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a b s t r a c t

In this paper, we introduce a data-driven control design method that does not rely on a model of
the plant. The method is inspired by the Virtual Reference Feedback Tuning approach for data-driven
controller tuning, but it is here entirely developed in a deterministic, continuous-time setting. A
PID autotuner is then developed out of the proposed approach and its effectiveness is tested on an
experimental brake-by-wire facility. The final performance is shown to outperform that of a benchmark
model-based design method.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, people in systems and control have inves-
tigated data-driven controller tuning techniques aimed to design
feedback controllers directly from data without the need of es-
timating a model of the system. In the last twenty years, a
large variety of methods has been created, among which Iterative
Feedback Tuning (IFT [1]), data-driven loop-shaping [2], Virtual
Reference Feedback Tuning (VRFT [3–6]) and Correlation-based
Tuning (CbT [7,8]). In particular, for the last two methods it has
been shown in [9] that their performances compare to that of
standard model-based design approaches where the model has
been identified from data.

VRFT and CbT have been developed in the stochastic set-up
described in [10], where the involved processes are stationary
and evolve in discrete-time. The aim of the present work is
to reformulate the VRFT approach into an autotuning method
for industrial PID control. In this novel form, Input/Output (I/O)
signals are not treated as stochastic processes and the theory can
be fully interpreted in continuous time. This fact is important
in practical problems, where control engineers are usually more
familiar with continuous time models for many reasons (e.g., the
fact that the settling time is directly related to the dominant
poles of the system). We should also emphasize that the results
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presented here are not obtained by simple modifications of the
previous contributions [3–6]. In fact, those papers are based on
tools (spectral factorization and stochastic processes) that lose
their validity in the present context. To derive the results of this
paper, Sobolev spaces and solutions of ODEs are instead used.

The resulting PID-VRFT algorithm lends itself to an easy im-
plementation for the tuning of industrial PID controllers. The
underlying design procedure relies on an optimization method,
thoroughly developed in the paper, that establishes an equiva-
lence between a model-reference control problem and the iden-
tification problem the PID-VRFT algorithm is based upon. This
makes the method here proposed different from the majority of
the existing approaches, which are either characterized by the use
of semi-empirical rules or derived from model-based methods
employing low-order data-driven models, [11]. This observation
is very important in relation to the use of these methods because
it implies that strong guarantees on the real system cannot in
general be provided: on the one hand, semi-empirical rules are
not based on optimization theories and one can only hope to
obtain a suitable tuning for the application at hand; on the other
hand, low-order models are always approximate, and model-
ing errors might jeopardize the performance of the closed-loop
system, [12].

The effectiveness of the proposed approach is illustrated on
a brake-by-wire (BBW) application. The BBW technology bears
a promise of significant improvement over existing tools in the
automotive industry, but it also poses new challenges for con-
trol design. Among other requirements, BBW systems demand
adaptation to aging and rapid changes of the environmental
conditions, like temperature, so that data-driven PID autotun-
ing represents an interesting approach for fast control system
recalibration.
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The outline of the paper is as follows. The theoretical devel-
opment of the method is presented in Section 2 (the proofs of
the theorems are given in the Appendix for a better readability).
In Section 3, we present the general autotuning algorithm and
then concentrate more specifically on the tuning rules for the
PID gains. We advise the reader interested in practical PID con-
trol that Section 3 can be read independently of the theoretical
Section 2. The experimental results on the BBW facility are illus-
trated in Section 4. The paper ends with some final remarks in
Section 5.

2. The methodology

2.1. Preliminaries on signals and systems

A complex-valued function x(t) is said to be in L2 if it is
measurable and square-integrable, i.e.,∫

∞

−∞

|x(τ )|2 dτ < ∞.

According to Plancherel theorem [13], each x(t) ∈ L2 has a Fourier
transform X(ω) ∈ L2 and, vice versa, each X(ω) ∈ L2 is the
Fourier transform of a function x(t) ∈ L2. In what follows, any
signal is a real-valued function that belongs to L2.

Given a signal x(t) ∈ L2, if the derivative (in the weak sense
of the theory of distributions, see e.g. Chapter 1 of [14]) of order
i of x(t), written x(i)(t), is in L2 for all i ≤ p, then x(t) is said to
belong to Hp, the Sobolev space of order p, [14].

Consider now the linear Ordinary Differential Equation (ODE)
with delay τ

Z :

n∑
i=0

αiv
(i)(t) −

m∑
i=0

λix(i)(t − τ ) = 0, (2.1.1)

which links an input signal x(t) to an output signal v(t). An
equation like Z represents the dynamics of a system.

For notational convenience, introduce the polynomials

A(jω) =

n∑
i=0

(jω)iαi, L(jω) =

m∑
i=0

(jω)iλi.

The ratio Z(jω) = L(jω)e−jωτ/A(jω) is called the frequency response
of Z .

We assume that αn ̸= 0 (this is not a real condition, it simply
means that the largest derivative of v(t) in the ODE has order n),
and, for the time being, also assume that A(jω) ̸= 0 for any ω

(this condition is removed later). Note that this condition does
not prevent the ODE to be unstable, that is, the roots of A(s) can
have positive real parts. If x(t) ∈ Hm, then

∑m
i=0 λix(i)(t − τ )

is in L2, and, by Plancherel theorem, it has Fourier transform
L(jω)e−jωτX(ω) ∈ L2. Consider V (ω) := [L(jω)e−jωτ/A(jω)]X(ω).
Since |1/A(jω)| < C < ∞ for all ω, V (ω) is also in L2, so that,
based again on Plancherel theorem, it is the Fourier transform of
a function v(t) ∈ L2. Moreover, since |(jω)i/A(jω)| < C < ∞

for all i ≤ n, we obtain that also (jω)iV (ω), which is the Fourier
transform of the ith distributional derivative of v(t), belongs to
L2 for i ≤ n. Thus, by Plancherel theorem, we conclude that
v(t) ∈ Hn.

We claim that this v(t) is the only solution in L2 of Z . To show
this, note that A(jω)V (ω) is the Fourier transform of

∑n
i=0 αiv

(i)(t).
On the other hand, A(jω)V (ω) = L(jω)e−jωτX(ω), which is the
Fourier transform of

∑m
i=0 λix(i)(t − τ ). Thus,

n∑
i=0

αiv
(i)(t) =

m∑
i=0

λix(i)(t − τ )

and v(t) satisfies the ODE Z . It is in fact the only solution in
L2 of Z since any other solution is obtained by adding to this
v(t) a linear combination of the modes of Z , i.e., the non-zero
solutions of the homogeneous ODE

∑n
i=0 αiv

(i)(t) = 0, which are
exponentials or exponentials multiplied by polynomials and are
not functions of L2.

As a short-hand notation, throughout the paper given x(t) ∈

Hm the only solution v(t) of Z in L2 is written as Z[x(t)].
The above notation Z[x(t)] extends to the case when A(jω)

has zeros on the imaginary axis, provided that these zeros are
canceled by X(ω) so that [L(jω)e−jωτ/A(jω)]X(ω) is in L2. As an
example, suppose that the ODE is the integrator

v(1)(t) − x(t) = 0,

and x(t) = sgn(t)e−|t| (which has 0 dc-component), then

X(ω) = −2jω/(1 + ω2)

and [L(jω)e−jωτ/A(jω)]X(ω) = −2/(1 + ω2) ∈ L2, which corre-
sponds to v(t) = −e−|t|.

2.2. The model-reference control problem

Let the plant dynamics be described by the ODE

P :

nP∑
i=0

aiy(i)(t) −

mP∑
i=0

biu(i)(t − τP ) = 0,

with input u(t) and output y(t). Notice that in P the signals u(t)
and y(t) play, respectively, the role of x(t) and ν(t) in (2.1.1). The
use of different symbols is advisable because in what follows we
will deal with other systems, and the signals ν(t) and x(t) will
have to be substituted by the input and output signals for the
specific system at hand.

We assume that u(t) belongs to suitable Sobolev spaces such
that y(t), and all other signals that will be derived from it, are in
L2. The frequency response of P is denoted as P(jω).

The controller dynamics is instead described by

Cρ :

nC∑
i=0

aC,iu(i)(t) −

mC∑
i=0

bC,ie(i)(t) = 0, (2.2.2)

whose input is e(t) = r(t)−y(t), where r(t) is the reference signal,
the parameters aC,i are fixed and the parameters bC,i are tunable.
As we shall see, the fact that the parameters aC,i are fixed allows
us to obtain a convex formulation of the design problem (without
much loss of generality, e.g., PIDs have a fixed denominator which
enforces the integral action). Notice also that the choice ofmC and
nC can be either free or constrained by the application, moreover
mC and nC are not related to mP and nP (which are unknown).

As a special case, the PID controller is defined by

CPID
ρ : Tdu(2)(t) + u(1)(t) − (Kd + KpTd)e(2)(t) − (Kp + KiTd)e(1)(t)
− Kie(t) = 0,

where ρ = [Kp, Ki, Kd]
T is the vector of tunable PID gains, and

Td is a fixed parameter that is normally used in PID control to
prevent the control action from blowing up in case of abrupt
changes of e(t) (Td introduces a ‘‘high-frequency pole’’ in −

1
Td

and,
as a rule of thumb, it is usually chosen as twice the sampling
time that is used for the computer-aided data processing). After
suitable manipulations, the frequency response of CPID

ρ is seen to
be

CPID(jω, ρ) = ρTβ(jω) (2.2.3)

where

β(jω) =

[
1,

1
jω

,
jω

1 + jωTd

]T

. (2.2.4)
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In what follows, we shall often refer to controllers Cρ (which
are not necessarily PID) in their frequency response form written
as

C(jω, ρ) = ρTβ(jω) (2.2.5)

where ρ is the tunable parameter vector and β(jω) is a vector of
given frequency responses.

Finally, let M be an ODE of the form

M :

nM∑
i=0

ciy(i)(t) −

mM∑
i=0

dir (i)(t − τM ) = 0,

representing the desired closed-loop system (reference model),
where the reference signal r(t) is the input and y(t) is the output,
and let M(jω) be its frequency response.

In the sequel, when explaining the VRFT idea, we shall have
to also consider the inverse of the reference model, namely

M−1
:

mM∑
i=0

dir (i)(t) −

nM∑
i=0

ciy(i)(t + τM ) = 0,

which operates on y(t), shifted onward by τM .
Moreover, let Wmr be a system whose frequency response

Wmr (jω) will be used as a frequency weighting.
The problem of designing a controller in such a way that the

closed-loop behavior is ‘‘as close as possible’’ to the behavior of
the reference model M is known as the model-reference control
problem. It is formally defined as follows.

Problem 1 (Model-reference Control Problem). Find a controller
of the form in (2.2.2) that minimizes the model-reference cost
function

Jmr (ρ) =

∫
+∞

−∞

⏐⏐⏐⏐( P(jω)C(jω, ρ)
1 + P(jω)C(jω, ρ)

− M(jω)
)
Wmr (jω)

⏐⏐⏐⏐2 dω.

(2.2.6)

The cost function Jmr (ρ) in Eq. (2.2.6) penalizes the mismatch
(weighted with Wmr (jω)) between the frequency behavior of the
closed-loop control system (given by P(jω)C(jω,ρ)

1+P(jω)C(jω,ρ) ) and the fre-
quency behavior of the reference model M (given by M(jω)).
Throughout, we assume that the optimal solution to Problem 1
exists and is unique. Uniqueness of the solution is a mild require-
ment that prevents the controller parametrization from allowing
multiple representations of the same controller. The solution to
Problem 1 is the model-reference controller Co with frequency
response

Co(jω) = C(jω, ρo) = ρT
o β(jω),

where ρo = argminρ Jmr (ρ). Typically, ρo does not yield Jmr (ρo) =

0 (no perfect reference model matching).
If the frequency response P(jω) of the plant is known,

Problem 1 can be directly solved to find a controller (model-based
design). On the other hand, in many real-world applications P(jω)
is unavailable and data are used to construct an approximate
solution to Problem 1. As we shall see in the next section, VRFT is
a data-driven method that solves Problem 1 without estimating
a model of the plant (so that VRFT is a direct approach).

2.3. The VRFT approach

In this section, we show how the controller design in
Problem 1 can be recast into a data-driven controller identifica-
tion problem that does not require estimating P . We will first

Fig. 1. Construction of signals for the VRFT algorithm. The starting point of
the processing procedure is the set of measurements u(t) and y(t). The solid
line indicates how such measurements are related to each other (namely, they
are connected through the system dynamics P). In dashed line, it is illustrated
how the virtual reference rv(t) and the virtual error ev(t) needed by the VRFT
algorithm are computed.

deal with noise-free data; noisy data will be considered in the
second part of the section.

The VRFT idea. Consider the system depicted in Fig. 1. In the
figure, u(t) and y(t) are physical signals related to each other
by the plant dynamics P (solid line). These signals are recorded
and stored in a computer, where they are further processed off-
line so as to generate other signals (‘‘virtual signals’’). The figure
indicates with dashed lines the flow of information according to
which the virtual signals are generated.

Precisely, the virtual reference signal rv(t) is computed as

rv(t) = M−1
[y(t)].

By making this latter expression explicit with respect to y(t), one
obtains y(t) = M[rv(t)] and, hence, the actually measured y(t) is
the desired output when the reference signal is rv(t). The plant
P is not known, however what we know is that P generates y(t)
when it is fed by u(t). From this observation, we conclude that a
‘‘good" controller is one that generates u(t) when its input is the
difference between rv(t) and y(t). The difference between rv(t)
and y(t) is called virtual error ev(t): ev(t) = rv(t) − y(t).

Based on the above reasoning, the control design problem is
recast as the identification problem of finding the controller that
links ev(t) to u(t) (virtual-reference design). In mathematical terms,
this amounts to minimizing (with respect to ρ) the cost∫

+∞

−∞

(
u(τ ) − Cρ[ev(τ )]

)2 dτ . (2.3.7)

In Theorem 1, we shall see that minimizing (2.3.7) gives the
minimizer of Jmr (ρ) when the controller class is large enough
so that perfect reference model matching is possible. On the
other hand, we will also see that one can go further by suitably
filtering u(t) and ev(t) before they are used in (2.3.7) and achieve
an approximate solution to Jmr (ρ) when perfect model matching
is not possible (Theorem 2). For this reason, it is convenient
to re-formulate the cost function (2.3.7) in a way that takes
pre-filtering into account: letting uF (t) and eF (t) be the filtered
versions of u(t) and ev(t) through a filter F (we shall show later
criteria to choose F), we define the virtual-reference cost function
as follows

Jvr (ρ) =

∫
+∞

−∞

(
uF (τ ) − Cρ[eF (τ )]

)2 dτ . (2.3.8)

For simplicity, we assume that the minimizer of (2.3.8) exists
and is unique. The uniqueness assumption is satisfied when the
controller is not over-parameterized and the input signal u(t) is
sufficiently rich. Letting

ρvr = argmin
ρ

Jvr (ρ),
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the frequency response of the virtual-reference controller Cvr is
given by

C(jω, ρvr ) = ρT
vrβ(jω).

Analysis in a noise-free setting. For analysis purposes, let us now
introduce the ideal controller Cid as the controller with frequency
response

Cid(jω) =
M(jω)

P(jω) (1 − M(jω))
.

Cid is the controller achieving M when put in feedback inter-
connection with P .

The first theorem that we state refers to the ideal situation
where Cid is within the controller class and it establishes that, in
this case, minimizing Jvr (ρ) in (2.3.8) (which does not use P(jω)) is
equivalent to minimizing Jmr (ρ) in (2.2.6) (which contains P(jω)).
This result holds true for any selection of the filter F .

Theorem 1 (Perfect Model Matching). Assume that Cid belongs to
the class of controllers in (2.2.2). It holds that

ρvr = ρo. □

Proof. See the Appendix.

Theorem 1 is fundamental in motivating the VRFT approach
since, in the case where a controller with the given parametriza-
tion is sufficient to achieve the desired closed-loop behavior, it
establishes the theoretical equivalence between model-based and
data-driven design.

On the other hand, the assumption of Theorem 1 that Cid is
in the controller class is not realistic in many practical cases, nor
can it be verified even when it is satisfied, since P is unknown.

When Cid does not belong to (2.2.2), one still wishes to perform
a suitable selection of the controller in the restricted class of
controllers that is being used. Theorem 2 shows that the optimal
controller can be approximately found by suitably shaping the
filter F .

In preparation of Theorem 2, let us indicate the mismatch
between Cid and Co as the system DC with frequency response

DC (jω) =
M(jω)

P(jω) (1 − M(jω))
− ρT

o β(jω).

Introduce the extended controller C+

ρ+ as a controller parameter-
ized with ρ+

= [ρT , δ]T , δ ∈ R, with frequency response

C+(jω, ρ+) = C(jω, ρ) + δDC (jω) (2.3.9)

and consider the extended model-reference cost function

J+mr (ρ
+) =

∫
+∞

−∞

⏐⏐⏐⏐( P(jω)C+(jω, ρ+)
1 + P(jω)C+(jω, ρ+)

− M(jω)
)
Wmr (jω)

⏐⏐⏐⏐2 dω.

(2.3.10)

By comparing Cid and C+

ρ+ , it appears that the minimizer of the
extended model-reference cost function, when unique, is the
extended controller C+

ρ+
o

with ρ+
o = [ρT

o , 1]T , which gives C+

ρ+
o

=

Cid and J+mr (ρ
+
o ) = 0.

Theorem 2 (Controller Selection When Perfect Model Matching Is
Not Possible). Consider the filter frequency response

F (jω) = M(jω) (1 − M(jω))W (jω) (2.3.11)

and assume that W (jω) satisfies the condition

Wmr (jω) = W (jω)U(ω).1 (2.3.12)

Then,

ρvr = argmin
ρ

J̄+mr ([ρ
T , 0]T ),

where (recall that ρ+
o = [ρT

o , 1]T )

J̄+mr (ρ
+) = (ρ+

− ρ+

o )T
∂2J+mr

∂ρ+2

⏐⏐⏐⏐
ρ+
o

(ρ+
− ρ+

o ) (2.3.13)

is the second order expansion of J+mr (ρ
+) around its global minimizer

ρ+
o . □

Proof. See the Appendix.

Theorem 2 has the following interpretation. As stated in the
theorem, Eq. (2.3.13) is the second order expansion of J+mr (ρ

+)
around its minimizer ρ+

o , and Theorem 2 asserts that ρvr min-
imizes this expansion over the desired class of controllers. The
second order expansion well describes J+mr (ρ

+) in a neighbor-
hood of ρ+

o . Hence, when the class of controllers is not ‘‘too
underparameterized", i.e. the ideal controller is ‘‘close enough"
to the optimal controller corresponding to [ρT

o , 0]T , minimizing
the second order expansion of J+mr (ρ

+) over the given class of
controllers, i.e. minimizing J̄+mr ([ρ

T , 0]T ), returns a value close to
the minimizer of Jmr (ρ) = J+mr ([ρ

T , 0]T ). Thus,

ρvr ≈ ρo.

Dealing with noise. Consider now the case where the output y(t)
is corrupted by an additive noise η(t) ∈ L2. In this section, we
shall compare the results obtained when the output is noisy with
those achieved in the noise-free setting of the previous sections.
Correspondingly, we are well advised to introduce the superscript
nf to indicate the noise-free components of signals, to which the
results in the previous sections apply, and write, e.g.,

y(t) = ynf (t) + η(t).

It can be shown that minimizing Jvr (ρ) in (2.3.8) using noisy sig-
nals does not preserve the validity of Theorem 1. As an example,
consider the case in which u(t) and y(t) are collected in open-loop
(so that u(t) does not depend on the noise η(t)) and note that the
virtual error corresponding to the noisy output is

eF (t) = enfF (t) + eη

F (t),

where eη

F (t) accounts for the component due to noise and has
expression (superscript η indicates the component due to noise
in all signals in this section)

eη

F (t) = F[M−1
[η(t)] − η(t)].

Hence, the virtual reference cost function becomes

Jvr (ρ) =

∫
+∞

−∞

(
uF (τ ) − Cρ[eF (τ )]

)2 dτ
=

∫
+∞

−∞

(
uF (τ ) − Cρ[enfF (τ )]

)2
dτ

+

∫
+∞

−∞

(
Cρ

[
eη

F (τ )
])2 dτ

− 2
∫

+∞

−∞

(
uF (τ ) − Cρ[enfF (τ )]

)
Cρ

[
eη

F (τ )
]
dτ .

1 The spectrum U(ω) of the signal u(t) is known when u(t) is selected by
the control designer. More in general, the spectrum can be estimated from the
input data using parametric (e.g., ARMA modeling, multiple signal classification)
or nonparametric (e.g. periodogram, singular spectrum analysis) techniques as
indicated in Ref. [15].
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In this case, function Jvr (ρ) is not minimized by the vector ρvr
minimizing (2.3.8) in the noise-free case since the first term,
which is Jvr (ρ) in the noise-free case, is now added with two extra
terms that also depend on ρ.

In this section, we show that, by building on classic instru-
mental variable methods, see e.g. [16], the VRFT procedure can be
modified so as to obtain the same result ρvr as in the noise-free
case even in presence of noisy data.

To start with, consider the multidimensional frequency re-
sponse β(jω) that appears in Eq. (2.2.5) and build the regressor

ϕ(t) = β[eF (t)],

where each component of ϕ(t) is obtained by filtering eF (t) by
a system whose frequency response is the corresponding com-
ponent of β(jω). As an example, refer back to the PID case in
(2.2.4). In this case, ϕ(t) has three components obtained from
the equations ϕ1(t) = eF (t), ϕ2(t) =

∫ t
−∞

eF (τ )dτ and ϕ
(1)
3 (t) +

1
Td

ϕ3(t) =
1
Td
e(1)F (t).

Then, consider a vector signal ξ (t), called instrumental variable,
with the same dimension of ϕ(t) that satisfies the following
conditions (‘‘≻ 0’’ means ‘‘positive-definite matrix’’2)∫

+∞

−∞

ξ (τ )ϕnf (τ )T dτ ≻ 0, (2.3.14a)∫
+∞

−∞

ξ (τ )ϕη(τ )T dτ = 0, (2.3.14b)∫
+∞

−∞

ξ (τ )uη

F (τ )
T dτ = 0. (2.3.14c)

Eq. (2.3.14b) says that ξ (t) is orthogonal to the component
of the regressor ϕ(t) due to the noise, while preserving enough
correlation with the noise-free component ϕnf (t) as required by
(2.3.14a), and Eq. (2.3.14c) requires orthogonality between ξ (t)
and uη

F (t). A valid ξ (t) can be obtained in various ways. At the
end of this section, we will comment on a typical construction
that does not make use of extra data.

Using such ξ (t), build the linear equation in ρ(∫
∞

−∞

ξ (τ )ϕT (τ ) dτ
)

ρ =

∫
∞

−∞

ξ (τ )uF (τ ) dτ . (2.3.15)

Similarly to the noiseless case, we first consider the ideal situ-
ation where Cid is in the class of controllers and state Theorem 3,
followed by a discussion on the general case.

Theorem 3 (Noisy Data). Assume that Cid belongs to the class
of controllers in (2.2.2) and that ξ (t) satisfies (2.3.14). Then, the
solution to (2.3.15) is the vector ρvr that minimizes (2.3.8) in the
noise-free case. □

Proof. See the Appendix.

In the more general case where the ideal controller is not in
(2.2.2), referring to the proof of Theorem 3, the expression of
unf
F (t) in (A.7) contains a non-null term DC[enfF (t)]. Referring to

(A.6), the last term of this equation now becomes

Θ−1
(∫

∞

−∞

ξ⊥(τ )ϕnf (τ )Tρo dτ +

∫
∞

−∞

ξ⊥(τ )DC[enfF (τ )] dτ
)

= Θ−1
∫

∞

−∞

ξ⊥(τ )DC[enfF (τ )] dτ . (2.3.16)

2 Recall that for a matrix A, A ≻ 0 means xTAx > 0, ∀x ̸= 0 and this definition
applies also when A is not symmetric.

In general, this term is non-zero, which produces a bias in the
selection of ρ. However, the bias is linear in DC[enfF (t)], which
is the term that accounts for the mismatch between the ideal
controller and the optimal controller, and must be small for the
given class to be suitable. Moreover, ξ (t) is built to mimic ϕnf (t)
and thus ξ⊥(t) is generally smaller than ϕnf (t). Hence, the bias
introduced by the extra term (2.3.16) in Eq. (A.6) is expected to
be small when the VRFT method is implemented.

Referring back to the problem of constructing ξ (t), when the
system is operated in open-loop, one typical approach consists
in feeding a model P̂ of the plant (possibly, a very coarse model
built from data which is only used to generate the instrumental
variable) with the input u(t) to obtain a noiseless output ŷ(t). u(t)
and ŷ(t) are then used to construct ξ (t) in the same way as ϕ(t) is
constructed from u(t) and y(t). Hence, ξ (t) is nearly independent
of η(t) (it can bear some residual correlation with η(t) through the
construction of P̂) so that the conditions (2.3.14b) and (2.3.14c)
are approximately satisfied, while it preserves enough correlation
with ϕnf (t) so that condition (2.3.14a) also holds true. See also the
PID-VRFT algorithm of Section 3 for more details.

3. Application to PID tuning

In this section, the VRFT algorithm of the previous section is
used to find handy formulas for the tuning of PID controllers. To
make the resulting algorithm even easier to adopt by the end
user, a simple reference model is taken and a complete VRFT-
based auto-tuning architecture is provided. The effectiveness of
such an approach on a real-world application is illustrated in
Section 4.

To start with, let the reference model M be described by the
frequency response

M(jω) =
e−jωτM

(1 + jω0.2ts)nM
. (3.0.17)

The user must assign the desired settling time ts, the denominator
degree nM and the time delay τM . Notice that the time constant in
M(jω) is taken as 1/5 of the settling time ts and M(j0) = 1, as it is
reasonable for steady-state tracking requirements. For example, if
a settling time ts = 1s is desired with nM = 1 and τM = 0, the
frequency response M(jω) = 1/(1 + jω0.2) is used. When a pure
delay is present in the plant P and it is known to the user, such
a time delay is also better included in M(jω) by setting τM equal
to the plant delay (if τM does not reflect the plant delay, stability
issues may arise, see e.g. [17] for a discussion on time delays in
model-reference design problems).

The user is further requested to assign a cutoff frequency fW
defining the maximum frequency at which one is interested to
obtain a closed-loop system that resembles the reference model.
The autotuner defined below sets

W (jω) =
fW

jω + fW
, (3.0.18)

so that, substituting (3.0.18) in (2.3.12), gives

Wmr (jω) =
fW

jω + fW
U(ω),

and therefore the frequency weighting of the model reference
cost function is in fact given by a low pass filter with cut-off
frequency fW modulated by U(ω).

The frequency response of the PID controller is given by (2.2.3)
and (2.2.4). The time constant of the derivative part Td is selected
as twice the sampling time Ts.

The interval for I/O data acquisition is denoted as [t0, tf ]. In
particular, if P is operated in open-loop when data are acquired,
the input signal u(t) is injected and the corresponding output
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Fig. 2. The PID-VRFT autotuner layout.

signal y(t) is collected. If P is instead operated in closed-loop,
a reference signal r(t) is applied to the closed-loop system and
u(t) and y(t) are measured. It is remarked that (differently from
other existing methods) u(t) or r(t) are not required to be specific
waveforms. In all cases, the I/O data are collected in the set

D
tf
t0 =

{
u(t), y(t)| t ∈ [t0, tf ]

}
.

Notice that the theory assumes infinite-time signals (see (2.3.8))
whereas in reality u(t) and y(t) are known only over the finite
observation window [t0, tf ]. On the other hand, if the time
horizon tf − t0 is long enough as compared to the time constants
of the systems, then the importance of considering signals over
finite time horizons is toned down and the results for the infinite
horizon case hold true approximately.

Consider now the scheme depicted in Fig. 2. The overall PID-
VRFT autotuner is built by linking in cascade a header block
denoted by ‘‘H" with the block containing the PID-VRFT algo-
rithm. The inputs of ‘‘H" are the above described user-chosen
parameters: the settling time ts, the denominator degree nM and
the delay τM of M, the I/O dataset D

tf
t0 , the sampling time Ts

and the cutoff frequency fW of the frequency weighting. This
information is used in the ‘‘H" block as indicated in the formulas
(3.0.17) and (3.0.18) to construct the inputs of the PID-VRFT
algorithm: M(jω), the dataset, the derivative time constant Td and
W (jω). The PID-VRFT block implements the VRFT algorithm for
the tuning of the PID gains as described below.

PID-VRFT algorithm (inputs: M(jω), D
tf
t0 , Td, W (jω))

1. [Filter selection] Consider the filter F as in (2.3.11) and
the auxiliary filter F ′ with frequency response

F ′(jω) = (1 − M(jω))W (jω).

(The filter F ′(jω) is introduced only to streamline the com-
putation of eF (t) at point 2, where the following identity
will be exploited: eF (t) = F[M−1

[y(t)]] − F[y(t)] =

F ′
[y(t)] − F[y(t)])

2. [Pre-processing] Filter u(t) through F to obtain uF (t) and
filter y(t) through F and F ′ to obtain yF (t) and yF ′ (t)
respectively.
Compute eF (t) according to the formula

eF (t) = yF ′ (t) − yF (t).

Build the regressor ϕ(t) as

ϕ(t) = [ϕ1(t) ϕ2(t) ϕ3(t)]T

where

ϕ1(t) = eF (t),

ϕ2(t) =

∫ t

t0

eF (τ ) dτ

and ϕ3(t) is eF (t) filtered through a filter with frequency
response

Φ(jω) = jω/(1 + jωTd).

3. [Instrumental variable] This step is implemented only when
the plant P is affected by significant noise. If not, let ξ (t) =

ϕ(t) and jump to step 4.
Identify a low-order model P̂ linking u(t) to y(t) (P̂ is only
used to generate the instrumental variable and it can be a
highly inaccurate model of the plant). If the data have been
collected in open-loop, compute the output ŷ(t) generated
by P̂ when this system is fed with u(t) (without noise).
Otherwise, compute ŷ(t) as the (noise-free) output of the
closed-loop system formed by P̂ and the controller that
was used in the experiment. Then, compute

êF (t) = ŷF ′ (t) − ŷF (t)

and define the instrumental variable ξ (t) = ϕ̂(t), where
ϕ̂(t) is computed as ϕ(t) in the pre-processing step by using
êF (t) instead of eF (t).

4. [PID tuning] Compute the PID gains according to
Eqs. (3.0.19) in Box I, where

xij =

∫ tf

t0

ξi(τ )ϕj(τ )dτ , i, j = 1, 2, 3,

xiu =

∫ tf

t0

ξi(τ )uF (τ )dτ , i = 1, 2, 3

and ξi(t) and ϕj(t) are, respectively, the ith element of ξ (t)
and the jth element of ϕ(t). (Eqs. (3.0.19) are obtained
by solving equation (2.3.15) for ρ, recalling that ρ =

[Kp, Ki, Kd]
T .)

4. An experimental case study

The Brake-by-wire (BBW) technology aims to decouple the
driver’s braking command from the real actuation. Nowadays,
optimal design and control of BBW actuators is one of the chal-
lenges that the automotive sector is facing. This problem has been
studied in-depth for cars, while it is still an open issue for two-
wheeled vehicles, since higher tracking performance is required
and safety is much more critical.

Here, we consider the BBW setup for sport motorbikes de-
picted in Fig. 3. Such a system is composed of two parts: an
electro-mechanical actuator (DC motor and transmission) and a
traditional hydraulic brake, i.e. a hydraulic pump connected by
means of a pipe to a caliper. The braking torque is given by the
friction between the pads moved by the caliper and the disk.

In this application, the variable of interest is the braking
torque. However, due to cost and reliability constraints, the
torque is indirectly regulated by controlling the position y of the
pump master cylinder piston by using the DC motor current as
control variable u, see [18] for a more detailed description of this
setup.
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Kp =
x12x23x3u − x13x22x3u − x12x33x2u + x13x32x2u + x22x33x1u − x23x32x1u
x11x22x33 − x11x23x32 − x12x21x33 + x12x23x31 + x13x21x32 − x13x22x31

(3.0.19a)

Ki =
−x11x23x3u + x13x21x3u + x11x33x2u − x13x31x2u − x21x33x1u + x23x31x1u
x11x22x33 − x11x23x32 − x12x21x33 + x12x23x31 + x13x21x32 − x13x22x31

(3.0.19b)

Kd =
x11x22x3u − x12x21x3u − x11x32x2u + x12x31x2u + x21x32x1u − x22x31x1u
x11x22x33 − x11x23x32 − x12x21x33 + x12x23x31 + x13x21x32 − x13x22x31

(3.0.19c)

Box I.

Fig. 3. The BBW setup used in this work.

In what follows, the VRFT method proposed in this paper is
applied to this control problem and its performance is compared
with a model-based approach presented in the next section.

Model-based PID design. The model of the BBW setup is based
on the assumption that the static Coulomb friction of the piston
can be neglected. This assumption is reasonable if a dithering
signal is added to the control input [19], or a friction compensator
is properly designed [20,21].

Under this assumption, the following control-oriented model
of the frequency response of the system linking the motor current
u(t) to the piston position y(t) has been derived in [22]:

P(jω) =
Qeq

(jω)2Meq + (jω)Req + Keq
, (4.0.20)

where:

• Meq is the equivalent mechanical inertia;
• Req is the equivalent damping (viscous friction) due to hy-

draulic and mechanical parts;
• Keq indicates the equivalent stiffness of the overall system,

including the return effect of the spring and that of the fluid
pressure;

• Qeq is a coefficient that, multiplied by u(t), is the equivalent
force applied by the motor to the master cylinder piston.

Rewrite the frequency response (4.0.20) as

P(jω) =
µP(

jω + pP,1
) (

jω + pP,2
) . (4.0.21)

To identify the three parameters µP , pP,1 and pP,2 of model
(4.0.21), a set of I/O measurements is collected. To properly design
the identification experiment, consider the following observa-
tions:

• the identification experiment is made at high piston veloc-
ity in order not to excite the nonlinear friction dynamics
(according to the Stribeck model of the friction force Ff
depicted in Fig. 4);

• the DC motor current is limited due to hardware constraints.
Therefore, at high frequencies – where the position dynam-
ics is strongly attenuated – it is difficult to provide the
necessary power to properly excite the system;

Fig. 4. The Stribeck friction model.

Fig. 5. ETFE and frequency response of the identified model.

• the position sensor resolution is finite, due to quantization
effects, so that the input current should be large enough to
make the signal-to-quantization noise ratio acceptable.

Considering the aforementioned observations, we run an ex-
periment with a Pseudo Random Binary Sequence (PRBS) input
on the physical system with 1 kHz sampling frequency and an
amplitude of 8 A.

We show the results of model identification in Fig. 5, where
both the Empirical Transfer Function Estimation (ETFE, solid line)
and the frequency response of the identified model using Predic-
tion Error Methods (PEM, dashed line) are shown. The identified
model parameters are given in Table 1.

As for the reference model M(jω), we consider the frequency
response in (3.0.17), with τM = 0, nM = 2 and ts = 0.04 s, such
that the model has two poles located at 1/0.008 ≈ 2π20 rad/s.
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Table 1
Parameters of the identified model P(jω) in
(4.0.21).
µP 255.02
pP,1 62.05
pP,2 6.188

Table 2
PID parameters with the model-based (MB) method
and the VRFT approach.

MB VRFT

µR 61.27 104.57
zR,1 62.05 136.3
zR,2 6.188 1.77
pR 250 500

Now consider the PID controller of frequency response
CPID(jω, ρ) = ρTβ(jω) with β(jω) as in (2.2.4) and ρ =

[Kp, Ki, Kd]
T . It can be easily shown that such a response can

be rewritten as

CPID(jω, µR, zR,1, zR,2, pR) =
µR

(
jω + zR,1

) (
jω + zR,2

)
jω (jω + pR)

, (4.0.22)

with straightforward definitions of pR, µR, zR,1 and zR,2. The rep-
resentation in (4.0.22) will allow us to derive more easily the
model-based controller, as shown next.

Consider the model reference problem (we allow here all 4
parameters to be freely tuned, which corresponds to also see Td
as changeable)

min
µR,zR,1,zR,2,pR

∫
∞

−∞

⏐⏐⏐⏐( P(jω)CPID(jω, µR, zR,1, zR,2, pR)
1 + P(jω)CPID(jω, µR, zR,1, zR,2, pR)

− M(jω)
)

×Wmr (jω)|2dω, (4.0.23)

where

Wmr (jω) =
2π40

jω + 2π40
.

In this particular case, by selecting the parameters to the values

µR =
1

(0.2ts)2µP
(4.0.24a)

zR,1 = pP,1 (4.0.24b)

zR,2 = pP,2 (4.0.24c)

pR =
10
ts

, (4.0.24d)

the model reference cost (4.0.23) becomes exactly zero (perfect
model matching solution).

Substituting the numerical values in (4.0.24) gives the PID
parameters in the MB column of Table 2.

PID tuning via VRFT. The PID controller parameters are next
computed by means of the PID-VRFT algorithm using the same
dataset employed for system identification in the previous sec-
tion; M(jω) is as before in Eq. (4.0.23) and W (jω) is given by
(3.0.18) with fW = 2π40 rad/s; in the algorithm, at point 3,
no instrumental variable was used, because the BBW setup is
affected by low noise levels.

The resulting PID controller parameters are

Kp = 28.77, Ki = 50.45, Kd = 0.15,

Fig. 6. Comparison between the MB and the VRFT approaches: reference signal
r(t) (dotted), ideal response M[r(t)] (dash-dotted), output of the closed-loop
with the MB controller (solid) and output of the closed-loop with the VRFT
controller (dashed).

and Td = 2Ts = 0.002 s, which are rewritten in the VRFT column
of Table 2 in terms of µR, zR,1, zR,2, pR for an easy comparison with
the MB parameters.

Results and discussion. The MB and VRFT approaches are val-
idated on the BBW physical setup. The reference signal (dotted
line in Fig. 6) is selected as the step response of a first order low
pass filter with a pole at 2π60 rad/s to avoid the saturation of the
input.

Fig. 6 shows the results of the comparison, where the dash-
dotted black line is the ideal response (given by M(jω)), the blue
solid line is the closed-loop system output with the MB PID
controller and the dashed line is the output of the closed-loop
system with the VRFT PID controller. Notice that the closed-loop
system with the VRFT PID controller is much closer to the ideal
behavior than the one designed through the MB method. The
reason is that the available data are used in VRFT towards a direct
design of the controller parameters, while in the MB approach
they are used to first tune a model with no concern for the
final goal of controller selection, so that the imperfections in the
model are bound to determine a deterioration in the closed-loop
performance. In general, it is not easy to recognize which model
inaccuracies are at the origin of the poor closed-loop performance
with the model-based approach and, possibly, various concurrent
causes determine the final effect (in Fig. 5, the difference between
the ETFE and the frequency response of the identified model
occurs from 40 Hz onward, beyond the closed-loop bandwidth).
While it is not excluded that a more sophisticated model-based
approach can get around these difficulties, it is a fact of practical
interest that a method like VRFT, which directly uses all the
information in the data to generate a controller, attains good
performance with very little effort.

5. Concluding remarks

In this paper, we have developed a Virtual Reference Feedback
Tuning method in a continuous time, deterministic set-up. Such a
framework fits well into the classical framework of PID controller
tuning. The effectiveness of the method has been demonstrated
on the experimental PID tuning of a BBW actuator.
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Appendix

Proof of Theorem 1. In the proof, we omit to write the argument
jω. Given the assumption, we can write

M =
PC(ρo)

1 + PC(ρo)
. (A.1)

From Plancherel Theorem, (2.3.8) can be rewritten in the fre-
quency domain as

Jvr (ρ) =

∫
+∞

−∞

|F |
2
|U − C(ρ)Ev|

2 dω

=

∫
+∞

−∞

|F |
2
⏐⏐1 − C(ρ)(M−1

− 1)P
⏐⏐2 |U |

2 dω

=

∫
+∞

−∞

|F |
2

|M|
2 |M − C(ρ)(1 − M)P|

2
|U |

2 dω. (A.2)

By substituting the expression (A.1) of M in (A.2), it follows that

Jvr (ρ) =

∫
+∞

−∞

|F |
2
⏐⏐⏐⏐1 + PC(ρo)

PC(ρo)

⏐⏐⏐⏐2 ⏐⏐⏐⏐P (C(ρo) − C(ρ))
1 + PC(ρo)

⏐⏐⏐⏐2 |U |
2 dω

=

∫
+∞

−∞

|F |
2 |C(ρo) − C(ρ)|2

|C(ρo)|2
|U |

2 dω,

whose minimizer ρvr is ρo.

Proof of Theorem 2. The first and second order derivatives of
the cost J+mr (ρ

+) in (2.3.10) around ρ+
o are, respectively,

∂ J+mr

∂ρ+

⏐⏐⏐⏐
ρ+
o

= 0

∂2J+mr

∂ρ+2

⏐⏐⏐⏐
ρ+
o

=

∫
∞

−∞

|P|
2
|Wmr |

2⏐⏐1 + PC+(ρ+
o )

⏐⏐4 (β+(β+∗)T + β+∗(β+)T ) dω,

where β+ denotes the vector [β(jω),DC (jω)]T , such that ρ+Tβ+
=

C+(jω, ρ+) (see (2.3.9)), and β+∗ denotes its conjugate. Notice
that the latter expression denotes a matrix (a 4× 4 matrix in the
PID case). Then, the analytical expression of J̄+mr (ρ

+) becomes

J̄+mr (ρ
+) =

∫
∞

−∞

⏐⏐P(C+(ρ+
o ) − C+(ρ+))

⏐⏐2⏐⏐1 + PC+(ρ+
o )

⏐⏐4 |Wmr |
2 dω.

By the definition of ‘‘ideal controller", it turns out that

M =
PC+(ρ+

o )
1 + PC+(ρ+

o )

and the above expression of J̄+mr (ρ
+) can be rewritten as

J̄+mr (ρ
+) =

∫
∞

−∞

|1 − M|
2
⏐⏐M − C+(ρ+)(1 − M)P

⏐⏐2 |Wmr |
2 dω.

Hence, using (2.3.9),

J̄+mr ([ρ
T , 0]T ) =

∫
∞

−∞

|1 − M|
2
|M − C(ρ)(1 − M)P|

2
|Wmr |

2 dω.

On the other hand, the expression (A.2) for Jvr (ρ) can be
written in the light of (2.3.11) and (2.3.12) as

Jvr (ρ) =

∫
∞

−∞

|1 − M|
2
|M − C(ρ)(1 − M)P|

2
|Wmr |

2 dω.

Since Jvr (ρ) = J̄+mr ([ρ
T , 0]T ), this concludes the proof.

Proof of Theorem 3. The vector ρvr minimizing (2.3.8) in the
noise-free case satisfies the following equation

∂ Jvr
∂ρ

⏐⏐⏐⏐
ρvr

= −

∫
+∞

−∞

ϕnf (τ )
(
unf
F (τ ) − ϕnf (τ )Tρvr

)
dτ = 0,

that is,(∫
∞

−∞

ϕnf (τ )ϕnf (τ )T dτ
)

ρvr =

∫
∞

−∞

ϕnf (τ )unf
F (τ ) dτ . (A.3)

On the other hand, (2.3.15) can be rewritten as(∫
∞

−∞

ξ (τ )(ϕnf (τ )T + ϕη(τ )T ) dτ
)

ρ

=

∫
∞

−∞

ξ (τ )(unf
F (τ ) + uη

F (τ )) dτ ,

which, due to conditions (2.3.14b) and (2.3.14c), is equivalent to(∫
∞

−∞

ξ (τ )ϕnf (τ )T dτ
)

ρ =

∫
∞

−∞

ξ (τ )unf
F (τ ) dτ . (A.4)

Now, rewrite ξ (t) as the sum of two components: its projec-
tion on the subspace in L2 generated by the components of the
noise-free regressor ϕnf (t) and a term ξ⊥(t) orthogonal to this
subspace,

ξ (t) = Θϕnf (t) + ξ⊥(t), (A.5)

where Θ is a matrix defining the projection. Such a matrix is
non-singular, as it can be seen by rewriting (2.3.14a) as∫

+∞

−∞

(
Θϕnf (τ ) + ξ⊥(τ )

)
ϕnf (τ )T dτ

= Θ

∫
+∞

−∞

ϕnf (τ )ϕnf (τ )T dτ ≻ 0,

and noting that the product of two matrices cannot be positive
definite if one of them is singular.

Now, substitute (A.5) in (A.4) to obtain(∫
∞

−∞

(Θϕnf (τ ) + ξ⊥(τ ))ϕnf (τ )T dτ
)

ρ

=

∫
∞

−∞

(Θϕnf (τ ) + ξ⊥(τ ))unf
F (τ ) dτ ,

which reduces to(∫
∞

−∞

ϕnf (τ )ϕnf (τ )T dτ
)

ρ

=

∫
∞

−∞

ϕnf (τ )unf
F (τ ) dτ + Θ−1

∫
∞

−∞

ξ⊥(τ )unf
F (τ ) dτ . (A.6)

The signal unf
F (t) can be seen as the output of the ideal controller

Cid when fed by enfF (t). Therefore,

unf
F (t) = Cid[e

nf
F (t)] = ϕnf (t)Tρo + DC[enfF (t)]. (A.7)

Since the ideal controller is in the desired class (2.2.2), DC[enfF (t)]
= 0, unf

F (t) = ϕnf (t)Tρo and (A.6) becomes (A.3), which proves
the thesis.

References

[1] H. Hjalmarsson, M. Gevers, S. Gunnarsson, O. Lequin, Iterative feedback
tuning: theory and applications, IEEE Control Syst. 18 (4) (1998) 26–41.

[2] S. Formentin, A. Karimi, A data-driven approach to mixed-sensitivity
control with application to an active suspension system, IEEE Trans. Ind.
Inf. 9 (4) (2013) 2293–2300.

http://refhub.elsevier.com/S0167-6911(19)30036-2/sb1
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb1
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb1
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb2
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb2
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb2
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb2
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb2


34 S. Formentin, M.C. Campi, A. Carè et al. / Systems & Control Letters 127 (2019) 25–34

[3] M. Campi, A. Lecchini, S. Savaresi, Virtual reference feedback tuning: a
direct method for the design of feedback controllers, Automatica 38 (8)
(2002) 1337–1346.

[4] A. Lecchini, M. Campi, S. Savaresi, Virtual reference feedback tuning for two
degree of freedom controllers, Internat. J. Adapt. Control Signal Process. 16
(5) (2002) 355–371.

[5] M. Campi, A. Lecchini, S. Savaresi, An application of the virtual reference
feedback tuning method to a benchmark problem, Eur. J. Control 9 (1)
(2003) 66–76.

[6] S. Formentin, A. Karimi, S. Savaresi, Optimal input design for direct data-
driven tuning of model-reference controllers, Automatica 49 (6) (2013)
1874–1882.

[7] K. van Heusden, A. Karimi, D. Bonvin, Data-driven model reference control
with asymptotically guaranteed stability, Internat. J. Adapt. Control Signal
Process. 25 (4) (2011) 331–351.

[8] S. Formentin, A. Karimi, Enhancing statistical performance of data-
driven controller tuning via L2-regularization, Automatica 50 (5) (2014)
1514–1520.

[9] S. Formentin, K. Heusden, A. Karimi, A comparison of model-based and
data-driven controller tuning, Internat. J. Adapt. Control Signal Process. 28
(10) (2014) 882–897.

[10] L. Ljung, System Identification: Theory for the User, Prentice Hall, Upper
Saddle River, NJ, 1999.

[11] Y. Li, K. Ang, G. Chong, PID control system analysis and design, IEEE Control
Syst. Mag. 26 (1) (2006) 32–41.

[12] H. Hjalmarsson, From experiment design to closed-loop control,
Automatica 41 (3) (2005) 393–438.

[13] K. Gröchenig, Foundations of Time-Frequency Analysis, Springer, 2001.
[14] R.A. Adams, J. Fournier, Sobolev Spaces, Academic Press, New York,

2003.
[15] P. Stoica, R. Moses, Spectral Analysis of Signals, Pearson Prentice Hall,

Upper Saddle River, NJ, 2005.
[16] T. Söderström, P. Stoica, Instrumental Variable Methods for System

Identification, in: Lectures Notes in Control and Information Sciences,
Springer-Verlag, Berlin, 1983.

[17] N. Nguyen, Model-reference adaptive control: A primer, in: Advanced Text-
books in Control and Signal Processing, Springer International Publishing,
2018.

[18] F. Todeschini, G. Panzani, M. Corno, S. Savaresi, Adaptive switching
position-pressure control of a brake by wire actuator for sport motorcycles,
Proc. Inst. Mech. Eng. I (2013).

[19] M. Michaux, A. Ferri, K. Cunefare, Effect of tangential dither signal on
friction induced oscillations in an sdof model, J. Comput. Nonlinear Dyn.
2 (2007) 201.

[20] G. Panzani, S. Formentin, S. Savaresi, Active motorcycle braking via direct
data-driven load transfer scheduling, in: 16th IFAC Symposium on System
Identification (SYSID), 2012, pp. 1257–1262.

[21] R. de Castro, F. Todeschini, R.E. Araújo, S.M. Savaresi, M. Corno, D. Freitas,
Adaptive-robust friction compensation in a hybrid brake-by-wire actuator,
Proc. Inst. Mech. Eng. I (2013).

[22] G. Panzani, M. Corno, F. Todeschini, S. Fiorenti, S. Savaresi, Analysis
and control of a brake by wire actuator for sport motorcycles, in: 13th
Mechatronics Forum International Conference, Linz, Austria, September 17
2012, pp. 17–19.

http://refhub.elsevier.com/S0167-6911(19)30036-2/sb3
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb3
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb3
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb3
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb3
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb4
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb4
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb4
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb4
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb4
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb5
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb5
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb5
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb5
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb5
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb6
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb6
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb6
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb6
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb6
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb7
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb7
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb7
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb7
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb7
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb8
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb8
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb8
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb8
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb8
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb9
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb9
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb9
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb9
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb9
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb10
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb10
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb10
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb11
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb11
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb11
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb12
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb12
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb12
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb13
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb14
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb14
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb14
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb15
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb15
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb15
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb16
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb16
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb16
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb16
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb16
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb17
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb17
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb17
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb17
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb17
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb18
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb18
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb18
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb18
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb18
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb19
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb19
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb19
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb19
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb19
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb21
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb21
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb21
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb21
http://refhub.elsevier.com/S0167-6911(19)30036-2/sb21

	Deterministic continuous-time Virtual Reference Feedback Tuning (VRFT) with application to PID design
	Introduction
	The methodology
	Preliminaries on signals and systems
	The model-reference control problem
	The VRFT approach

	Application to PID tuning
	An experimental case study
	Concluding remarks
	
	Conflict of interest
	Appendix 
	References


