present context with one single amendment: the
decomposition is no longer unique. In fact, given the decomposition x = s+z, any s1 ∈
S such that s1 = s almost surely gives another valid decomposition x = s1+(z+s−s1)
(note that z+ s− s1 ∈ S⊥). Moreover, no other decompositions are possible besides
these. For short, we express this fact by saying that the decomposition is almost surely
unique. Similarly, the vector in S nearest to x is not unique and the set of points
minimizing the distance is: any s1 ∈ S such that s1 = s almost surely.

A notable example of this construction is found when S = L2(G ), the subset of L2

formed by all G -measurable random variables (here, G is any sub σ -algebra of F ).
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Since the sum of G -measurable random variables and their product by a scalar α is
still G -measurable, L2(G ) is a subspace. It is in fact a closed subspace. Indeed, any
Cauchy sequence vn in L2(G ) is certainly convergent to a point v in L2 since L2 is
complete and, by virtue of Theorem 3.7, we can determine a G -measurable limit: v̄
such that vn→ v̄ in L2.

Thus, L2(G ) is a closed subspace and, by the projection theorem, any v ∈ L2 has an
almost surely unique projection onto L2(G ). This projection minimizes the distance
(i.e. the second order moment) from v among all variables that are G -measurable.

For convenience, the results valid for L2 are summarized in the following theorem.

THEOREM 4.21 Let S be a closed subspace of L2 (for example, S = L2(G ),
the subset of L2 formed by all G -measurable random variables). Then, given any
v ∈ L2, the projection of v onto S exists, is unique up to almost sure equivalence,
that is, given a projection, all other projections are characterized as the set of all
random variables in S that are almost surely equal to the given projection. Any
projection in the equivalence class minimizes the distance between S and v (i.e.,
E[(v− pro jection o f v)2] = mins∈SE[(v− s)2]). Moreover, the set of all vectors that
minimize the distance coincides with the projection equivalence class, that is no other
vector besides those in the projection equivalence class minimizes the distance. 2



Chapter 5

CONDITIONAL EXPECTATION
AND CONDITIONAL DENSITY

5.1 Conditional expectation

Elementary conditional expectation

Let v be a random variable and let D = {D1,D2, . . . ,DN} be a finite decomposition
of the sample space Ω (that is, Ω = ∪N

k=1Dk and Dk ∩D j = /0 for k 6= j) such that
P(Dk) > 0, k = 1,2, . . . ,N. The conditional expectation of v with respect to the σ -
algebra σ(D) generated by D (this is the class of all possible unions of sets Dk plus
the empty set) is defined as

E[v | σ(D)] :=
N

∑
k=1

E[v ·1(Dk)]

P(Dk)
·1(Dk), (5.1)

where 1(Dk) denotes the indicator function of set Dk, namely 1(Dk) = 1 for ω ∈ Dk
and 1(Dk) = 0 for ω /∈ Dk. In Figure 5.1 the conditional expectation of a random
variable v defined over the sample space Ω = [0,1] is shown. The idea is that the value
of E[v | σ(D)] over each set Dk is the mean value of v over the same set.

From the above definition, it is clear that

i) E[v | σ(D)] is σ(D)-measurable;
ii) for any A ∈ σ(D),

∫
A E[v | σ(D)]dP =

∫
A vdP.

The interpretation of i) and ii) is as follows. Because of i), we see that E[v | σ(D)]
is a simpler random variable than v (i.e., it is measurable with respect to a coarser σ -
algebra than v is). On the other hand, fact ii) says that, from the coarser-grained point
of view of σ(D), E[v | σ(D)] and v are indistinguishable.
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0 D3D2D1 1

E[v/σ(d)]
v

Figure 5.1: The conditional expectation in an elementary case.

Definition of conditional expectation

In probability theory, it is often necessary to take conditional expectation with respect
to non-elementary σ -algebras that include zero probability events. We here address
such a generalization.

DEFINITION 5.1 (conditional expectation) Let v be a random variable de-
fined on a probability space (Ω,F ,P) such that E[v] exists. Given a σ -algebra
G ⊆F , the conditional expectation of v given G is a random variable E[v | G ] such
that

i) E[v | G ] is G -measurable;
ii) for any A ∈ G ,

∫
A E[v | G ]dP =

∫
A vdP. 2

We shall see below that the conditional expectation exists in full generality. Before
that, we prove that the conditional expectation is unique up to almost sure equivalence
(i.e., two conditional expectations can only differ from each other on a zero probability
set).

Suppose that there are two conditional expectations E[v | G ]1 and E[v | G ]2 that satisfy
i) and ii). Let A+ := {ω : E[v | G ]1 > E[v | G ]2}. Then, A+ ∈ G and

∫
A+
(E[v | G ]1−

E[v | G ]2)dP =
∫

A+
E[v | G ]1dP−

∫
A+

E[v | G ]2dP =
∫

A+
vdP−

∫
A+

vdP = 0, which
implies that P(A+) = 0 since the integrand (E[v | G ]1−E[v | G ]2) in the first integral
is strictly positive over A+. Similarly, P(A−) = P{ω : E[v | G ]1 < E[v | G ]2}= 0 and,
hence, E[v | G ]1 = E[v | G ]2 almost surely.

Each random variable satisfying i) and ii) in Definition 5.1 is a “version” of the con-
ditional expectation. To many purposes, specifying the version is immaterial and it is
customary to say: “let us consider the conditional expectation E[v | G ] of v given G ”
as a shorthand for “let us consider a version of the conditional expectation E[v | G ] of
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v given G , which we voluntarily do not specify because the specification of the version
is unimportant in context under consideration”.

The fact that the conditional expectation actually exists is now proven in 3 steps.

STEP 1: Conditional expectation of a random variable v ∈ L2.

Consider the space L2 of square integrable random variables, i.e., random variables v
with E[v2]< ∞ (L2 is studied in Appendix 4, Examples 4.4 and 4.15). Also, consider
L2(G ), the subspace of L2 formed by all G -measurable random variables. Theorem
4.21 in Appendix 4 proves that the projection of a v ∈ L2 onto L2(G ) exists and is
unique (up to equivalence). We show that such a projection provides a version of the
conditional expectation:

E[v | G ] = projection of v onto L2(G ), (5.2)

where the right-hand side indicates any projection in the equivalence class. To this
end, we need to prove that properties i) and ii) in the Definition 5.1 are fulfilled by the
projection.

G -measurability of the projection is a direct consequence of the fact that the projection
belongs to L2(G ). As for ii), by the definition of projection we have the property that

v− ( projection of v onto L2(G ))⊥ g, ∀g ∈ L2(G ). (5.3)

In particular, by taking g = 1(A),A ∈ G , we get:
∫

A(projection of v onto L2(G ))dP=∫
Ω
(projection of v onto L2(G )) · 1(A)dP =

∫
Ω
(v+(projection of v onto L2(G )− v)) ·

1(A)dP=
∫

Ω
v ·1(A)dP=

∫
A vdP, that is property ii).

For easy reference, we state the obtained result as a theorem.

THEOREM 5.2 (conditional expectation of v ∈ L2) If v ∈ L2, then E[v | G ] is
the projection of v onto the subspace L2(G ) of all G -measurable square integrable
random variables. Precisely, any projection in the equivalence class is a version of
E[v | G ] and all the versions are obtained by varying the projection in the equivalence
class. 2

STEP 2: Conditional expectation of nonnegative random variables.

Given v≥ 0, define the sequence of bounded random variables vn := min{v,n}, where
n = 1,2, . . .. Clearly vn ∈ L2, so that E[vn | G ] is defined in Step 1. For any n, take
a version of E[vn | G ]. The fact that vn is nondecreasing implies that E[vn | G ] is al-
most surely nondecreasing too. Indeed, if A is the set where E[vn+1 | G ] < E[vn | G ],
we have: 0 ≥

∫
A(E[vn+1 | G ]−E[vn | G ])dP =

∫
AE[vn+1 | G ]dP−

∫
AE[vn | G ]dP =
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∫
A vn+1dP−

∫
A vndP =

∫
A(vn+1− vn)dP ≥ 0, from which we find that equality holds

throughout so that P(A) = 0. Since E[vn | G ] is nondecreasing almost surely, it con-
verges almost surely (to a finite value or to ∞.) Where E[vn | G ] does not converge,
redefine the limit to be zero. We claim that the limit is a version of the conditional
expectation of v given G , and we verify this in the following.

NOTE: We need to remark the fact that defining E[v |G ] = limn→∞E[vn |G ] leaves
open the possibility that E[v | G ] = ∞ on a nonzero probability set even when v <
∞, ∀ω ∈ Ω. To see this, consider the following example: over the probability space
([0,1],B[0,1],λ ), with λ = Lebesgue measure, consider the random variable{

0, x = 0
1
x , otherwise,

(5.4)

and let G be the trivial σ -algebra that only contains the empty set /0 and the whole
set [0,1]. Being G trivial, E[vn | G ] is constant over [0,1] and equal to E[vn]. But
E[vn]→ ∞ as n→ ∞, showing that E[v | G ] = ∞, ∀ω ∈ [0,1].

The fact that E[v | G ] can possibly be ∞ may seem to pose a difficulty since our def-
inition of random variable (Definition 2.2) and all subsequent developments assume
v ∈ R, where R does not include ±∞. This difficulty is however easy to circumvent
provided that one is ready to work with random variables taking value in [−∞,∞], the
extended set of real numbers. We recall that the arithmetic of R is extended to [−∞,∞]
with the definitions: a+∞ = ∞+ a = ∞ if a > −∞, and a−∞ = −∞+ a = −∞ if
a < ∞; ∞−∞ is not defined. a ·±∞ = ±∞ · a = ±∞ if a > 0, a ·±∞ = ±∞ · a = ∓∞

if a < 0, and a ·±∞ =±∞ ·a = 0 if a = 0. One can easily verify that the commutative
and associative laws hold in [−∞,∞] and the distributive law holds in [−∞,∞] as long
as −∞ and ∞ do not appear simultaneously in a sum. The reader is referred to [6] for
a more-in-deep treatment of this matter. The definition of random variables and all the
subsequent developments can naturally be extended to random variables taking value
in [−∞,∞].

Let us go to verify that properties i) and ii) hold. The measurability property i) follows
from Theorem 3.6 applied to sequence E[vn | G ] seen as random variables on (Ω,G ,P)
(the fact that in Theorem 3.6 convergence takes place to a finite value can be easily
generalized to the case at hand here that this value can be ∞). As for Property ii), note
first that

∫
AE[vn | G ]dP=

∫
A vndP, ∀A ∈ G (this is Property ii) for random variables in

L2). Then,
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∫
A
E[v | G ]dP = lim

n→∞

∫
A
E[vn | G ]dP (5.5)

(by the monotone convergence T heorem 3.8) (5.6)

= lim
n→∞

∫
A

vndP (5.7)

=
∫

A
lim
n→∞

vndP (5.8)

(again by the monotone convergence T heorem 3.8)(5.9)

=
∫

A
vdP. (5.10)

STEP 3: Conditional expectation of random variables such that E[v] exists.

Let v+ := max{v,0} and v− := −min{v,0}. Clearly, v = v+− v−. We show that a
version of the conditional expectation is given by the formula

E[v | G ] = E[v+ | G ]−E[v− | G ], (5.11)

where in the right-hand side we take any version of the conditional expectation of v+

and of v− and the left-hand side is redefined to be zero where both E[v+ | G ] and
E[v− | G ] are ∞.

We first show that it is not possible that E[v+ | G ] and E[v− | G ] take both value ∞ on a
nonzero probability set , so that E[v | G ] takes on expression (5.11) almost surely: were
E[v+ | G ] = ∞ on a nonzero probability set, we would then have E[v+] = ∞. Similarly,
E[v− | G ] = ∞ on a nonzero probability set implies E[v−] = ∞. But this would mean
that E[v] is not defined (recall that E[v] is by definition E[v+]−E[v−] provided that
not both these expectations are ∞), which contradicts our initial assumption that E[v]
exists. Once we have established that (5.11) holds almost surely, showing that E[v | G ]
satisfies properties i) and ii) is straightforward (the reader is invited to work out the
details). 2

The following example shows the importance of the assumption that E[v] exists when
taking conditional expectation.

EXAMPLE 5.3 Over ([0,1],B[0,1],λ ), consider the random variable

v =


0, x = 0 and 1
1
x , 0 < x≤ 0.5

1
x−1 , 0.5 < x < 1,

(5.12)



84 5.1 Conditional expectation

and let G = { /0, [0,1]}. Here, E[v+ | G ] = ∞ in [0,1] and, similarly, E[v− | G ] = ∞ in
[0,1], so that E[v | G ] is not defined. The difficulty arises from the fact that E[v] does
not exist in this case. 2

Properties of the conditional expectation

The following properties are listed without proof. They are all valid almost surely and
it is understood that E[v], E[v1], and E[v2] are assumed to exist. The reader is referred,
among other textbooks, to [7], Chapter 2, for a proof.

1. If v1 ≤ v2, then E[v1 | G ]≤ E[v2 | G ];
2. If α and β are constants such that αE[v1]+βE[v2] is defined, then E[αv1 +
βv2 | G ] = αE[v1 | G ]+βE[v2 | G ];
3. If G = { /0,Ω}, then E[v | G ] = E[v]; 4. E[E[v | G ]] = E[v];
5. If G1 ⊆ G2, then E[E[v | G2] | G1] = E[v | G1];
6. Let v1 be a G -measurable random variable and assume that E[v1v2] exists.
Then, E[v1v2 | G ] = v1E[v2 | G ].

Conditional expectation of v2 given v1

Consider a measurable function f : R → R and a random variable η : Ω→ R and
denote by σ(η) the σ -algebra generated by η (i.e., σ(η) is the smallest σ -algebra in
Ω with respect to which η is measurable). Clearly, the random variable f (η) : Ω→R
is σ(η)-measurable (see Theorem 1.5). It is a remarkable fact that the converse also
holds true: if a random variable ξ is σ(η)-measurable, then there exists a measurable
function f such that ξ = f (η) for all ω ∈ Ω (see e.g. [7], Theorem 3, Chapter 2,
Section 4, for a proof). For easy reference, we state this fact in the following theorem.

THEOREM 5.4 Given a random variable η , the set of random variables
{ f (η), with f measurable function from R to R} coincides with the set of σ(η)-
measurable random variables. 2

DEFINITION 5.5 (conditional expectation of v2 given v1) Given two random
variables v1 and v2 such that E[v2] exists, consider any version of E[v2 | σ(v1)]. Since
this conditional expectation is σ(v1)-measurable, in view of Theorem 5.4 we can write
E[v2 | σ(v1)] = f (v1), for some measurable function f , where equality holds ∀ω ∈Ω.
This function f : R→ R is called a conditional expectation of v2 given v1. 2
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Function f in Definition 5.5 is not unique. This can be easily understood by observing
that f (v1) involves only computing f (x) for values of x that correspond to v1(ω) for
some ω ∈ Ω. Thus, changing the value of f elsewhere does not affect the value of
f (v1). Moreover, if one considers a different version of E[v2 | σ(v1)], by applying
Definition 5.5 one finds that a function f such that f (v1) = E[v2 | σ(v1)] for this new
version of the conditional expectation is still a conditional expectation of v2 given v1.
This adds an extra degree of freedom in the selection of f . It is not difficult to see that,
given a conditional expectation f of v2 given v1, the set of all conditional expectations
is the collection of all measurable functions f1 that differ from f on a set having zero
P′v1

measure, where P′v1
is the image probability induced on R by v1. Any such function

is called a version of the conditional expectation of v2 given v1.

Sometimes, we use the symbol E[v2 | v1 = x] for f (x). Intuitively, E[v2 | v1 = x] repre-
sents the mean value assumed by v2 once we know v1 has the value v1 = x.

EXAMPLE 5.6 Let Ω = {(0,0),(0,1),(1,0),(1,1)}, F = all subsets o f Ω, and
let P be specified by P(0,0) = P(1,1) = 1

6 and P(0,1) = P(1,0) = 2
6 .

Consider the random variables v1 and v2 that assign to the sample outcome (i, j) the
value i and j, respectively (see Figure 5.2):

v1(i, j) = i; v2(i, j) = j. (5.13)

Figure 5.2: v1 (•), and v2 (�) for Example 5.6.

We have:

E[v2 | σ(v1)] =

{ 4
6 , on (0,0) and (0,1)
2
6 , on (1,0) and (1,1),

(5.14)

and no other version exists in this case. Moreover, any measurable function f : R→R
with f (0) = 4

6 and f (1) = 2
6 is a conditional expectation of v2 given v1, as it is readily
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seen by noting that f (v1) = E[v2 | σ(v1)]. 2

5.2 Conditional density

We here define the conditional density of a random variable v2 given a second random
variable v1. Throughout, it is assumed that the two random variables v1 and v2 ad-
mit joint probability density pv1,v2(x,y). The reader is referred to standard textbooks
for a broader treatment of the concept of conditional measures, among which good
references are [1, 2].

DEFINITION 5.7 (conditional density) Given a version of the joint probabil-
ity density pv1,v2(x,y) and a version of the probability density pv1(x), the conditional
density of v2 given v1 is defined as

pv2|v1(y | x) :=

{
pv1,v2(x,y)

pv1(x)
, i f pv1(x) 6= 0

0, otherwise.
(5.15)

2

The conditional density pv2|v1(y | x) describes how v2 distributes under the condition
that v1 = x.

By varying the version of pv1,v2 and pv1 , different versions of pv2|v1 are obtained.

From the definition, it is clear that pv2|v1 can be constructed from pv1,v2 and pv1 . On
the other hand, if we are given pv2|v1 , then pv1,v2 and pv1 cannot be uniquely deter-
mined. To see this, note that, if we multiply pv1(x) by a function f (x) > 0 such
that

∫
pv1(x) f (x)dx = 1 and repeat a similar operation for pv1,v2(x,y) so obtaining

pv1,v2(x,y) f (x), then the two densities pv1,v2(x,y) f (x) and pv1(x) f (x) are different
from the original ones but share with these the same conditional density. As we can
see, the indetermination lies in the fact that the division by pv1(x) in the definition of
the conditional density is a normalization operation that hides the relative probability
of different x values.

Since pv2|v1(y | x) describes how v2 distributes when v1 = x, it is an intuitive fact that
pv2|v1(y | x) contains a richer knowledge than E[v2 | v1 = x], the mean of v2 for v1 = x.
The following theorem provides a way to compute E[v2 | v1 = x] from pv2|v1(y | x).

THEOREM 5.8 Given two random variables v1 and v2 such that E[v2] exists, a
version of E[v2 | v1 = x] is given by
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E[v2 | v1 = x] =
{ ∫

R ypv2|v1(y | x)dy, i f the integral exists
0, otherwise.

(5.16)

2

NOTE: The integral
∫
R ypv2|v1(y | x)dy in (5.16) is not guaranteed to be defined

for all values of x. To understand this, just note that, in correspondence of a given
x, pv1,v2(x,y) is substantially arbitrary (the only constraints are due to measurability
properties) since a line in R2 with fixed coordinate x has zero Lebesgue measure. This
arbitrariness can be spent so that the integral in (5.16) is undefined for the selected x.

PROOF. Let A := {x : pv1(x) = 0} and note that, by an application of Theorem 1.12,
we have

∫
A×R

pv1,v2(x,y)d(x,y) =
∫

Ω

1(v1 ∈ A)dP =
∫

A
pv1(x)dx = 0, (5.17)

which shows that pv1,v2(x,y) = 0 λ 2−almost surely on A×R (i.e., pv1,v2(x,y) may be
different from zero at most in a zero Lebesgue measure set in A×R). Consequently,

pv1,v2(x,y) = pv2|v1(y | x)pv1(x) λ
2−almost surely, (5.18)

since the two sides are by definition equal outside A×R while in A×R the right-hand
side and the left-hand side are both zero λ 2−almost surely.

Take now a Borel set B in R. We want to show that

∫
R2

1(x ∈ B)y · pv2|v1(y | x)pv1(x)d(x,y) =
∫
R

[∫
R

1(x ∈ B)y · pv2|v1(y | x)pv1(x)dy
]

dx,

(5.19)

where it is understood that the inner integral is set to zero at those x’s where it is
undefined.

To see this, start by noting that the existence of E[v2] = E[v+2 ]−E[v−2 ] implies that at
least one between E[v+2 ] and E[v−2 ] is finite. Assuming e.g. that E[v+2 ] < ∞, we then
have:
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∞ > E[1(v1 ∈ B) · v+2 ] (5.20)

=
∫

Ω

1(v1 ∈ B) · v2 ·1(v2 ≥ 0)dP (5.21)

=
∫
R2

1(x ∈ B)y ·1(y≥ 0)pv1,v2(x,y)d(x,y) (5.22)

=
∫
R×{y≥0}

1(x ∈ B)y · pv2|v1(y | x)pv1(x)d(x,y) (use (5.18)) (5.23)

=
∫
R

[∫
{y≥0}

1(x ∈ B)y · pv2|v1(y | x)pv1(x)dy
]

dx (use Tonelli′s T heorem 1.14),(5.24)

(5.25)

which shows that the inner integral
∫
{y≥0} is less than infinity λx−almost surely.

(5.19) can now be proven by first rewriting the integral
∫
R2 on the left-hand side as∫

R×{y≥0}+
∫
R×{y<0}; then, by applying Tonelli’s theorem to each of these two inte-

grals as in the last step of the previous derivation; and, finally, by noting that the sum
of the two integrals can be rewritten as the right-hand-side of (5.19) since the inner
integral does not exist (and therefore is redefined to be zero) where both

∫
{y≥0} = ∞

and
∫
{y<0} =−∞, which only happens on a zero λx−measure set.

With the technical results (5.18) and (5.19) in our hands, we can now proceed to write∫
Ω

1(v1 ∈ B)v2dP in two different ways and, from a comparison of the results, the
theorem conclusion will finally be drawn.

First, we have:

∫
Ω

1(v1 ∈ B)v2dP (5.26)

=
∫
R2

1(x ∈ B)y · pv1,v2(x,y)d(x,y) (5.27)

=
∫
R2

1(x ∈ B)y · pv2|v1(y | x)pv1(x)d(x,y) (use (5.18)) (5.28)

=
∫
R

[∫
R

1(x ∈ B)y · pv2|v1(y | x)pv1(x)dy
]

dx (use (5.19)) (5.29)

=
∫

B

[∫
R

ypv2|v1(y | x)dy
]

pv1(x)dx. (5.30)
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But, we also have:∫
Ω

1(v1 ∈ B)v2dP (5.31)

=
∫

v−1
1 (B)

v2dP (5.32)

=
∫

v−1
1 (B)

E[v2 | σ(v1)]dP (5.33)

=
∫

v−1
1 (B)

f (v1)dP (where f is a version o f the conditional expectation o f v2 given v1)(5.34)

=
∫

Ω

1(v1 ∈ B) f (v1)dP (5.35)

=
∫
R

1(x ∈ B) f (x)pv1(x)dx (use T heorem 1.12) (5.36)

=
∫

B
f (x)pv1(x)dx. (5.37)

Comparing (5.30) and (5.37), since B is arbitrary we conclude that

∫
R

ypv2|v1(y | x)dy = f (x) P
′
v1
−almost surely, (5.38)

that is,
∫
R ypv2|v1(y | x)dy is a version of E[v2 | v1 = x]. 2

In this Appendix, we have only considered the conditional expectation in the case of
R-valued random variables. The extension to multi-dimensional (Rn-valued) random
variables is straightforward and is defined as the Rn-valued random variable whose
components are the conditional expectations of the components of the random variable.
All other concepts also extend in a natural way to the multi-dimensional case.
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Chapter 6

WIDE-SENSE STATIONARY
PROCESSES

6.1 Definitions and examples

Let us consider a sequence of complex-valued random variables vt defined over
some probability space (Ω,F ,P), where t runs over positive and negative integers:
t = . . . ,−2,−1,0,1,2, . . .. The fact that vt is “complex-valued” simply means that
vt = vR,t + ivI,t , where vR,t and vI,t are real-valued random variables. The motivation
for considering complex - as opposed to real - vt’s is that certain derivations become
notationally easier in a complex setting. vt is called a discrete-time complex-valued
stochastic process. When vI,t = 0, the complex-valued process reduces to a real-valued
process.

Throughout this appendix, we assume that variables vt are square integrable, i.e.
E[|vt |2] = E[v2

R,t + v2
I,t ] < ∞. The set of square integrable random variables is indi-

cated with L2. Thus, vt ∈ L2, for any t.

DEFINITION 6.1 (wide-sense stationary process) Process vt is said to be
wide-sense stationary if its mean is constant:

E[vt ] = E[v0], ∀t, (6.1)

and the covariance of vt and vt+` only depends on the time lag `:

E
[
(vt+`−E[vt+`]) (vt−E[vt ])

]
= E

[
(v`−E[v`]) (v0−E[v0])

]
, ∀t, `. (6.2)

(overbar denotes complex conjugation.) 2
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Thus, a wide-sense stationary stochastic process has first and second order statistics
that are invariant under time shift.

Function

γ` := E[(v`−E[v`])(v0−E[v0])] (6.3)

is called the auto-covariance function of process vt .

It is not difficult to see that γ` is symmetric, i.e. γ` = γ−`, and positive semidefinite,
that is, for any given integer n and for any choice of the complex numbers a1, . . . ,an,
it holds that

n

∑
k, j=1

akγk− ja j ≥ 0. (6.4)

Without any loss of generality, from now on we shall assume that E[vt ] = 0 (if this is
not the case, it is sufficient to subtract the mean from the original stochastic process
in order to conform to this assumption). Then, γ` = E[v`v0] can be interpreted as the
scalar product between the random variables v` and v0 in the L2 space (the reader is
referred to Appendix 4 for the notion of scalar product and, particularly, to Example
4.4 for the scalar product in L2 - in fact, in Example 4.4 real-valued random variables
are considered, but the extension to complex-valued variables presents no difficulties).

The concept of stationary process is now illustrated through examples.

EXAMPLE 6.2 Given a real random variable z with E[z2]< ∞, let

vt = z, ∀t. (6.5)

It is immediately seen that vt is a wide-sense stationary process. Its realizations are
constant functions. 2

EXAMPLE 6.3 (white process) A real stochastic process vt such that

E[vt ] = 0, ∀t, (6.6)

and

E[vt+`vt ] =

{
σ2, i f `= 0
0, otherwise,

(6.7)
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is clearly wide-sense stationary.

Such a process is called a white process and its characteristic is that each random
variable is uncorrelated with all others. A white process can be equivalently seen as a
sequence of orthogonal functions with constant norm in the L2 space. 2

EXAMPLE 6.4 (one-harmonic process) Consider the stochastic process vt de-
fined through the relation

vt = ze−iωt + zeiωt , (6.8)

where ω is a fixed frequency belonging to the interval [−π,π] and z= zR+ izI is a com-
plex random variable such that: E[zR ] =E[zI] = 0, E[z2

R ] =E[z2
I ] =σ2/4, E[zRzI] = 0.

In (6.8), process vt has been defined through complex quantities for the sake of no-
tational compactness. However, an easy computation shows that process vt is in fact
real:

vt = (zR + izI)(cos(ωt)− isin(ωt))+(zR− izI)(cos(ωt)+ isin(ωt)) (6.9)
= 2zR cos(ωt)+2zI sin(ωt) (6.10)

= 2
√

z2
R + z2

I sin(ωt +atan(zR/zI)) (6.11)

= Asin(ωt +φ) , (6.12)

where, in the last equality, we have defined A= 2
√

z2
R + z2

I and φ = atan(zR/zI) (here,
the appropriate determination for atan has to be taken depending on the sign of zR and
zI). Expression (6.12) reveals the nature of process vt: all its realizations are sinusoids
with fixed frequency ω and random amplitude A and phase φ .

The stationarity of process vt can be verified by a direct computation of its mean and
auto-covariance function:

E[vt ] = E
[
ze−iωt + zeiωt] (6.13)

= E[z]e−iωt +E[z]eiωt (6.14)
= 0, ∀t; (6.15)

E[vt+`vt ] = E
[(

ze−iω(t+`)+ zeiω(t+`)
)(

zeiωt + ze−iωt)] (6.16)

= E[|z|2]e−iω`+E[z2]e−iω(2t+`)+E[z2]eiω(2t+`)+E[|z|2]eiω`.(6.17)
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In the latter expression, the expectations are given by

E[|z|2] = E[z2
R + z2

I ] = σ
2/2 (6.18)

E[z2] = E[z2
R− z2

I +2izRzI] = E[z2
R ]−E[z2

I ] = 0 (6.19)
E[z2] = E[z2

R− z2
I −2izRzI] = E[z2

R ]−E[z2
I ] = 0, (6.20)

which, substituted in the expression for E[vt+`vt ], give

E[vt+`vt ] = σ
2 cos(ω`), ∀t, `. (6.21)

Since this last expression only depends on `, the stationarity of process vt follows. 2

EXAMPLE 6.5 (multi-harmonic process) The example above can be straight-
forwardly generalized to the case when the stochastic process is formed by several
harmonic components with different frequencies.

Consider

vt =
N

∑
k=1

(
zke−iωkt + zkeiωkt) , (6.22)

where the zk’s satisfy conditions similar to those for z in Example 6.4 and, in addition,
E[zR,kzR, j] = E[zR,kzI, j] = E[zI,kzI, j] = 0,∀k 6= j.

Computations entirely similar to those carried out for the case of a single harmonic
component show that process vt is stationary and that its realizations are formed by
the sum of sinusoids with frequencies ωk, k = 1, . . . ,N. Each sinusoid has random am-
plitude and phase and the variance of the k-th sinusoidal component is σ2

k . Moreover,
each sinusoidal component is uncorrelated with all others. 2

In the above example, the stationary stochastic process is the sum of uncorrelated
sinusoidal stochastic components. A truly remarkable fact is that this holds true in
full generality: any wide-sense stationary stochastic process admits a decomposition
in terms of uncorrelated harmonical components. This will be proven later as Theorem
6.10.
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6.2 Elementary spectral theory of stationary processes

The elementary spectral theory that we present here is not universally applicable, but
we prefer to begin with it because it is easy to derive and yet it can be applied to many
problems. A general spectral theory is differed to the next Section 6.3.

Assume that γ` ∈ l1 (i.e. ∑
∞
`=−∞

|γ`| < ∞). This assumption requires that the auto-
covariance function vanishes fast enough and is not satisfied e.g. in the processes of
Examples 6.2, 6.4, and 6.5. Function

f (ω) =
1

2π

∞

∑
`=−∞

γ`e−iω` (6.23)

(the discrete Fourier transform of γ`) is then pointwise convergent for any ω and is
called the spectral density function of the process.

Clearly, f (ω) is periodic of period 2π , so that it is enough to regard it as a function
defined over (−π,π]. Moreover, from the properties of γ` it can be seen that f (ω) is
real and nonnegative.

Given γ`, one can compute the spectral density f (ω) via (6.23). Viceversa, given f (ω),
γ` can be reconstructed by relation

γ` =
∫
(−π,π]

eiω` f (ω)dω, (6.24)

(verify this) so that γ` and f (ω) carry exactly the same information content.

The interpretation of f (ω) is that it describes the harmonic content of the stochastic
process. A full justification of this interpretation requires a more-in-depth analysis
along the lines provided in the next section.

6.3 Spectral theory of stationary processes

Spectral measure

The spectral measure is a way to prescribe the correlation pattern of a stationary pro-
cess alternative to γ`. Though the spectral measure conveys exactly the same informa-
tion as γ`, it has an extra intuitive appeal because it directly describes the harmonic
content of the stationary process. When γ` ∈ l1 as in Section 6.2, the spectral measure
has a density and such a density is given by (6.23).

We start with the following fundamental theorem.
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THEOREM 6.6 (Herglotz) Let γ` be a positive semidefinite function (i.e., γ` sat-
isfies (6.4)). Then, there exists a finite measure m on ((−π,π],B(−π,π]) such that,
for any `= . . . ,−2,−1,0,1,2, . . .:

γ` =
∫
(−π,π]

eiω`dm(ω). (6.25)

2

When γ` is the auto-covariance function of a wide-sense stationary process vt , measure
m in Theorem 6.6 is called the spectral measure of vt . Its distribution function F(ω) =∫

ω

−π
dm(ω) is called the spectral distribution function.

PROOF. This proof uses the notion of weak convergence and the reader can find all
results used here in Appendix 3.

Define

fn(ω) :=
1

2πn

n

∑
k, j=1

e−iωk
γk− jeiω j =

1
2π

n−1

∑
j=−n+1

(
1− | j|

n

)
γ je−iω j (6.26)

(the second equality follows from a simple computation).

Since γ` is positive semidefinite, fn(ω)≥ 0. Next, let

Fn(ω) =
∫

ω

−π

fn(x)dx, (6.27)

for ω ∈ (−π,π], while Fn(ω) = 0 for ω ≤−π , and Fn(ω) =
∫

π

−π
fn(x)dx for ω > π .

Fn(ω) is nondecreasing and continuous; moreover, observing that

Fn(π) =
∫

π

−π

fn(x)dx = γ0, ∀n, (6.28)

we conclude that Fn/γ0 is a sequence of probability distribution functions on R (see
Theorem 2.6 and the comment that follows the statement of this theorem). It is in
fact a tight sequence according to the definition of tightness given in Helly’s Theorem
3.24 (take M = π in that definition). Thus, due to Theorem 3.24, we conclude that
there exists a subsequence Fnk/γ0 which converges weakly to a limit probability dis-
tribution function F/γ0. This distribution function is supported on the closed interval
[−π,π]. Now, recalling the Definition 3.21 of weak convergence and noting that eiω`

is a function with continuous and bounded real and complex parts, we obtain
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∫
[−π,π]

eiω`d
F(ω)

γ0
= lim

k→∞

∫
[−π,π]

eiω`d
Fnk(ω)

γ0
(6.29)

= lim
k→∞

1
γ0

∫
[−π,π]

eiω` fnk(ω)dω (6.30)

= lim
k→∞

1
γ0

∫
[−π,π]

1
2π

nk−1

∑
j=−nk+1

(
1− | j|

nk

)
γ jeiω(− j+`)dω(6.31)

=
γ`

γ0
. (6.32)

Finally, rescale the measure associated to F/γ0 by a factor γ0. The so-obtained measure
is supported on [−π,π], but we can reduce it to a measure supported on (−π,π] by
transferring the mass in −π to π , and this operation does not change the integral of
function eiω`. The latter is the measure m of the theorem statement, where (6.25) easily
follows from (6.32). 2

A few comments on the spectral measure are in order.

1. The spectral measure m is defined by means of the auto-covariance function
γ` only. On the other hand, Herglotz’s theorem gives an inversion formula to
reconstruct γ` from m. This shows that m and γ` carry the same content of
information: they both completely define the correlation pattern of the stationary
process;

2. the spectral measure is unique. This claim requires a simple proof.

Suppose there are two spectral measures with distribution functions F1 and F2
(we define F1(ω) = F2(ω) = 0 for ω ≤−π and F1(ω) = F2(ω) = γ0 for ω > π).
Then,

∫
(−π,π]

eiω`dF1(ω) = γ` =
∫
(−π,π]

eiω`dF2(ω). (6.33)

Given an arbitrary ω ∈ (−π,π], consider the sequence of functions

gn(ω) =


1, in (−π,ω]

1−n(ω−ω), in (ω,ω + 1
n ]

0, in (ω + 1
n ,π].

(6.34)

Since every bounded continuous function can be uniformly approximated on
(−π,π] by trigonometric polynomials (see e.g. [6]), from (6.33) we have
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∫
(−π,π]

gn(ω)dF1(ω) =
∫
(−π,π]

gn(ω)dF2(ω). (6.35)

Sending n→ ∞, this last equation gives F1(ω) = F2(ω), which, owing to the
arbitrariness of ω , yields the desired result.

Notice also that the uniqueness of the spectral measure implies that one cannot
find two subsequences, F ′nk

/γ0 and F ′′nk
/γ0, of Fn/γ0 that are weakly convergent

to two distinct limit distribution functions.

Spectral density

Suppose there exists a measurable function f defined on (−π,π] whose integral returns
the spectral distribution function F : F(ω) =

∫
ω

−π
f (x)dx. Then, f is called the spectral

density function of the process. In this case, F is λ−almost surely differentiable and f
is λ−almost surely the derivative of F (this is the “fundamental theorem of calculus”,
see e.g. Theorem 7.20 in [6]).

When γ` ∈ l1, f is given by (6.23) (and this justifies our calling “spectral density
function” the function in (6.23)), a fact that is proven in the next theorem.

THEOREM 6.7 If γ` ∈ l1, then

f (ω) =
1

2π

∞

∑
`=−∞

γ`e−iω` (6.36)

is the spectral density function of the process.

PROOF. Recall that

Fn(ω) =
∫

ω

−π

1
2π

n−1

∑
j=−n+1

(
1− | j|

n

)
γ je−ix jdx. (6.37)

Since γ` ∈ l1, the integrand can be uniformly (with respect to n) bounded as follows:∣∣∣∣∣ 1
2π

n−1

∑
j=−n+1

(
1− | j|

n

)
γ je−ix j

∣∣∣∣∣≤ 1
2π

∞

∑
j=−∞

|γ j|< ∞. (6.38)

Thus, by the dominated convergence Theorem 3.9 (in fact, here we are integrating with
respect to a finite measure instead of a probability measure as in Theorem 3.9, but this
difference can be leveled by a rescaling factor), we obtain
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lim
n→∞

∫
ω

−π

1
2π

n−1

∑
j=−n+1

(
1− | j|

n

)
γ je−ix jdx =

∫
ω

−π

lim
n→∞

1
2π

n−1

∑
j=−n+1

(
1− | j|

n

)
γ je−ix jdx(6.39)

=
∫

ω

−π

1
2π

∞

∑
j=−∞

γ je−ix jdx, (6.40)

showing that the sequence Fn(ω) converges for any ω to
F(ω) =

∫
ω

−π
1

2π ∑
∞
j=−∞ γ je−ix jdx. Thus, F(ω)/γ0 is the weak limit of Fn(ω)/γ0 and

so it is the spectral distribution function and 1
2πγ0

∑
∞
j=−∞ γ je−iω j is its density function.

This concludes the proof. 2

The above proof relies on the fact that a function γ` ∈ l1 has such a thin tail that the
limit for n→ ∞ of the integral

∫
π

−π
1

2π ∑
n−1
j=−n+1

(
1− | j|n

)
γ je−ix jdx can be computed

by sending to infinity the summation under the sign of integration. While we have
presented this proof of Theorem 6.7 because it is instructive, we also note that an
indirect, and quicker, proof can be obtained along the same lines as in point 2 after
Theorem 6.6: Theorem 6.6 gives

γ` =
∫
(−π,π]

eiω`dF(ω), (6.41)

where F is the probability distribution function of m, while formula (6.24) gives

γ` =
∫
(−π,π]

eiω` f (ω)dω, (6.42)

from which

∫
(−π,π]

eiω`dF(ω),=
∫
(−π,π]

eiω` f (ω)dω. (6.43)

Hence, following the same rationale as in point 2 after Theorem 6.6, one can use
functions gn(ω) in (6.34) to conclude that

F(ω̄) =
∫

ω̄

−π

f (x)dx. (6.44)

EXAMPLE 6.8 (Example 6.3 continued) For the white process of Example 6.3,
Fn(ω) given in (6.37) can be computed as follows
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Fn(ω) =
∫

ω

−π

1
2π

n−1

∑
j=−n+1

(
1− | j|

n

)
γ je−ix jdx =

∫
ω

−π

1
2π

σ
2dx (6.45)

=
1

2π
σ

2(ω +π) = F(ω), f or ω ∈ (−π,π]. (6.46)

Taking derivative with resepct to ω , we find the spectral density to be f (ω) =
1

2π
σ2, λ−almost surely. The same result can be obtained by relation f (ω) =

1
2π ∑

∞
`=−∞

γ`e−iω` = 1
2π

σ2. 2

EXAMPLE 6.9 (Example 6.2 continued) For the process of Example 6.2, as-
sume E[z] = 0 and E[z2] = 1. Then, the auto-covariance function is γ` = 1, ∀`, and
is not in l1. In this case, the series in (6.23) is not convergent (consider for example
ω = 0). Still, convergence holds in a weak sense as indicated in the proof of Herglotz
Theorem 6.6.

Figure 6.1:

Figure 6.1 displays the functions Fn(ω) given by (6.37) for some values of n. It can
be noted that Fn(ω) seems to converge to the step function with a step in 0 of hight 1.
This is in fact true and Fn(ω) converges to this step function for any ω 6= 0, while it
holds that Fn(0) = 1/2, ∀n (verifying this claim requires some lengthy computations
and the reader can go through the calculations along the following line: first show
that Fn(ω) = 1

2π ∑
−1
j=−n+1

(
1− | j|n

)
i
j e
−iω j + 1

2π ∑
n−1
j=1

(
1− | j|n

)
i
j e
−iω j + ω

2π
+ 1

2 ; then,

notice that term ω

2π
can be seen as the restriction to (−π,π] of a periodic saw-tooth
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function with period 2π and compute the Fourier expansion of this function; finally,
after substituting the Fourier expansion for ω

2π
in the expression of Fn(ω), one can

recognize that the so-obtained expansion for Fn(ω) tends to the expansion for the step
function).

What is F, the spectral distribution function, in this case? It is the step function with
a step in 0 of hight equal to 1. This distribution function is not absolutely continuous
and the spectral density function does not exist in this case. The spectral measure has
concentrated mass in 0.

We conclude with a technical remark relative to a point that may have attracted the
reader’s attention. In this example, in order for F to be a distribution function, F(0)
must be equal to 1, for, otherwise, F would not be continuous on the right in ω = 0. If
we go back to the proof of Helly’s Theorem 3.24 (Helly’s theorem is used in the proof
of Herglotz Theorem 6.6), we see that F(x) is defined for any x as infx j>x F̄(x j). By
this definition, one indeed has that F(0) = 1. 2

A remark on the usefulness of the spectral distribution

When γ` ∈ l1, the tail of γ` is vanishing fast enough and 1
2π ∑

n
`=−n γ`e−iω` gently con-

verges as n→ ∞, allowing us to work with its limit 1
2π ∑

∞
`=−∞

γ`e−iω`. This situation,
however, does not cover all possible cases and the γ` can as well have a powerful tail
so that taming the limit behavior of 1√

2π
∑

n
`=−n γ`e−iω` becomes difficult. The idea

behind the construction of the spectral distribution function is to control the “rough-
ness” of 1

2π ∑
n
`=−n γ`e−iω` by the smoothing properties of integration. The integrated

function converges to the spectral distribution function in a weak sense only, but this
convergence is strong enough to secure the fundamental inversion formula (6.25).

Spectral representation of stationary processes

We now introduce an alternative representation of a wide-sense stationary process
where the process is viewed as a stochastic integral with respect to an orthogonal
stochastic measure. This representation shows that any stationary process can be inter-
preted as the sum of elementary harmonic components, so generalizing the situation in
Example 6.5. This deep-seated result sheds new light on the very nature of wide-sense
stationary processes. Moreover, it lends a new interpretation of the spectral measure m
as a quantifier of the harmonic content of the stationary process.

Let us consider the space L2(m) of the complex-valued, measurable and square inte-
grable functions defined on ((−π,π],B(−π,π],m), where m is the spectral measure
associated to process vt . This space is entirely similar to the space L2 studied in Ex-
amples 4.4 and 4.15 in Appendix 4, to which we refer the reader for definitions and ex-
planation (in Appendix 4, real-valued functions are considered. Extending the results
therein to the present complex-valued setting with a measure m presents no difficulties
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and the reader is invited to work out the details). Here, we merely recall that L2(m) is
a vector space that can be endowed with a generalized inner product by the definition

( f ,g) =
∫
(−π,π]

f (ω)g(ω)dm(ω). (6.47)

This inner product is “generalized” since ( f , f )= 0 does not imply that f = 0, it simply
yields f = 0 m-almost surely. Importantly, L2(m) is complete, see Example 4.15.

Let L2
0(m)⊆L2(m) be the linear subspace spanned by eiωk, k = . . . ,−2,−1,0,1,2, . . .

(i.e., each element in L2
0(m) is simply a linear combination of functions eiωk of the

form ∑k∈K αkeiωk, where K is any finite set of integers and αk are complex numbers).
The closure of L2

0(m) coincides with L2(m) itself (see e.g. [6]).

Next, introduce in L2, the space of square integrable random variables, the linear sub-
space L2

o(v) of the variables spanned by vk (i.e., ∑k∈K αkvk with K finite and αk com-
plex) and denote by L2(v) its closure. In general, L2(v) 6= L2.

We want to establish a one-to-one correspondence T between L2(m) and L2(v). To be
precise, T is one-to-one up to equivalence, i.e. we identify functions of L2(m) which
are m-almost surely equal and random variables of L2(v) which are P-almost surely
equal.

To this end, define first the following correspondence between elements of L2
0(m) and

elements of L2
0(v):

∑
k∈K

αkeiωk↔ ∑
k∈K

αkvk. (6.48)

This correspondence is an isometry, that is, it preserves the inner product. In fact:

(
∑
k∈K

αkeiωk,∑
j∈J

β jeiω j

)
=

∫
(−π,π]

(
∑
k∈K

αkeiωk

)(
∑
j∈J

β je
−iω j

)
dm(ω)(6.49)

= ∑
k∈K

∑
j∈J

αkβ j

∫
(−π,π]

eiω(k− j)dm(ω) (6.50)

= ∑
k∈K

∑
j∈J

αkβ jγk− j (by T heorem 6.6) (6.51)

= ∑
k∈K

∑
j∈J

αkβ jE[vkv j] (6.52)

=

(
∑
k∈K

αkvk,∑
j∈J

β jv j

)
. (6.53)

Next, consider an f ∈L2(m). Since L2(m) is the closure of L2
0(m), there is a sequence

fn ∈ L2
0(m) that converges to f . Let zn be the sequence of random variables in L2

0(v)
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corresponding to fn. Since the correspondence is an isometry, it is immediate to verify
that zn is a Cauchy sequence, so that, in view of the completeness of L2, it converges
to some limit point in L2(v). There is an evident converse to this construction: if
z∈L2(v), then one can find a sequence in L2

0(v) converging to z and the corresponding
sequence in L2

0(m) converges to a function f ∈ L2(m).

By definition, we let T : f ↔ z. It is easy to verify that this correspondence between
L2(m) and L2(v) is one-to-one, linear and isometric. The construction is illustrated in
Figure 6.2.

Figure 6.2: The correspondence T .

We next introduce the notion of stochastic integral. For any Borel set B ∈B(−π,π],
denote by T (B) the random variable corresponding to 1(B) (the indicator function of
set B equal to 1 on B and 0 elsewhere) in the isometry T . Note that E[T (B1)T (B2)] = 0
whenever B1∩B2 = /0. This is immediately verified by noting that E[T (B1)T (B2)] =∫
(−π,π] 1(B1)1(B2)dm(ω) =

∫
(−π,π] 0 dm(ω) = 0. Function T : B(−π,π]→ L2(v) is

called an orthogonal stochastic measure.

We first define the stochastic integral for elementary functions. Given a finite set of
N disjoint Borel sets Bk, k = 1, . . . ,N, and N complex numbers αk, k = 1, . . . ,N, the
integral of the elementary function f = ∑

N
k=1 αk1(Bk) is simply defined as ∑

N
k=1 αk ·

T (Bk). Here, one should note that the stochastic integral of f is nothing but the random
variable that corresponds to f in the isometry T .

Next, the definition is extended to any function f ∈L2(m) as follows. Take a sequence
fn of elementary functions that converges to f in L2(m). Since the integrals of the
fn’s are the random variables corresponding to fn in the isometry, such integrals form
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a Chauchy sequence and therefore converge to a limit point in L2(v). This limit is by
definition the integral of f and it is denoted by

∫
(−π,π] f (ω)dT (ω). Again, the integral

of f is nothing but the random variable corresponding to f in the isometry T .

The notion of stochastic integral can now be applied to the functions eiωt . By con-
struction, we obtain

∫
(−π,π] e

iωtdT (ω) = vt .

We have proved the following result.

THEOREM 6.10 There exists an orthogonal stochastic measure T on
((−π,π],B(−π,π]) such that

vt =
∫
(−π,π]

eiωtdT (ω). (6.54)

Moreover, E[|T (B)|2] = m(B),∀B ∈B(−π,π]. 2

A new interpretation of stationary processes

The above definition of stochastic integral delivers a new interpretation of a stationary
process that points directly to its inborn structure and provides an insightful standpoint
in many applications.

Consider equation vt =
∫
(−π,π] e

iωtdT (ω). Let us partition the interval (−π,π] in a
large, though finite, number of subintervals of equal length: (−π,π] = (−π,−π +
2π

1
N ]∪ (−π +2π

1
N ,−π +2π

2
N ]∪·· ·∪ (π−2π

1
N ,2π] = ∪N

k=1Bk. Then, functions eiωt ,
t ≤ T , can be approximated by ∑

N
k=1 eiωkt1(Bk) (when t becomes too large, beyond

T , sum ∑
N
k=1 eiωkt1(Bk) fails to approximate eiωt because eiωt oscillates too fast as

a function of ω). When this happens, one needs to introduce a more fine-grained
partition of (−π,π]. Correspondingly, vt , t ≤ T , can be approximated by the stochastic
integral of this latter function, leading to

vt ≈
N

∑
k=1

eiωktT (Bk), t ≤ T. (6.55)

This expression delivers an interpretation of process vt which is very useful for an
intuitive understanding of its structure:

A stationary process vt is given by the linear combination of uncorrelated
random variables T (Bk). Each variable has a variance m(Bk) (remember
that T is an isometry) and is modulated in time by the harmonic function
eiωkt , which oscillates at the frequency ωk.
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6.4 Multivariable stationary processes

The theory of wide-sense stationary processes extends in a natural way to the multivari-
able case. This extension is dealt with here in brief summary. We consider processes
with two components only because this case captures all the relevant aspects.

Let vt : Ω→ C2 have components v(1)t and v(2)t . vt is wide-sense stationary if

E[vt ] = E[v0], ∀t, (6.56)

and

E
[
(vt+`−E[vt+`]) (vt−E[vt ])

T
]
= E

[
(v`−E[v`]) (v0−E[v0])

T
]
, ∀t, `, (6.57)

where a bi-dimensional stochastic variable is identified with the vector of its compo-
nents where it needs be.

Notations and terminology are the same as in the mono-variate case, so e.g. we call
γ` := E

[
(v`−E[v`]) (v0−E[v0])

T
]

the process auto-covariance function. γ` is a 2×2

matrix, where the diagonal elements are the auto-covariance functions of v(1)t and v(2)t

and the extra-diagonal elements measure the cross-covariance between v(1)t and v(2)t .
When we want to emphasize this fact, we also call γ

(1,2)
` (the (1,2) element of γ`) the

cross-covariance function between v(1)t and v(2)t .

If vt : Ω→ C2 is wide-sense stationary, so is αv(1)t +βv(2)t for any choice of complex
numbers α and β .

The spectral theory is extended more easily to the bi-dimensional case by first intro-
ducing the spectral representation and then the spectral measure (so reversing the order
adopted in the 1-dimensional case), so we follow this route.

The spectral representation is simply a componentwise concept: from the one-
dimensional theory, v(1)t has associated an orthogonal stochastic measure T (1) such
that v(1)t =

∫
(−π,π] e

iωtdT (1)(ω); similarly v(2)t =
∫
(−π,π] e

iωtdT (2)(ω). It is worth re-
marking that T (1) and T (2) carry all information on the bi-dimensional process since
v(1)t and v(2)t can be fully reconstructed from T (1) and T (2). So, one can e.g. reconstruct
the cross-covariance function from T (1) and T (2).

In contrast, the spectral measure is a matrix concept: it is a 2×2 matrix of the form

m =

[
m11 m12
m21 m22

]
. (6.58)
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It needs to be so because one cannot reconstruct the cross-covariance from the auto-
covariance γ

(1,1)
` and γ

(2,2)
` only. The reader is invited to reflect on this point by con-

sidering the following two situations:

(i) v(1)t and v(2)t are zero-mean, unitary-variance, white and mutually uncorrelated:
E[v(1)t v(2)τ ] = 0, ∀t,τ;

(ii) v(1)t and v(2)t are zero-mean, unitary variance, white and v(1)t = v(2)t , ∀t.

Here, in both (i) and (ii) γ
(1,1)
` = γ

(2,2)
` = 1 for ` = 0 and γ

(1,1)
` = γ

(2,2)
` = 0 for ` 6= 0.

However, γ
(1,2)
` are different in the two cases.

Before proceeding any further in the definition of m, we need to extend our notion
of measure to complex-valued signed-measures, as m12 and m21 are measures of this
type.

DEFINITION 6.11 (complex-valued signed-measure) Let X be a σ -algebra.
A function m : X → [−∞,∞] such that no two sets A1 and A2 exist with m(A1) = ∞ and
m(A2) = −∞ is called a signed-measure if, for any countable collection of pairwise
disjoint sets Ak ∈X , k = 1,2, . . ., the following property (σ -additivity) holds

m(∪∞
k=1Ak) =

∞

∑
k=1

m(Ak) . (6.59)

A complex-valued signed-measure m is given by m1 + im2, where m1 and m2 are
signed-measures. 2

The assumption that no two sets B1 and B2 exist with m(B1)=∞ and m(B2)=−∞ rules
out the possibility of indeterminate forms ∞−∞. By a comparison with Definition 1.7,
we see that a signed-measure is simply a measure where the positivity requirement has
been relaxed.

We are now ready to define the spectral measure. For B ∈B(−π,π], let:

m11(B) = E[|T (1)(B)|2], m12(B) = E[T (1)(B)T (2)
(B)],

m21(B) = E[T (2)(B)T (1)
(B)], m22(B) = E[|T (2)(B)|2].

(6.60)

m11 and m22 are the usual spectral measures for processes v(1)t and v(2)t . From their def-
inition, we see that m12 = m21 and these are complex-valued signed-measures. To see
this, we need to verify the σ -additivity property, i.e., m12

(
∪∞

k=1Bk
)
= ∑

∞
k=1 m12 (Bk),

and this requires a bit of extra investigation: we shall prove that
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E[T (1)(B1)T
(2)
(B2)] = 0, whenever B1∩B2 = /0, (6.61)

from which the σ -additivity follows:

m12 (∪∞
k=1Bk) = E[T (1) (∪∞

k=1Bk)T (2)
(∪∞

k=1Bk)] (6.62)

= E

[(
∞

∑
k=1

T (1)(Bk)

)(
∞

∑
k=1

T (2)
(Bk)

)]
(6.63)

=
∞

∑
k=1

∞

∑
j=1

E
[
T (1)(Bk)T

(2)
(B j)

]
(6.64)

=
∞

∑
k=1

E
[
T (1)(Bk)T

(2)
(Bk)

]
(use (6.61)) (6.65)

=
∞

∑
k=1

m12(Bk). (6.66)

To prove (6.61), start by considering the stationary process vt = αv(1)t +βv(2)t and note
that the orthogonal stochastic measure T associated to vt is αT (1)+βT (2). Thus,

0 = E[T (B1)T (B2)] (since B1∩B2 = /0) (6.67)

= E[(αT (1)(B1)+βT (2)(B1))(αT (1)
(B2)+βT (2)

(B2))] (6.68)

= αβE[T (1)(B1)T
(2)
(B2)]+βαE[T (2)(B1)T

(1)
(B2)]. (6.69)

(since E[T (1)(B1)T
(1)
(B2)] = E[T (2)(B1)T

(2)
(B2)] = 0) (6.70)

Taking α = β = 1 first, and α = 1, β = i then, yields

0 = E[T (1)(B1)T
(2)
(B2)]+E[T (2)(B1)T

(1)
(B2)] (6.71)

0 = −iE[T (1)(B1)T
(2)
(B2)]+ iE[T (2)(B1)T

(1)
(B2)], (6.72)

from which E[T (1)(B1)T
(2)
(B2)] = 0 follows, so proving (6.61).

We want to finally recall that Herglotz Theorem 6.6 extends naturally to the multi-
variable case:

γ
(i, j)
` =

∫
(−π,π]

eiω`dmi j(ω), `= . . . ,−2,−1,0,1,2, . . . , i, j = 1,2. (6.73)
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For i = j = 1 and i = j = 2, this is the standard Herglotz theorem applied component-
wise. As for i 6= j, take a partition Bk = (−π + 2π

k−1
N ,−π + 2π

k
N ], k = 1, . . . ,N,

of (−π,π] and let ∑
N
k=1 eiωk`T (1)(Bk) and ∑

N
k=1 eiωk0T (2)(Bk) = ∑

N
k=1 T (2)(Bk) be ε-

approximations (in the L2-norm) of v(1)` and v(2)0 . We have

γ
(1,2)
` = E[v(1)` v(2)0 ] (6.74)

≈ E

[(
N

∑
k=1

eiωk`T (1)(Bk)

)(
N

∑
k=1

T (2)
(Bk)

)]
(6.75)

=
N

∑
k=1

N

∑
j=1

eiωk`E[T (1)(Bk)T
(2)
(B j))] (6.76)

=
N

∑
k=1

eiωk`E[T (1)(Bk)T
(2)
(Bk))] (use (6.61)) (6.77)

=
N

∑
k=1

eiωk`m12(Bk) (6.78)

≈
∫
(−π,π]

eiω`dm12(ω), (6.79)

where the “≈” become “=” in the limit when ε → 0, so proving (6.73).
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