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Abstract— The Virtual Reference Feedback Tuning (VRFT)
is a direct data-driven method for controller design. In this
paper, we present a MATLAB toolbox that implements the most
important procedures of VRFT. The Toolbox is freely available
online. The main VRFT procedures are described in this
paper from a user-oriented point of view, and are illustrated
on some numerical examples with a linear and a nonlinear
plant. The tuning of a proportional-integral-derivative (PID)
controller will serve as a running example throughout the paper.

Index Terms— Computer aided control design, Control
courses and labs, Adaptive control.

I. INTRODUCTION

Virtual Reference Feedback Tuning (VRFT) is a direct
data-driven method for controller design. It prescribes to
select a controller from a given class based on a batch
of data that are collected from the plant. The controller-
selection procedure is direct in the sense that data are not
preliminarily used to identify a model of the plant; instead,
the controller parameters are directly optimized as decision
variables in a data-dependent minimization problem. In this
way, VRFT reduces the design to a data-driven optimization
problem.

VRFT was introduced in [1], building on a general idea
first presented in [2]. It was firstly introduced for the design
of one-degree-of-freedom controllers to shape the reference-
to-output transfer function of a closed-loop linear time invari-
ant system, and then extended in several directions, including
the tuning of two-degree-of-freedom controllers [3], the
study of procedures for nonlinear control [4], multivariable
systems [5], unstable or non-minimum phase systems, [6],
[7].

Other methods developed in the last two decades are
also direct and data-driven. We mention here the Iterative
Feedback Tuning (IFT) method [8], [9], [10], the data-driven
loop-shaping [11], and the Correlation-based Tuning (CbT)
method [12], [13]. See also [14], [15], [16], [17] and the
references therein for a general presentation. We refer the
reader to the bibliography for comparisons and discussions
on the merits of one over another, while we refer in particular
to [18] for a study that compares direct data-driven methods
with model-based design approaches.
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A. Aim and structure of this paper

This paper presents a Toolbox for the implementation of
VRFT that has been realized and made available by the
paper’s authors at the URL

http://marco-campi.unibs.it/VRFTwebsite/index.html

The Toolbox implements a selection of VRFT procedures
that are also revisited here from a user-oriented point of view.

In Section II, the idea behind the VRFT method is recalled.
To exemplify the method, we will in particular obtain some
simple “one-shot” data-driven tuning rules for a classic
proportional-integral-derivative (PID) controller design. Sec-
tion III presents the main functions of the VRFT Toolbox for
classic controller design problems. Although the linear set-up
takes the largest part of the presentation, a more advanced
control design tuning scheme for nonlinear plants is also
presented at the end of Section III. The usage of the VRFT
Toolbox is illustrated on two numerical examples (with a
linear and a nonlinear plant) in Section IV.

II. THE VRFT IDEA

A. Basic facts in a noise-free set-up

Consider the closed-loop control scheme of a linear, time-
invariant, single-input single-output discrete-time dynamical
system with transfer function P (z) in Figure 1. We will first
focus on the noise-free case, i.e. dt = 0.

Fig. 1. Control loop.

Given a reference model Mr(z) that describes the desired
transfer function from rt to yt and a family of linear
controllers C = {C(z, θ) : θ ∈ Rn}, parametrized by a real
vector θ, the control design problem is cast as the following
optimization problem: choose the parameter θ that minimizes
the 2-norm model-reference criterion

JMR(θ) =

∥∥∥∥( P (z)C(z, θ)

1 + P (z)C(z, θ)
−Mr(z)

)
W (z)

∥∥∥∥2
2

, (1)

where W (z) is a user-chosen weighting function that mod-
ulates the importance of matching the reference-to-output
transfer function with Mr(z) at different frequencies. By
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definition of 2-norm, (1) can be written more explicitly as
JMR(θ) =

1

2π

∫ π

−π

∣∣∣∣ P (ejω)C(ejω, θ)

1 + P (ejω)C(ejω, θ)
−Mr(e

jω)

∣∣∣∣2 |W (ejω)|2dω.

(2)
Since the plant P (z) appears in the cost function

JMR(θ), knowledge of P (z) seems to be necessary
to minimize JMR(θ). The VRFT method offers a way
to design the controller when P (z) is unknown by
using a collection of input/output data from the plant,
DN = {(ut, yt), t = 1, . . . , N}. DN can be collected
either in open loop or closed loop. The core of VRFT
consists in the introduction of a cost function JNVRFT(θ) (in
substitution of JMR(θ)) that depends on DN but not on P (z).

The idea behind VRFT
The intuitive idea for building JNVRFT(θ) is as follows. Given
the measured yt, one computes the so-called virtual reference
signal r̄t such that yt = Mr(z)r̄t. This is the reference
that would produce an output equal to the measured yt if a
perfect controller C∗(z) (such that P (z)C∗(z)

1+P (z)C∗(z) = Mr(z))
were placed in the control loop. Considering that the
relation yt = P (z)ut holds true, it must also be true that
C∗(z)(r̄t − yt) = ut, which provides us with a description
of the input-output behavior of the perfect controller C∗(z).
The idea is then to choose θ in such a way that this
behavior is mimicked at best by the chosen controller,
that is, in such a way that C(z, θ)(r̄t − yt) approximates
ut as much as possible. Using relation Mr(z)r̄t = yt,
we thus obtain the data-dependent cost function
JNVRFT(θ) = 1

N

∑N
t=1(C(z, θ)(Mr(z)

−1 − 1)yt − ut)
2,

which depends only on the known signals ut and yt and
the known transfer function Mr(z). This idea has proven
effective, and has been backed by a solid theoretical analysis
and extended in several directions in the literature indicated
in the introduction.

Theoretical results
In [1], it was shown that if C includes the perfect controller
C∗(z) = C(z, θ∗) so that JMR(θ∗) = 0, then θ∗ minimizes
also limN→∞ JNVRFT(θ). More in general, when C∗(z) /∈ C,
the minimizer of JNVRFT(θ) can be proved to be a “good”
approximation of JMR(θ) if the measured ut and yt signals
are suitably prefiltered leading to the following cost function:

JNVRFT(θ) =
1

N

N∑
i=1

(C(z, θ)(Mr(z)
−1−1)L(z)yt−L(z)ut)

2.

(3)
Indeed, in [1] it was proved that the choice

L(z) =
W (z)(1−Mr(z))Mr(z)

Φu(z)1/2
, (4)

where Φu(z)1/2 is a spectral factorization of (an estimate
of) the spectral density Φu(z) of the time sequence ut,
i.e. |Φu(z)1/2|2 = Φu(z), leads to a VRFT cost function
JNVRFT(θ) which approximates a second-order expansion of
JMR(θ) around the perfect controller, see [1].

B. VRFT in practice

In practical usage, the class of controllers is
often linearly parameterized, that is, a basis of
controllers C1(z), . . . , Cn(z) is chosen by the
user, and the generic controller in C is defined as
C(z, θ) = θ1C1(z) + · · · + θnCn(z), θ ∈ Rn. In this
way, the minimization of JNVRFT(θ) becomes a standard
least-squares problem that can be solved in closed form.
This fact is shown in detail below in the notable case
of proportional-integral-derivative (PID) controller tuning,
where n = 3. The generalization to any n is immediate.

PID controllers
A continuous-time PID controller, [19], has transfer function
CPID(s, (Kp,Ki,Kd)) = Kp + Ki

1
s + Kd

s
1+Tds

, where
Kp,Ki,Kd are the tunable parameters and Td is a fixed
fast time constant (taming the derivative action). In order
to adhere to the discrete-time framework of this paper1, we
use the Tustin transform with sampling time Ts = Td, which
yields the discrete-time PID

CPID(z, (Kp,Ki,Kd)) = KpC1(z) +KiC1(z) +KdC2(z),
(5)

with C1(z) = 1, C2(z) = Ts

2
1+z−1

1−z−1 , and C3(z) = 2
Ts

1−z−1

3−z−1 .
Equation (5) gives a class of controllers that are linearly
parametrized by θ = (Kp,Ki,Kd). The VRFT procedure in
this case becomes:
• Given the input/output data ut, yt, the target Mr(z) and

the weighting function W (z), compute
– the prefiltering2

L(z) = (1−Mr(z))Mr(z)
W (z)

Φu(z)1/2
;

– the three sequences xi,t, i = 1, 2, 3 defined as
follows:

xi,t = Ci(z)(Mr(z)
−1 − 1)L(z)yt;

– the prefiltered sequence uLt = L(z)ut.

• Denote by xi (respectively, u) the column vector that
contains the sequence xi,t (respectively, uLt ).

• It is immediate to show that JNVRFT(θ) =
1/N([x1 x2 x3 ]θ − u)T([x1 x2 x3 ]θ − u) (so that
the minimizer θ∗ depends only on the scalar products
xT
i xj =

∑N
t=1 xi,txj,t and xT

i u =
∑N
t=1 xi,tu

L
t ),

which yields the following rule:

PID tuning rule: K∗p
K∗i
K∗d

 =

 xT
1

xT
2

xT
3

 [ x1 x2 x3

]−1 xT
1

xT
2

xT
3

u.
(6)

1A study of a continous-time version of VRFT can be found in [20].
2Φu(z)1/2 can be either estimated from ut (which is done in the

Toolbox when preFilt=[], see Section III) or W (z) can be chosen as
F (z)Φu(z)1/2, e.g. as a low pass filter F (z) modulated by the unknown
Φu(z)1/2, so that W (z)

Φu(z)1/2
simplifies to F (z) in which case Φu(z)1/2

need not be estimated.
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Dealing with noisy data
When the plant output yt is affected by an additive noise dt,
such a noise generates bias in the controller parameters, and
JNVRFT(θ) may no longer approximate JMR(θ). To coun-
teract this biasing effect, an instrumental variable method
can be used. In the Toolbox, two methods are implemented
for generating the instrumental variables when the plant is
operated in open loop3:
• Method I (repeated experiment method): a second ex-

periment on the plant is performed using the same input
sequence ut as in the first experiment; the correspond-
ing output y′t is recorded; the instrumental variables
ξ1,t, . . . , ξn,t are obtained as ξi,t = Ci(z)(Mr(z)

−1 −
1)L(z)y′t, i = 1, . . . , n.

• Method II (system identification method): a model
P̃ (z) of the plant P (z) is obtained from the available
ut,yt; an output is generated as ỹt = P̃ (z)ut, and
the sequences ξi,t = Ci(z)(Mr(z)

−1 − 1)L(z)ỹt, i =
1, . . . , n, are obtained; these sequences are approxi-
mately uncorrelated with the additive noise dt and there-
fore can be used as instrumental variables. Although
identifying P (z) makes the method less direct, it is
worth remarking that P̃ (z) is just a tool to generate
the instrumental variables, and can be a very rough
approximation of P (z).

The instrumental variables are then used in place of the
classic least-squares regressors: to exemplify this, we note
that in the PID case the method yields the following rule:

PID tuning rule with Instrumental Variables: K∗p
K∗i
K∗d

 =

 ξT1
ξT2
ξT3

 [ x1 x2 x3

]−1 ξT1
ξT2
ξT3

u.
(7)

C. Generalizations

The ideas illustrated above for shaping the reference-to-
output transfer function carry over to many other control
design problems and the reader is referred to the papers
cited in the introduction for a presentation. In the following
section, we focus on the VRFT Toolbox and show how it
can be used in various set-ups.

III. THE VRFT TOOLBOX

The core of the VRFT Toolbox is a set of six MATLAB
functions. An online help can be read by typing help VRFT
in the MATLAB console. A Graphical User Interface (GUI)
is also provided (see Figure 2 for a screenshot). The GUI can
be run by typing VRFT GUI and comes with an online help
and a “demo mode”, which allows the user to test the main
VRFT functions. The package requires MATLAB version
6, or above, the Control System Toolbox and the System
Identification Toolbox.

3When the plant is operated in closed loop, the instrumental variables
method has to be applied as discussed in [1], but it is not yet implemented
in the present version of the Toolbox.

A. Reference-to-output

The VRFT algorithm illustrated in Section II-A is imple-
mented by the function

C = VRFT1 ry(u,y,Mr,B,W,k,preFilt)

In the function call, u and y are the column-vectors that
contain the measured input and output, which must have
the same length; Mr is the desired transfer function, e.g.,
a low pass filter Mr(z) = 0.025+0.025z−1

1−0.95z−1 is obtained by
(Ts is the sampling time by which Mr(z) is obtained
as a discrete-time counterpart of a continuous-time
reference model; if the whole study is conducted in
discrete-time, set Ts=1) Mr=tf(0.025*[1, 1],[1,
-0.95],Ts,’variable’,’zˆ-1’); B is the vector
that contains the basis of controllers C1(z), . . . , Cn(z),
e.g., in order to tune a PID controller as in (5) one
can define B=[tf([1],[1],Ts,’variable’,’zˆ-1’);

tf(Ts*[1 1],2*[1 -1],Ts,’variable’,’zˆ-1’);

tf([2 -2],Ts*[3 -1],Ts,’variable’,’zˆ-1’)]. W
is the weighting transfer function W (z); the variable k is set
to k=[] in the basic set-up, another usage will be explained
later; the variable preFilt contains the user-specified
function L(z), and, when it is set to [], the filter in (4) is
used. The function output C is the designed controller. The
values of the optimal θ∗ can be extracted by calling the
same function with an additional output theta, i.e. [C,
theta] = VRFT1 ry(u,y,Mr,B,W,k,preFilt).
For instance, in the case of PID tuning K∗p ,K

∗
i ,K

∗
d

are obtained respectively as theta(1), theta(2),
theta(3).

We also remark that the PID tuning rules (6), (7) are
preset in the GUI, where the user can select to tune the
PID controller (5) by clicking on the “use PID” option in
the “Controller structure” drop-down menu (see Figure 2).

Fig. 2. The Graphical User Interface with the preset “use PID” option.

In the presence of noisy output, the user can feed the
algorithm with a second output y′t by adding a second
column to the vector y, which is used to construct the
instrumental variables according to Method I in Section II-B.
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Another option is generating artificial instrumental variables
according to Method II in Section II-B. In this case, the plant
is estimated using an ARX(k,k) model. This method is used
when the user specifies a numeric value for the model order
k, e.g. k=4, and calls the function

C = VRFT1 ry(u,y,Mr,B,W,k,preFilt)

For a numerical example, see Section IV.

B. Output-sensitivity

As shown in [21], VRFT can be used to shape the output-
sensitivity function so as to make it resemble a user-chosen
Md(z), i.e., to minimize

JMR(θ) =

∥∥∥∥( 1

1 + P (z)C(z, θ)
−Md(z)

)
Wd(z)

∥∥∥∥2
2

. (8)

As in the reference-to-output case, the starting point is a set
of input-output data ut, yt that were collected in open or
closed loop. The syntax is the same as in the reference-to-
output case:

C = VRFT1 dy(u,y,Md,B,W,k,preFilt).

C. Dealing with input constraints

A VRFT approach is possible also when the cost functions
(1) and (8) are complemented with a term that penalizes
the deviation from a desired rt-to-ut or dt-to-ut transfer
function, see [21]. This option is implemented in the Toolbox
by the functions VRFT1 ry ru and VRFT1 dy du.

D. Two-degree-of-freedom controller

The reference-to-output transfer function and the output-
sensitivity transfer function can be simultaneously shaped
by resorting to a two-degree-of-freedom (2 d.o.f.) controller
as in Figure 3, where one wants to design the controllers

Fig. 3. Controller with two degrees of freedom.

Cr(z, θr) and Cy(z, θy) so as to minimize the cost function

JMR(θ) =
∥∥∥( P (z)Cr(z,θr)

1+P (z)Cy(z,θr)
−Mr(z)

)
Wr(z)

∥∥∥2
2

+
∥∥∥( 1

1+P (z)Cy(z,θy)
−Md(z)

)
Wd(z)

∥∥∥2
2
. (9)

In [3], VRFT procedures were designed in this context,
for which it is required to avail of a couple ut, yt, and
possibly a further output realization y′t to be used to obtain
the instrumental variables. The command to synthesize Cr
and Cy is

[Cr,Cy] = VRFT2 ry dy(u,y,Mr,Md,Br,By,...
Wr,Wd,fIA,k,preFilt)

where the only input argument that requires some more
explanation is fIA. fIA has no effect when it is empty
(fIA=[]). If instead fIA=’y’ and both Br and By contain
integral actions, then a constraint is introduced in the VRFT
optimization procedure so that the static gain of the transfer
function from rt to yt is set to 1. In the implementation of
the controller, the integrator will be placed in the loop.

E. Nonlinear VRFT

The VRFT method and its theory can be generalized to
nonlinear control design, see [4].

Nonlinear plant - nonlinear controller design
The Toolbox includes the function NL VRFT1 ry that
computes a nonlinear controller given by a linear
combination (according to a vector of parameters θ)
of nonlinear ARX blocks. This is not further described here
and the reader is referred to the related help for more
information.

Nonlinear plant - linear controller design
Alternatively, when the plant is nicely nonlinear, the same
functions, e.g. VRFT1 ry, that we have presented in
previous sections for synthesizing a linear controller can
be used. In the nonlinear case, one is interested in the
closed loop behaviour in response to a given signal rot . The
usual VRFT procedure can be applied to ut, yt as usual,
by selecting Mr(z) so that a desired output is obtained
when Mr(z) is fed with rot . However, the nonlinear effects
are likely to cause a deterioration in the performance as
compared to the linear case. Better performances can often
be achieved by iterating a few times the standard VRFT
procedure as follows.

Iterative VRFT for nonlinear plants
1 Given ut, yt and Mr(z), compute the controller
C(z, θ∗) that minimizes (3).

2 Run a new experiment on the control loop with the
controller C(z, θ∗) and with rot as a reference signal.
Measure the resulting control input signal u∗t and the
plant output signal y∗t .

3 Compare y∗t with the desired output yot = Mr(z)r
o
t . If

the performance is unsatisfactory, then
– rename the last measured signals u∗t , y∗t to ut, yt,
– go back to step 1.

It might be worth remarking that the selection of L(z) in
this context may involve subtleties as discussed in [4].

IV. NUMERICAL ILLUSTRATION OF THE
TOOLBOX

We provide two examples where the Toolbox is used to
shape the rt-to-yt transfer function of a control system as
in Figure 1. For continuous-time signals, we will use the
notation x(t), while xt will denote the sampled versions.
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A. PID tuning example

k

c

1

1

k

c

2

2

m1 m2

u

Fig. 4. The physical system

1) VRFT workflow on a simple example: Referring to
Figure 4, our aim is to design a PID controller that applies
a force u to the second mass in order to regulate y, the
deviation of the second mass position from its equilibrium
point. The desired closed-loop behavior is given by the
reference model Mr(s) = 1

3s+1 , which ensures unit gain
and a settling time of 15s. A low-pass filter W (s) can
be used to penalize the mismatch between Mr(s) and the
actual control system at frequencies below 2 rad/s: we
choose W (s) = 1

0.3s+1 .

A set of input-output data was recorded in open loop
for 500 seconds, with sampling time 1/10s (Ts = 0.1).
Measurements of y(t) were affected by noise. Recorded data
are shown in Figure 5.

0 100 200 300 400 500

time (s)

-2

-1

0

1

2

3

4

5

Fig. 5. The available sequences of input-output data. The input u(t) is the
unit square wave with period 120s (dashed line). The (noisy) measurements
of y(t) are represented by the solid line.

In order to use the VRFT Toolbox in MATLAB, we have
to load the sampled data into two column-vectors u and
y, and to transform Mr(s) and W (s) into discrete-time
transfer functions by the command c2d. For PID tuning,
we set B=[tf([1],[1],Ts,’variable’,’zˆ-1’);

tf(Ts*[1 1],2*[1 -1],Ts,’variable’,’zˆ-1’);

tf([2 -2],Ts*[3 -1],Ts,’variable’,’zˆ-1’)], as
explained in Section II-B. Finally, since data are noisy and
we have only one recorded experiment, we set k=4 to
generate the instrumental variables according to Method II
(see again Section II-B).

By calling [C,theta]=VRFT1 ry(u,y,Mr,B,W,4,[])
we obtain the PID parameters theta(1), theta(2),
theta(3), which are respectively K∗p = 0.0683,
K∗i = 0.1105, K∗d = 0.2307.

2) Behind the curtains: For the sake of reproducibility,
data in Figure 5 were generated from the following plant
P (s) = m1s

2+(c1+c2)s+(k1+k2)
(m1s2+(c1+c2)s+k1+k2)(m2s2+c2s+k2)−(k2+c2s)2

(with m1 = 1, m2 = 0.5, c1 = 0.2, c2 = 0.5, k1 = 1
and k2 = 0.5) which is an ideal descriptor of the u-to-y
relationship of the physical system of Figure 4. Moreover,
a Gaussian white noise with zero mean and 0.025 variance
was added to the noiseless output y(t) = P (s)u(t).

Since P (s) is known in this example (it is not in real
applications), we can compare in Figure 6 Mr(s) with the
closed-loop system with the designed PID.

10-2 10-1 100 101
-50

-40

-30

-20

-10

0

10

M
ag

ni
tu

de
 (

dB
)

Bode Diagram

Frequency  (rad/s)

Fig. 6. The Bode magnitude plot of Mr(s) (black thick line); the
magnitude plot of the control loop obtained by VRFT (thin blue line).

Finally, we also show in Figure 7 the (noiseless) response
of the PID control loop to two cycles of a square wave input
signal (the same signal as in Figure 5), compared with the
desired one as given by Mr(z).

0 40 80 120 160 200 240

time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 7. Black thick line: desired response to the input square wave of
Figure 5 (note that the scale of the vertical axis has changed). Blue thin
line: the designed control loop response.

B. An example with a nonlinear plant

Consider the nonlinear (Hammerstein) system:

dy(t)

dt
= 200 ·y(t)+2000 · (u(t)3 +

2

10
u(t))+

10

19
·
d(u(t)3 + 2

10
u(t))

dt
(10)

We want to design a simple PI controller to shape the r(t)-
to-y(t) step response like one of a first-order linear system
Mr(s) = 1

0.005s+1 , with a settling time of 0.025s.
To this purpose, a set of input u(t) and output y(t) data is

recorded for 0.1s, with sampling time 1/1900s, see Figure
8.
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0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

time (s)

0

5

10

15

20

25

30

Fig. 8. The available sequence of input-output data. The input signal u(t)
(dashed line) is a sawtooth signal with values in the interval [0.55, 1.45]
and period 3/100 seconds. The output measurements y(t) are noiseless.

After transforming Mr(s) into a
discrete-time transfer function, and setting
B=[tf([1],[1],Ts,’variable’,’zˆ-1’); tf(Ts*[1

1],2*[1 -1],Ts,’variable’,’zˆ-1’)] (basis for
PI controller), we followed the iterative procedure
of Section III-E. Hence, we first ran function
[C,theta]=VRFT1 ry(u,y,Mr,B,[],[],[]),
and we obtained theta(1) and theta(2) equal
respectively to K∗p = 0.0281, K∗i = 3.0291. Then, the
obtained controller was placed in the control loop with
plant (10). The corresponding step response is given in
Figure 9. During the execution of the step response test,
we measured the values of the signals u(t) and y(t); the
sampled values were loaded into the vectors u and y,
and we repeated the VRFT procedure by calling again
[C,theta]=VRFT1 ry(u,y,Mr,B,W,[],[]). The
procedure was repeated until the desired behaviour was
reached (see again Figure 9).

0 0.005 0.01 0.015 0.02 0.025

time (s)

0

0.2

0.4

0.6

0.8

1

1.2

Step response at iteration #1

Desired step response

Step response at iteration #2

Step response at iteration #3

Step response at iteration #4

Step response at iteration #0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

time (s)

0

0.2

0.4

0.6

0.8

1

1.2

Step response at iteration #0

Desired

Fig. 9. Left: step response of the control loop after using VRFT once
(Kp = 0.0281, Ki = 3.0291). Right: step response after using VRFT
twice (Kp = 0.4441, Ki = 84.5173), three times (Kp = 0.2103, Ki =
57.3070), four times (Kp = 0.3397, Ki = 48.4177) and five times (Kp =
0.2716, Ki = 58.0332).

V. CONCLUSIONS

We have presented the VRFT Toolbox, which implements
the Virtual Reference Feedback Tuning method and can be
used to solve several control design problems in MATLAB
environment. This toolbox is made available at the URL
http://marco-campi.unibs.it/VRFTwebsite/index.html.
Simulation examples illustrate its usage while additional

information is available from the Toolbox documentation
and helping tools.
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