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SUMMARY

The virtual reference feedback tuning (VRFT) is a data-based method for the design of feedback
controllers. In the original formulation, the VRFT method gives a solution to the degree of freedom
model-reference control problem in which the objective is to shape the input–output transfer function of
the control system. In this paper, the extension of the method to the design of 2 d.o.f. controllers is
presented and discussed. Copyright # 2002 John Wiley & Sons, Ltd.

1. INTRODUCTION

In this paper we consider the problem of designing a controller for a plant, when no
mathematical description of the plant dynamical behaviour is available.

It is common experience in industrial control design that a mathematical description of the
plant to be controlled is not available and that undertaking a modelling study is considered too
costly and time-consuming. In these cases, one would like to come up with a controller tuned
directly from measurements coming from the plant without going through a modelling phase.

One method that has been developed to this purpose is the so-called virtual reference feedback
tuning (VRFT) algorithm. Precisely, VRFT permits one to tune a controller within a specified
class on the basis of a single set of input/output (I/O) data collected from an experiment on the
plant. The idea on which VRFT is based was originally proposed in Reference [1] and
subsequently developed in References [2–4] as a complete and ready-to-use method. In References
[2–4] the VRFT method has been presented for the selection of 1 degree of freedom (d.o.f.)
controllers. In this case, one single controller transfer function fed by an error signal (that is the
difference between the reference and the measured plant output) determines the control input
value. Such a 1 d.o.f. setting permits one to shape one single closed-loop transfer function, and
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in fact in Reference [2] only the reference to output transfer function was considered. The
aim of this paper is to present and discuss the extension of the method to a 2 d.o.f. setting,
where both the reference to output and the disturbance to output transfer functions are taken
care of.

First, the control problem setting is precisely described. Later on in this section, we discuss the
different approaches that have been introduced in the literature in order to address this control
problem and put VRFT into perspective with other methods.

1.1. Problem statement

Given a discrete-time SISO (single input–single output) plant P ðzÞ with input uðtÞ and output yðtÞ
affected by an additive disturbance signal dðtÞ:

yðtÞ ¼ P ðzÞuðtÞ þ dðtÞ ð1Þ

consider the 2 d.o.f. control system having the following structure (see Figure 1):

yðtÞ ¼ P ðzÞuðtÞ þ dðtÞ

uðtÞ ¼ Crðz; yrÞrðtÞ � Cyðz; yyÞyðtÞ

(
ð2Þ

where rðtÞ is the reference signal, and ðCrðz; yrÞ;Cyðz; yyÞÞ is a 2 d.o.f. controller belonging to a
given family of parameterized controllers. If Crðz; yrÞ ¼ Cyðz; yyÞ; the 1 d.o.f. controller studied
in Reference [2] is recovered (in this case, the controller transfer functions Crðz; yrÞ and Cyðz; yyÞ
are usually implemented through a single block placed in the loop). The attention is restricted
to linearly parameterized controllers, that is transfer function Crðz; yrÞ takes the form
Crðz; yrÞ ¼ brðzÞ

Tyr and, similarly, Cyðz; yyÞ ¼ byðzÞ
Tyy ; where brðzÞ and byðzÞ are vectors of

discrete-time transfer functions (with dimension nr and ny; respectively) and yr and yy are the
parameter vectors.

In the sequel, the transfer function between rðtÞ and yðtÞ of the control system (2) will be
referred to as closed-loop function, and the transfer function between dðtÞ and yðtÞ will be named
sensitivity function.

Given a reference model MðzÞ for the closed-loop function, a reference model SðzÞ for the
sensitivity function, and a family of parameterized controllers fðCrðz; yrÞ;Cyðz; yyÞÞg; the control
problem consists in selecting the controller parameter vectors ð%yyr; %yyyÞ which minimizes the

Figure 1. The two degree of freedom control system.
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following model reference criterion:

JMRðyr; yyÞ ¼
P ðzÞCrðz; yrÞ

1þ P ðzÞCyðz; yyÞ
�MðzÞ

� �
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����
����

����
����
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þ
1
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����

����
����
2

2

ð3Þ

where WM ðzÞ and WSðzÞ are user-chosen weighting functions.
A point which need to be made clear is that minimizing (3) is not a standard optimal control

problem, since we assume that the plant transfer function P ðzÞ is not known. In order to
compensate for such a lack of knowledge, in the VRFT approach it is assumed that the designer
is given a set of I/O measurements collected from the plant P ðzÞ (either in open-loop or in closed-
loop). Such a set of data has to be used to come up with a sensible solution to the control
problem design without having further access to the plant for experiment.

1.2. Discussion on the control setting

The problem of designing feedback controllers (usually industrial PID controllers) on the basis
of a set of I/O measurements has attracted the attention of control engineers since the 1940s
with the pioneering work by Ziegler and Nichols, Reference [5]. After the original work by
Ziegler and Nichols, many more techniques have been proposed, exploring different directions
(see e.g. References [6–8]). The reader is referred to References [9, 10] for book-length
presentations of these methods.

By comparing VRFT with the commonly used tuning rules for PID controllers presented in
References [5–10], some main differences are worth noticing:

* VRFT aims at finding a solution to a model-reference control problem (3), while other
methods usually try to find a generically ‘well-working’ solution according to some
criterion ‘built-in’ in the method. While this introduces an extra difficulty for the designer
(since he/she has to select suitable reference models), it also adds an important degree of
freedom in the definition of the control specifications. It should also be noted that MðzÞ and
SðzÞ can as well be chosen to be very simple transfer functions (of degree 1 or 2) in standard
applications.

* VRFT is not restricted to PID controllers. In this paper, we consider the wide class of linearly
parameterized controllers, that includes PID controllers as a special case. On the other hand,
VRFT also applies to non-linearly parameterized controllers, at the price of extra algorithmic
complications. Moreover, the idea underlying VRFT can be extended so as to cover non-
linear controllers as well (see e.g. References [11–13] for a discussion on this).

* The computational effort required in the implementation of VRFT is higher than for
standard tuning rules. However, in view of the computational power of modern digital
circuits and computers, this does not appear to be a substantial limitation.

The real bottleneck in the design of a data-based controller lies in the number of experiments
to perform on the real plant, since these experiments are time consuming and often require to
halt the normal operation of the system. In this respect, VRFT is comparable to standard
tuning rules as it requires a single data set collected from one single experiment on the plant.
It is also important to mention that, in the field of data-based control system design, many

advances have been made in recent years. Almost all these methods, however, share the feature
of being iterative, that is they require to perform many experiments on the plant. They can be
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grouped in indirect (i.e. model-based) methods, References [14–24], and direct methods,
References [25–28].

* The indirect iterative methods iteratively perform plant model identification and model-based
controller design. The successively selected controllers are applied to the plant and new
data are generated for the next selection. The idea is that the controller should pro-
gressively become better tuned to the actual plant, so attaining increasingly higher
performance.

* The direct methods aim at directly finding the controller, without an intermediate
identification step.

Among these methods, a very interesting scheme called iterative feedback tuning (IFT) has
been recently proposed by Hjalmarsson and coauthors, References [25,26,28]. IFT is based on
a gradient-descent approach and calls for a sequence of experiments on the true plant with
specific inputs. As a matter of fact, the brightness of the method relies on a very smart
selection of such inputs, in such a way that the gradient can be estimated from the
corresponding measured output. IFT returns the (local) optimal controller parameter.
Even if IFT and VRFT belong to the same class of design methods (direct-methods), their

peculiar features are quite different. VRFT is a ‘one-shot’ method which searches for the global
minimum of the control performance index, with no need for iterations or an initialization. In
fact, it uses only one set of input–output data. However, as we shall see, the VRFT technique is
only nearly-optimal, in the sense that, in general, it provides a controller which is close, but not
equal, to the one minimizing (3). On the contrary, IFT provides a fine tuning of the controller
towards the optimal solution.

In short, we could say that VRFT provides a good solution with little effort, while IFT points
to the optimal solution, but is more time-demanding. Thus, we see that the realm of applicability
of VRFT is more similar to that of standard tuning methods as described above than the one of
IFT. As an additional remark, we also note that VRFT can also be used as a powerful
initialization method for iterative techniques.

1.3. Closed-loop stability

It is well known that a model reference problem may lead to an unstable closed-loop system, see
e.g. Reference [10] for a study of the conditions under which this happens. In the context of the
present contribution, however, the plant is supposed to be unknown, and therefore assessing the
validity of these conditions is normally not feasible. Rather, in line with the adopted framework
that only a set of measurements is available, one should conceive to use data-based validation
tests for stability.

This important aspect is not treated in the present contribution. Yet, we note that data-based
stability validation tests have started to appear in the literature, and the reader is referred to
References [3, 30–34] for contributions in this direction.

The outline of this paper is as follows. In Section 2 the ‘virtual reference’ idea for the 2 d.o.f.
setting is introduced, the design algorithm is described, and an analysis of the achievable
performance is given. For the sake of clarity, in Section 2 it is assumed that the data are not
corrupted by noise (i.e. dðtÞ ¼ 0). The use of noisy data is discussed in Section 3. A simulation
example, in Section 4, ends the paper.
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2. THE VIRTUAL REFERENCE ALGORITHM FOR THE DESIGN OF 2 D.O.F.
CONTROLLERS

We commence by introducing the basic idea underlying the VRFT approach for 2 d.o.f.
controllers. It extends in a natural way that for the 1 d.o.f. case.

2.1. The virtual reference idea

Suppose that, for a certain given controller, the control system (2) happens to have the closed-
loop transfer function MðzÞ from rðtÞ to yðtÞ: Then, if the closed-loop system is fed by any

reference signal rðtÞ; and dðtÞ ¼ 0; its output equals yðtÞ ¼ MðzÞrðtÞ: Thus, by concentrating on a
specific given reference %rrðtÞ; we can say that a necessary condition for the closed-loop system to
have the same closed-loop transfer function as the reference model MðzÞ is that the output of the
two systems is the same for that given reference.

In model reference control, the latter condition is typically imposed by first selecting %rrðtÞ and
then by choosing the controller such that this condition is in fact satisfied. However, for a
generic selection of %rrðtÞ; the above task may turn out to be difficult to accomplish if a model of
the plant is not available.

The basic idea behind the virtual reference approach consists in performing a wise selection of
%rrðtÞ so that the determination of the controller becomes easy. Moreover, for 2 d.o.f control
schemes, the idea can be extended to the design of the sensitivity function as well.

To be specific, the construction of %rrðtÞ is now described in detail.
In the beginning, we are given two files of data, the first one containing measurements of the

input uðtÞ and the second one containing measurements of the corresponding output yðtÞ: For
the sake of clarity, in the coming discussion we assume that there is no noise, so that
yðtÞ ¼ P ðzÞuðtÞ: Given the measured yðtÞ; consider a reference %rrðtÞ such that MðzÞ%rrðtÞ ¼ yðtÞ: Such
a reference is called ‘virtual’ because it does not exist in reality and it was not used in the actual
generation of yðtÞ: On the other hand, it does exist as a file (i.e. it can be generated in our
computer based on the equation MðzÞ%rrðtÞ ¼ yðtÞ). Notice that yðtÞ can be interpreted as the
desired output of the control system (2) when the reference signal is %rrðtÞ and dðtÞ ¼ 0:

Observe now that, even though plant P ðzÞ is not known, we know that when P ðzÞ is fed by uðtÞ
(the measured input signal contained in the first file that has not been used so far), it generates
yðtÞ as an output. Therefore, we can claim that a good controller ðCrðz; yrÞ; Cyðz; yyÞ) (at least in
the condition when the reference signal is the virtual reference %rrðtÞ and dðtÞ ¼ 0) should generate
uðtÞ when fed by %rrðtÞ and yðtÞ; because this way the desired output yðtÞ is obtained at the output
of the control system.

The construction of the virtual reference %rrðtÞ is illustrated in Figure 2.
A similar reasoning can be applied to the sensitivity function as well.
Given the measured yðtÞ; consider a signal %ddðtÞ such that yðtÞ þ %ddðtÞ is the desired output when

the reference signal is zero (rðtÞ ¼ 0) and the disturbance signal is %ddðtÞ: Thus, the signal %ddðtÞ is
such that yðtÞ þ %ddðtÞ ¼ SðzÞ %ddðtÞ and this equation can be used for the computation of %ddðtÞ: We
can now claim that a good controller Cyðz; yyÞ (at least in the case in which the disturbance is
%ddðtÞ and rðtÞ ¼ 0) is one that generates uðtÞ when fed by %yyðtÞ :¼ yðtÞ þ %ddðtÞ:
The construction of %ddðtÞ and %yyðtÞ is illustrated in Figure 3.

The above idea is implemented in the following algorithm. In the algorithm, we have
also included the prefiltering of data through the filters LM ðzÞ and LSðzÞ: Later on, we

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2002; 16:355–371

VIRTUAL REFERENCE TUNING 359



shall see that a suitable selection of these filters is important to optimize the algorithm
performance.

2.2. The design algorithm

Given the reference models MðzÞ and SðzÞ; and the set of data fuðtÞ; yðtÞgt¼1; ...; N ; do the
following:

(1) Construct:
} %rrðtÞ such that yðtÞ ¼ MðzÞ%rrðtÞ;
} %ddðtÞ such that yðtÞ þ %ddðtÞ ¼ SðzÞ %ddðtÞ; and
} %yyðtÞ ¼ yðtÞ þ %ddðtÞ:

(2) Select the controller paramteter vectors ð#yyNr ; #yy
N
y Þ that minimize the following performance

index:

JNVRðyr; yyÞ ¼
1

N

XN
t¼1

½LM ðzÞðuðtÞ � Crðz; yrÞ%rrðtÞ þ Cyðz; yyÞyðtÞÞ�2

þ
1

N

XN
t¼1

½LSðzÞðuðtÞ þ Cyðz; yyÞ %yyðtÞÞ�2 ð4Þ

Figure 2. The construction of the virtual reference.

Figure 3. The construction of the virtual disturbance.
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in which LM ðzÞ and LSðzÞ are suitable filters (initialization problems are neglected here, that is
the filtered signals are assumed to be known from the first instant t ¼ 1). &

Notice that when Crðz; yrÞ ¼ brðzÞ
Tyr and Cyðz; yyÞ ¼ byðzÞ

Tyy (i.e. the controller depends
linearly on the parameter vectors) the performance index (4) is quadratic and the parameters
ð#yyNr ; #yy

N
y Þ are easily obtained by solving the normal equations

#yyNr
#yyNy

2
4

3
5 ¼ A�1

N FN ð5Þ

AN ¼
1

N

XN
t¼1

j%rr
LM ðtÞ

�jy
LM ðtÞ

" #
j%rr
LM ðtÞ

�jy
LM ðtÞ

" #T
þ

0

j %yy
LS ðtÞ

" #
0

j %yy
LS ðtÞ

" #T0
@

1
A
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1
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�jy
LM ðtÞ

" #
uLM ðtÞ �

0

j %yy
LS ðtÞ

" #
uLS ðtÞ

 !

where

j%rr
LM ðtÞ ¼ brðzÞLM ðzÞ%rrðtÞ; jy

LM ðtÞ ¼ byðzÞLM ðzÞyðtÞ; j %yy
LS ðtÞ ¼ byðzÞLSðzÞ %yyðtÞ;

uLM ðtÞ ¼ LM ðzÞuðtÞ; uLS ðtÞ ¼ LSðzÞuðtÞ

2.3. Analysis of the design criterion

The analysis of the controller design criterion will be conducted by resorting to the notion of
ideal controller ðC0

r ðzÞ;C
0
yðzÞÞ: This is the controller that solves the model matching problem

exactly, namely C0
r ðzÞ and C0

yðzÞ are given by

C0
r ðzÞ ¼

1

P ðzÞ
MðzÞ
SðzÞ

; ð6Þ

C0
yðzÞ ¼

1

P ðzÞ
1� SðzÞ
SðzÞ

ð7Þ

Notice that ðC0
r ðzÞ; C0

yðzÞÞ in general does not belong to the available family of parameterized
controllers fðCrðz; yrÞ; Cyðz; yyÞÞg: Even more so, C0

r ðzÞ and C0
yðzÞ could as well be improper

rational functions, that is, strictly speaking, they are not transfer functions. The notion of ideal
controller ðC0

r ðzÞ; C0
yðzÞÞ will be used in the following only as an analysis tool.

The analysis of JNVRðyr; yyÞ is based on asymptotic results. Under the hypothesis of ergodicity
of the involved signals, using the Parseval theorem (see e.g. Reference [35]) and the definition of
C0
r ðzÞ and C0

yðzÞ; the following asymptotic (as N ! 1) frequency domain representation of
JNVRðyr; yyÞ is easily obtained:

JVRðyr; yyÞ ¼
1

2p

Z p

�p
Pj j2jC0

r � CrðyrÞ þMðCyðyyÞ � C0
yÞj

2 LMj j2

Mj j2
Fu do

þ
1

2p

Z p

�p
Pj j2jCyðyyÞ � C0

yÞj
2 Sj j2 LSj j2

S � 1j j2
Fu do ð8Þ
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where Fu is the power spectral density of uðtÞ (throughout we drop the argument ejo in transfer
functions). The criterion JVRðyr; yyÞ is the asymptotic counterpart of JNVRðyr; yyÞ; namely the
criterion to which JNVRðyr; yyÞ tends as the number of available data goes to infinity. Accordingly,
as N ! 1; the minimum ð#yyNr ; #yy

N
y Þ of J

N
VRðyr; yyÞ will converge to the minimum of JVRðyr; yyÞ; say

ð#yyr; #yyyÞ (in fact, the latter convergence requires additional assumptions. One possibility is to ask
that the minimizer is searched in a compact set and that convergence takes place uniformly). In
the following, for analysis purposes, JVRðyr; yyÞ will be extensively used in place of JNVRðyr; yyÞ:

Consider now the criterion JMRðyr; yyÞ (which is the original criterion we want to minimize).
Using the definition of 2-norm of a discrete-time linear transfer function and the definition of
C0
r ðzÞ and C0

yðzÞ; JMRðyr; yyÞ can be given the following form:

JMRðyr; yyÞ ¼
1

2p

Z p

�p
Pj j2

jC0
r � CrðyrÞ þMðCyðyyÞ � C0

yÞj

1þ PCyðyyÞ
�� ��2

2

WMj j2 do

þ
1

2p

Z p

�p
Pj j2

CyðyyÞ � C0
y

��� ���2
1þ PCyðyyÞ
�� ��2 jSj2jWS j2 do ð9Þ

The minimum point of JMRðyr; yyÞ is indicated in the following by ð%yyr; %yyyÞ:
By comparing (8) and (9), we note that, if ðC0

r ðzÞ;C
0
yðzÞÞ 2 fðCrðz; yrÞ;Cyðz; yyÞÞg; then the

minimizer of JVRðyr; yyÞ corresponds to the ideal controller and coincides with the minimizer of
JMRðyr; yyÞ; whatever the plant, the filters and the reference models are. Therefore, in the ideal
case in which the ideal controller belongs to the class of available controllers, the controller
estimated through the virtual reference approach coincides with the ideal one.

On the other hand, it is apparent that JVRðyr; yyÞ and JMRðyr; yyÞ have different minimizers when
the class of available controllers has restricted complexity, so that ðC0

r ðzÞ;C
0
yðzÞÞ =2 fðCrðz; yrÞ;Cy

ðz; yyÞÞg: It is in this case that the filters LM ðzÞ and LSðzÞ enter into play and prove their
usefulness. As a matter of fact, we show below that, by a suitable selection of these filters, it is
possible to match a certain extended virtual reference criterion with the second-order expansion
of the corresponding extended model reference criterion around its minimizer (see below for
details). This way, minimizing the virtual reference criterion leads to a nearly optimal solution
for the original model reference problem. Before proceeding, we would also like to mention the
main observation that makes such a result possible. The extended model reference criterion and
the extended virtual reference criterion exhibit a different dependence on the unknown plant
P ðzÞ: Yet, their second derivatives around the minimizer of the extended model reference
criterion have the same dependence on P ðzÞ: This is why suitable P ðzÞ-independent filters LM ðzÞ
and LSðzÞ (they must be P ðzÞ-independent since P ðzÞ is not known) can be selected so as to obtain
the matching.

2.4. The choice of the filters

Introduce the following choice of the filters: select LM ðzÞ and LSðzÞ in such a way that

LMj j2¼ Mj j2 Sj j2 WMj j2
1

Fu
ð10Þ

LSj j2¼ S � 1j j2 Sj j2 WSj j2
1

Fu
ð11Þ
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Since all the quantities in the right-hand side of Equations (10) and (11) are known, the filters
can be actually constructed (in fact, Fu may be considered known only when the input signal
characteristics are chosen by the designer; otherwise, Fu has to be estimated). In Theorem 2.1
below, we show that this choice attains the above described matching result.

Before stating the theorem, some notations are in order. Let

DCrðzÞ :¼ C0
r ðzÞ � bTr ðzÞ%yyr

DCyðzÞ :¼ C0
yðzÞ � bTy ðzÞ%yyy

where ð%yyr; %yyyÞ is the parameter vector which minimizes JMRðyr; yyÞ: Then, define an extended
family of controllers

fðCþ
r ðz; y

þ
r Þ ¼ bþr ðzÞ

Tyþr ; Cþ
y ðz; y

þ
y Þ ¼ bþy ðzÞ

Tyþy Þg

where

bþr ðzÞ ¼ ½bþr ðzÞ
T DCrðzÞ�T; bþy ðzÞ ¼ ½bTy ðzÞ DCyðzÞ�T;

yþr ¼ ½yTr Wnrþ1
r �T; yþy ¼ ½yTy Wnyþ1

y �T

Consider now the extended performance index

JþMRðy
þ
r ; y

þ
y Þ ¼

P ðzÞCþ
r ðz; y

þ
r Þ

1þ P ðzÞCþ
y ðz; y

þ
y Þ
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�����
�����

�����
�����
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2

þ
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y Þ

� SðzÞ
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�����
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2

Clearly, the global minimizer ð%yyþr ; %yy
þ
y Þ of J

þ
MRðy

þ
r ; y

þ
y Þ is such that JþMRð%yy

þ
r ;

%yyþy Þ ¼ 0: Moreover,
Cþ
r ðz; %yy

þ
r Þ ¼ C0

r ðzÞ; Cþ
y ðz; %yy

þ
y Þ ¼ C0

yðzÞ: Letting %JJþ
MRðy

þ
r ; y

þ
y Þ be the second-order Taylor expan-

sion of JþMRðy
þ
r ; y

þ
y Þ around its global minimizer ð%yyþr ; %yy

þ
y Þ; we have now the following theorem.

Theorem 2.1

The minimizer ð#yyr; #yyyÞ of the performance index JVRðyr; yyÞ where the filters LM ðzÞ and LSðzÞ have
been selected according to (10) and (11) is given by

ð#yyr; #yyyÞ ¼ arg min
ðyr ;yy Þ

%JJþ
MRð½y

T
r 0�T; ½yTy 0�TÞ & ð12Þ

Before proving the theorem, some remarks about its interpretation are in order.

The theorem states that ð#yyr; #yyyÞ minimizes the restriction to the admissible controller
parameter subspace of the second-order expansion of the extended model reference performance
index around its minimizer. On the other hand, the optimal controller parameter ð%yyr; %yyyÞ
minimizes the restriction to the admissible controller parameter subspace of the extended model
reference performance index. Thus, we see that the difference between ð#yyr; #yyyÞ and ð%yyr; %yyyÞ rests
on the fact that the former is obtained from a simplified quadratic version of the performance
index that is minimized by the latter.

Note now that a very important step in the solution of the control problem design is a sensible
selection of the controller class. On the one hand, the controller class should be as simple as
possible. On the other hand, it need be rich enough so that the best controller within
the class attains a satisfactory performance. Discussing the way a sensible controller class can be
selected goes beyond the scope of the present paper. Here, we want to observe that, if a sensible
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selection has been performed, then the role played by DCrðzÞ and DCyðzÞ in the determination of
ðC0

r ðzÞ;C
0
yðzÞÞ is only marginal. As a consequence, ð#yyr; #yyyÞ is a good approximation to ð%yyr; %yyyÞ

since JþMRðy
þ
r ; y

þ
y Þ is well approximated in a neighbourhood of its minimizer by its second-order

expansion %JJþ
MRðy

þ
r ; y

þ
y Þ:

Proof of Theorem 2.1

Since %yyþ minimizes %JJþ
MR and attains perfect matching, the second-order expansion only consists

of the second-order term. Simple, though cumbersome, computations then show that (�denotes
complex conjugation) %JJþ

MRðy
þ
r ; y

þ
y Þ has the following expression:

%JJþ
MRðy

þ
r ; y

þ
y Þ

¼
yþr � %yyþr

yþy � %yyþy

2
4

3
5
T

1

2p

Z p

�p
Pj j2

bþr b
þT
r �Mbþr b

þT
y

�Mbþy b
þT
r Mj j2bþy b

þT
y

2
4

3
5 WMj j2

1þ PC0
y

��� ���2 do
0
B@

1
CA yþr � %yyþr

yþy � %yyþy

2
4

3
5

þ ðyþy � %yyþy Þ
T 1

2p

Z p

�p

Pj j2 Sj j2 WSj j2

j1þ PC0
y j
2
bþy b

þT
y do

 !
ðyþy � %yyþy Þ

¼
1

2p

Z p

�p
Pj j2 C0

r � Cþ
r ðy

þ
r Þ þMðCþ

y ðy
þ
y Þ � C0

yÞ
��� ���2 WMj j2

j1þ PC0
y j
2
do

þ
1

2p

Z p

�p
Pj j2 Cþ

y ðy
þ
y Þ � C0

y

��� ���2 Sj j2 WSj j2

j1þ PC0
y j
2
do ð13Þ

Consider now the cost function JVRðyr; yyÞ: If the filters LM ðzÞ; LSðzÞ are selected as in (10) and
(11), then JVRðyr; yyÞ is given by

JVRðyr; yyÞ ¼
1

2p

Z p

�p
Pj j2 C0

r � CrðyrÞ þMðCyðyyÞ � C0
yÞ

��� ���2 WMj j2

1þ PC0
y

��� ���2 Fudo

þ
1

2p

Z p

�p
Pj j2 CyðyyÞ � C0

yÞ
��� ���2 Sj j2 WSj j2

1þ PC0
y

��� ���2 Fu do ð14Þ

By comparing (13) and (14), we note that JVRðyr; yyÞ ¼ %JJþ
MRð½y

T
r 0�T; ½yTy 0�TÞ; from which (12)

follows. &

2.5. Inclusion of a fixed integral action

It is a standard requirement that the control system guarantees, in steady state, null tracking error for
constant references and perfect rejection of constant disturbances. This is expressed through the static
gains of the reference models as: Mð1Þ ¼ 1 (for tracking) and Sð1Þ ¼ 0 (for disturbance rejection).

The correct static gains can be rigorously imposed by inroducing an integral action in the
controllers, that is by taking

Crðz; yrÞ ¼
1

1� z�1
C0
rðz; yrÞ; Cyðz; yyÞ ¼

1

1� z�1
C0
yðz; yyÞ
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(in the implementation of the controller, 1=ð1� z�1Þ will be placed in the loop), and
by further imposing that C0

rðz; yrÞ and C0
yðz; yyÞ have the same static gain, i.e. C0

rð1; yrÞ ¼
C0
y ð1; yyÞ:
If the controller is linearly parameterized as follows:

C0
rðz; yrÞ ¼ b0rðzÞ

Tyr; C0
yðz; yyÞ ¼ b0yðzÞ

Tyy

the condition C0
rð1; yrÞ ¼ C0

yð1; yyÞ is expressed as

vT½yTr yTy �
T ¼ 0; v ¼ ½b0rð1Þ

T � b0yð1Þ
T�T ð15Þ

Since (15) is a linear constraint, the constrained minimum of JNVRðyr; yyÞ is easily achieved by
imposing orthogonality between the gradient of JNVRðyr; yyÞ and the subspace of the feasible
parameter vectors. This is obtained by solving the following set of equations with respect to
ðyr; yyÞ and l:

d

dyr
JNVRðyr; yyÞ

d

dyy
JNVRðyr; yyÞ

2
6664

3
7775 ¼ lv

uT½yTr yTy � ¼ 0

With the usual meaning of all symbols, the solution is easily seen to be given by

#yyNr
#yyNy

2
4

3
5 ¼ A�1

N ½FN � #llv�; #ll ¼
vTA�1

N FN
vTA�1

N v
ð16Þ

We also note that the result given in Theorem 2.1 holds with minor modifications in the present
context: in this case, ð#yyr; #yyyÞ is the minimizer of %JJþ

MRð½y
T
r 0�T; ½yTy 0�TÞ subject to the constraint

that the gains of the two controller transfer functions are equal.

3. THE USE OF NOISY DATA

The analysis of the previous section has been conducted under the assumption that the system is
noise-free. In this section, we turn to consider a more realistic noisy setting.

Let us assume that a set of data fuðtÞ; yðtÞgt¼1; ...; N has been collected from a noisy experiment,
that is the system (1) incorporates a non-zero noise term dðtÞ: If the design algorithm of Section
2 is applied, the resulting estimate ð#yyNr ; #yy

N
y Þ will be different from what we have seen in the

previous section due to the presence of noise and, therefore, the analysis there developed no
longer applies. It is perhaps interesting to note that this is true even in the case when the plant
operates in open-loop. The reason is that in the identification equations (5) the regression vector
is constructed from the plant output, so that it is affected by noise.

In References [2–4], under the hypothesis that dðtÞ is a stationary stochastic process, an
instrumental variable procedure has been proposed in order to counteract the effect of noise in
the design of 1 d.o.f. controllers through the virtual reference approach. The extension to 2
d.o.f. design is now sketched.

8>>>>>>><
>>>>>>>:
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Consider an additional set of data fuðtÞ; yðtÞ0gt¼1; ...; N collected from a second experiment
performed on the plant with the same input signal fuðtÞgt¼1; ...; N : Then, estimate the parameter
vectors by means of the instrumental variable equations

#yyNr
#yyNy

2
4

3
5 ¼ A�1

N FN ð17Þ

AN ¼
1

N

XN
t¼1

z%rrLM ðtÞ

�zyLM ðtÞ

" #
j%rr
LM ðtÞ

�jy
LM ðtÞ

" #T
þ

0

z %yyLS ðtÞ

" #
0

j %yy
LS ðtÞ

" #T0
@

1
A

FN ¼
1

N

XN
t¼1

z%rrLM ðtÞ

�zyLM ðtÞ

" #
uLM ðtÞ �

0

z %yyLS ðtÞ

" #
uLS ðtÞ

 !

where fj%rr
LM ðtÞ;j

y
LM ðtÞ;j

%yy
LS ðtÞgt¼1; ...; N are constructed as in (5) on the basis of fyðtÞgt¼1; ...; N ;

while fz%rrLM ðtÞ; z
y
LM ðtÞ; z

%yy
LS ðtÞgt ¼ 1; . . . ; N are constructed in the same way as the corresponding

fj%rr
LM ðtÞ;j

y
LM ðtÞ;j

%yy
LS ðtÞgt¼1; ...; N but using the output of the second experiment fyðtÞ0gt¼1; ...; N :

Clearly, fyðtÞ0gt¼1; ...; N is different from fyðtÞgt¼1; ...; N since the two sequences are affected by
two different realizations of the noise in the two experiments. If we assume, as it is reasonable,
that the noise signals in the two experiments are uncorrelated, then asymptotically (17) returns
the same estimate as the one we achieve with the standard normal equations in the noiseless case
(in fact, this convergence result requires the standard technical assumptions of instrumental
variable methods, as discussed in many textbooks, see e.g. Reference [35]).

An approximate procedure can be formulated even if the second experiment on the plant is
not possible. In this case one can use, as instrumental variables, the simulated output of a model
of the plant identified from the set of data fuðtÞ; yðtÞgt¼1; ...; N (synthetic data). If the system
operates in open-loop, the identification step amounts to a standard open-loop identification. If
the plant is in closed-loop configuration, one can instead conceive to identify the whole closed-
loop control system and then directly use the closed-loop identified model to generate the
synthetic data.

If this second route is adopted, strictly speaking the virtual reference method is no longer fully
direct. It is important to note, however, that the estimated plant is used with the only objective
of generating an instrumental variable signal and its actual expression is not directly used to
design the controller. This is particular implies that a high order model can be used in the
identification of P ðzÞ without affecting the controller complexity.

4. A NUMERICAL EXAMPLE

A simple numerical example illustrates the procedure developed in the previous sections.
Consider the following discrete-time plant:

P ðzÞ ¼
0:1622z�1 � 0:01622z�2

1� 1:7z�1 þ 0:8825z�2

whose magnitude Bode plot is shown in Figure 4. Of course, in the controller design such a
transfer function is unknown and it is introduced here for completeness.
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The output of the plant if affected by an additive stochastic disturbance signal dðtÞ having the
following form:

dðtÞ ¼
0:3

1� 0:7z�1
xðtÞ

where xðtÞ is white noise with variance s2x ¼ 0:01:
The objective is to design a 2 d.o.f. controller for the plant P ðzÞ: The reference models are

MðzÞ ¼
ð1� aÞz�1

1� az�1
; a ¼ 0:4

SðzÞ ¼ 1�
ð1� bÞz�1

1� bz�1
; b ¼ 0:8

(see Figure 4 for their magnitude Bode plots). The weighting functions have been chosen as:
WM ðzÞ ¼ WSðzÞ ¼ 1=ð1� z�1Þ in order to emphasize a good tracking for the step response, and
the adopted class of controllers is

Crðz; yrÞ ¼
Wr0 þ Wr1z

�1 þ Wr2z
�2 þ Wr3z

�3 þ Wr4z
�4

1� z�1

Cyðz; yyÞ ¼
Wy0 þ Wy1z

�1 þ Wy2z
�2 þ Wy3z

�3 þ Wy4z
�4

1� z�1

A set of open-loop noisy data fuðtÞ; yðtÞgt¼1; ...; 512 has been collected by feeding the plant with a
white noise signal (Fu ¼ 1) and the controller parameters have been estimated through the
virtual reference method with the optimal filters (10) and (11). A set of data, obtained by
repeating the experiment on the plant with the same input, has been used in order to construct

Figure 4. Magnitude Bode plots: The plant (continuous line), the reference-model MðzÞ (bold line) and the
reference sensitivity model SðzÞ (dotted line).
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the instrumental variables (see Section 3); moreover, a constrained minimization (16) has been
performed to enforce unitary gain of the closed-loop transfer function.

The estimated parameter vectors were:

#yy512r ¼ ½ 3:7615 �7:3513 3:6172 1:4273 �1:2026 �T

#yy512y ¼ ½ 1:2543 �2:2753 1:6674 �0:6829 0:2887 �T

Figure 5. Magnitude Bode plots: (a) The achieved closed-loop transfer function (thin line) and the
reference-model MðzÞ (bold line); (b) the achieved sensitivity transfer function (thin line) and the reference-

model SðzÞ (bold line).
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The performance achieved by the designed control system is illustrated in Figures 5 and 6.
In Figure 5, the magnitude Bode plots of the I/O transfer function and of the sensitivity
transfer function of the achieved control system are compared with those of the reference
models. Figure 6 displays the step response of the designed closed-loop and sensitivity transfer
functions.

Figure 6. (a) Step response of the designed closed-loop transfer function; (b) step response of the designed
sensitivity transfer function.
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5. CONCLUDING REMARKS

In this paper we have presented the extension of the VRFT method to a 2 d.o.f. setting. It has
been shown that VRFT is an effective way to directly design from data both the closed-loop
transfer function and the sensitivity function. Moreover, VRFT allows for the easy introduction
of an integral action in the loop.

Currently, the use of VRFT for non-linear plants is under study. The non-linear setting is very
important for applications, since it appears that no easy-to-use one-shot direct methods are
available in this context.

Though a discussion of how VRFT extends to non-linear control problems goes beyond the
scope of the present paper, it is perhaps worth mentioning that the main idea underlying VRFT
can be applied verbatim in a non-linear setting. What is lost, however, is the frequency domain
interpretation and, with it, an easy way to design suitable data prefilters.
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