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Abstract

In this paper, we consider the optimal control problem of an

unknown linear system in input-output form based on the

linear quadratic Gaussian (LQG) control design method. A

self-tuning LQG control scheme is proposed which is shown

to be stable and self-optimizing. Optimality is achieved by

using a new identi�cation algorithm which incorporates a

cost-biasing term favoring the parameters with smaller LQG

optimal cost and a second term aiming at moderating the

time-variability of the estimate.

1 Introduction

It is well known that, in general, a self-tuning control
system is not guaranteed to obtain the same perfor-
mance as the one achievable under complete knowledge
of the true plant (self-optimization). In particular, self-
optimization result does not hold true for general con-
trol laws based on the minimization of multistep per-
formance indexes (see e.g. [1, 2, 3]). In absence of suit-
able excitation conditions, the interplay between identi-
�cation and control in a certainty equivalence adaptive
control scheme may in fact result in the convergence of
the parameter estimate to a parameterization di�erent
from the true one (see e.g. [1, 4]). When a cost criterion
other than the output variance is considered, this iden-
ti�ability problem results in a strictly suboptimal per-
formance. In particular, the identi�ability problem is
signi�cant in in�nite-horizon LQG control and, in fact,
in [3] it is proven that for a state space system subject
to Gaussian noise the set of parameterizations leading
to optimality of LQG control is strictly contained in the
set of the potential convergence points.

Two main approaches have been proposed in the liter-
ature to deal with the self-optimality issue.
A �rst approach consists in achieving optimality as
a side result of parameter consistency. This is typi-
cally obtained by introducing an appropriately vanish-
ing dither noise in the control system, which is suÆ-
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ciently exciting so that consistency is obtained, and -
at the same time - mild enough in order not to degrade
the control system performance, [5, 6, 7]. This approach
is then useful only in the case when noise injection is
feasible.
A second approach - adopted in this paper - is based on
the so-called cost-biased method originally introduced in
[8] where controlled Markov chains with a �nite param-
eter set are considered. The basic idea is adding a suit-
able cost-biasing term to the least squares cost function
that favors parameters with lower optimal cost, while
preserving the closed-loop identi�cation properties of
the least squares algorithm. The results of this paper
have been extended to Markov chains with an in�nite
parameter set in [9] and to systems with a general state
space but still with a �nite parameter set in [10].
Linear systems in a state space representation are dealt
with in [1] and [11]. In these papers, the restrictive
assumption that the state is fully accessible is made.
Moreover, it is assumed that the noise system a�ects
all state variables. This assumption is crucial for the
correct functioning of the proposed identi�cation pro-
cedure. As a matter of fact, the presence of a full-range
noise sheds light on the existing di�erence between the
true system and the estimated model and this helps the
identi�cation task. In [11], it is in fact shown that this
mechanism is e�ective enough so as to counteract the
e�ect of the cost-biasing term, thus guaranteeing the
closed-loop identi�cation property. Unfortunately, the
assumption that the noise is full-range is so restrictive
that it is not veri�ed in many situations of interest, such
as in the case of state space realizations of input-output
systems.

In the present paper, an optimal adaptive control
scheme still based on the cost-biasing idea, but for
input-output systems, is presented. Extending the cost-
biased approach to input-output systems is not trivial.
On the other hand, it is important in that they are
largely used in adaptive control applications. More-
over, assuming only the input and output measurability
is much more realistic than assuming full state accessi-
bility. As a side remark we also note that, in contrast
with [1] and [11], our approach does not require the
noise to be Gaussian.



The paper is organized as follows: in Section 2, we in-
troduce the dynamic systems we consider in the follow-
ing and describe the cost-biased adaptive LQG control
scheme. Some relevant properties of the standard least
squares (LS) estimates are recalled in the same section,
whereas the study of the cost-biased identi�cation algo-
rithm is presented in Section 3. Section 4 is devoted to
the analysis of the closed-loop stability and the charac-
terization of the self-tuning LQG control performance.
Finally, Section 5 presents conclusions and suggestions
for future research.

2 The cost-biased adaptive LQG control law

We consider dynamic systems in input-output form de-
scribed by the following equation:

A(#Æ; q�1) yt = B(#Æ; q�1)ut�1 + nt; (1)

where A(#Æ; q�1) = 1 �
Pn

i=1 a
Æ
i q
�i and B(#Æ; q�1) =Pm

i=1 b
Æ
i q
�i+1 are polynomials in the unit-delay oper-

ator q�1, and #Æ = [ aÆ1 aÆ2 : : : a
Æ
n bÆ1 bÆ2 : : : b

Æ
m ]T is the

unknown system parameter vector. The control objec-
tive is to determine the control law that minimizes the
quadratic cost

lim sup
N!1

1

N

N�1X
t=0

[ y2t + � u2t ];

where the control weight � is strictly positive.

2.1 The LQG optimal control problem
In this section, we summarize some facts on in�nite-
horizon LQG control for known systems which are rel-
evant for the subsequent developments. This is also
useful in order to introduce the assumptions and the
notations we shall use throughout the paper.

Signal nt in equation (1) is a stochastic disturbance
precisely described in the following

Assumption 1 fntg is a martingale di�erence se-
quence with respect to a �ltration fFtg, satisfying the
following conditions

1. sup
t

E[jntj
p=Ft�1] <1, almost surely (a.s) for all

p > 0;

2. lim
N!1

1

N

N�1X
t=0

n2t = �2 > 0; a.s.

Note that Assumption 1 is satis�ed for example when
fntg is an i.i.d. Gaussian sequence, but it includes
many other situations.
We make the assumption on system (1) that n > 0
(non trivial autoregressive part). Note that if n = 0

the trivial control law ut = 0, t � 0, is obviously opti-
mal irrespective of the value of #Æ.

We further assume that system (1) belongs to a known
set of stabilizable models according to

Assumption 2 #Æ 2 �, where � is a compact set
such that � � C = f# 2 <n+m : qsA(#; q�1)
and qs�1B(#; q�1) do not present unstable pole-zero
cancellationsg, s = maxfn;mg being the order of the
system.

System (1) is initialized with yt = ut�1 = 0, t � 0.

For the determination of an optimal control law, it is
convenient to represent system (1) in a state space form
such that the state is accessible, and then apply the
well-known solution to the optimal LQG control prob-
lem for full state accessible state space systems (see e.g.
[5], [12]).
De�ning xt := [yt : : : yt�(n�1) ut�1 : : : ut�(m�1)]

T ; sys-
tem (1) can be given the following state space represen-
tation of order �s := n+m� 1�

xt+1 = A#Æxt +B#Æut + Cnt+1
yt = Hxt;

(2)

initialized with x0 = [ 0 : : : 0 ]T , with matrices

A# =

2
66666666666664

a1 : : : an�1 an
1 0 : : :

. . .
. . .

1 0

b2 : : : bm�1 bm
0 : : : 0

. . . 0
0

0 : : : : : : 0
0 : : : : : : 0

. . .
. . .

0 0

0 : : : : : : 0
1 0

. . .
. . .

1 0

3
77777777777775

;

B# = [ b1 0 : : : 0 1 0 : : : 0 ]T ;

C = HT = [ 1 0 : : : 0 0 0 : : : 0 ]T :

In this way, the LQG regulation problem for the sys-
tem in input-output representation (1) is reformulated
as a complete state information control problem where
the performance index to be minimized is given by
lim supN!1

1
N

PN�1
t=0 [xTt Txt+�u

2
t ]; with T = HTH �

0 and � > 0.
Note that, in the case when n > 1 and m > 1, the state
space representation (2) of system (1) is non minimal
(the order of system (1) is s = maxfn;mg, whereas the
dimension of matrix A#Æ is �s = n +m � 1). However,
from the block triangular matrix structure of A#Æ it is
easily seen that the added eigenvalues are identically
equal to zero. Then from Assumption 2 it follows that
(A#Æ ; B#Æ) is stabilizable and (A#Æ ; H) is detectable,
and hence the standard approach based on the solu-
tion to a Riccati equation can be used to determine the
control law.



Speci�cally, the solution to the original LQG control
problem has the following expression ([5])

ut = S(#Æ; q�1) yt +R(#Æ; q�1)ut; (3)

with S(#Æ; q�1) =
Pn�1

i=0 si(#
Æ)q�i and R(#Æ; q�1) =Pm�1

i=1 ri(#
Æ)q�i, where the coeÆcients fsi(#

Æ)g and
fri(#

Æ)g are computed as follows.
Set L#Æ := [ s0(#

Æ) : : : sn�1(#
Æ) r1(#

Æ) : : : rm�1(#
Æ) ].

Then,

L#Æ = �(BT
#ÆP#ÆB#Æ + �)�1BT

#ÆP#ÆA#Æ ;

where P#Æ is the unique positive semide�nite solution
to the discrete time algebraic Riccati equation

P = AT
#Æ

�
P � PB#Æ(B

T
#ÆPB#Æ + �)�1BT

#ÆP
�
A#Æ + T:

Moreover, the optimal LQG cost is given by J?(#Æ) =
�2trace(P#ÆCC

T ); almost surely.

Remark 1 Since the solution P# to

P = AT
#

�
P � PB#(B

T
# PB# + �)�1BT

# P
�
A# + T

is analytic as a function of the parameter vector # in
the set C (see [13]), it is easily seen that si(#), ri(#),
and J?(#) are analytic functions of #, # 2 C, as well.

2.2 The cost-biased identi�cation algorithm
Introducing the observation vector 't :=
[ yt : : : yt�(n�1) ut : : : ut�(m�1)]

T , system (1) can
be given the regression-like form

yt = 'Tt�1#
Æ + nt;

and the LS index for estimating #Æ is

Vt(#) =

tX
s=1

(ys � 'Ts�1#)
2: (4)

In the theorem below, we recall a fundamental result
for the LS estimate #̂LSt proven in [14], Theorem 1.

Theorem 1 Suppose that ut is Ft-measurable. Then,

(#Æ � #̂LSt )T
Pt

s=1 's�1'
T
s�1(#

Æ � #̂LSt )

= O
�
log�max(

Pt

s=1 's�1'
T
s�1)

�
a.s.:

(5)

In particular, this implies that under the
conditions �min(

Pt

s=1 's�1'
T
s�1) ! 1 and

log�max(
Pt

s=0 's�1'
T
s�1) = o(�min(

Pt

s=1 's�1'
T
s�1))

a.s., the least squares estimate is a.s. consistent.

In adaptive control, identi�cation is performed in
closed-loop. Therefore, one cannot ensure the satis-
faction of the conditions for consistency, and hence the

true parameter vector is generally not consistently esti-
mated. Nevertheless, property (5) still provides a valu-
able bound on the discrepancy between the estimated
parameter and the true parameter. We call this prop-
erty \closed-loop identi�cation property" to emphasize
that it holds even in closed-loop. On the other hand,
the LS identi�cation algorithm generally provides esti-
mates with an optimal LQG cost larger than the opti-
mal cost associated with the true system. This because
if, as expected, the behavior of the adaptively controlled
system is the same as the one of the estimated system,
at least in the long run, then, the optimal LQG cost
for the system with parameter #̂LSt is the same as the
actual incurred cost, which obviously cannot be lower
than the optimal cost for the true system.
Motivated by these considerations, we introduce a cost-
biased identi�cation algorithm with the twofold objec-
tive of preserving the LS property (5) and forcing the
estimates to lie asymptotically in the parameter region
with an optimal cost not larger than the optimal cost
one of the true system.

Consider the estimate #̂t computed through the follow-
ing algorithm:

#̂t =

(
argmin

#2�
Dt(#); if t = ti; i = 0; 1; : : :

#̂t�1; otherwise,
(6)

where the time instants ftig are obtained by the recur-
sive equation ti+1 = ti + Ti initialized with t0 = 0, and
the cost-biased identi�cation index Dt(#) is given by

Dt(#) = Vt(#) + �tJ
?(#) + tk#� #̂t�1k; #̂�1 = 0;

where Vt(#) is the LS cost (4) and J?(#) is the optimal
LQG cost for system (1) with parameter #.

The identi�cation algorithm is completely de�ned by
specifying the sequences of freezing time intervals fTig,
cost-biasing weights f�tg, friction parameters ftg.
We discuss hereafter the meaning of these parameters,
while their actual choice is relegated to the following
section.

The freezing parameter Ti is used to ensure stability
of the closed-loop system. Since the parameter esti-
mate changes with time and the control law is tuned to
such an estimate, the adaptive control system is time-
varying. On the other hand, it is well known that guar-
anteeing a stability property at each time instant for
the \frozen dynamics" does not imply that the overall
time-varying system has a stable dynamics. This prob-
lem can be solved by updating the estimate at a slower
rate than the updating of the system variables, and this
is achieved by a suitable choice of Ti. This same ap-
proach is for instance exploited in [15] and [16].
The cost-biasing term �tJ

?(#) is introduced with the
objective of penalizing those parameterizations with
high optimal LQG cost. The weight �t has to be ap-
propriately selected so as to balance the contrasting



objectives of preserving the closed-loop identi�cation
property (5) and forcing the asymptotic estimate to
correspond to a model with value of the optimal LQG
performance index not larger than the optimal perfor-
mance value for the true system.
Finally, the friction term tk#� #̂t�1k is introduced so

as to avoid that the estimate #̂t is subject to undesired
jumps in the time instants ti when it is updated. This
is necessary to prove optimality of the adaptive scheme.

2.3 Cost-biased adaptive LQG control
According to the certainty equivalence principle, the
adaptive control law is given by the optimal control
law (3) with the estimate #̂t in place of #Æ

ut = S(#̂t; q
�1) yt +R(#̂t; q

�1)ut:

The system:�
yt+1 = [1�A(#̂t; q

�1)] yt+1 + B(#̂t; q
�1)ut

ut = S(#̂t; q
�1) yt +R(#̂t; q

�1)ut
(7)

is then given the name of autonomous estimated sys-
tem. We will select Ti so as to stabilize system (7) and
later on (Section 4) we will see that this leads to the
stability of the true closed-loop system. Letting xt :=
[yt : : : yt�(n�1)ut�1 : : : ut�(m�1)]

T , this system can be
given the state space representation xt+1 = F

#̂t
xt; with

F# = A# +B#L#;

where the matrices A#, B# and L# have been intro-
duced in Section 2.1.
Choose now a constant � < 1 (contraction constant).
The time interval Ti is then de�ned as

Ti := inff� 2 Z+ : k(F
#̂ti

)�k � �g (8)

(note that such a Ti exists since #̂ti belongs to � and
therefore corresponds to a stabilizable system). In this
way, the time-varying system (7) is kept constant until
its dynamics is contracted by a factor �, whence guar-
anteeing its stability. The following proposition makes
this precise (the proof is omitted due to space limita-
tions. The interested reader is referred to [17].).

Proposition 1 The sequence of freezing time intervals
fTig given in (8) is bounded, i.e., supi�0 Ti < 1.
Moreover, the autonomous estimated system xt+1 =
F
#̂t
xt is a.s. exponentially stable, uniformly in time.

3 Properties of the cost-biased estimate #̂t

We now show that by suitably choosing f�tg and ftg

we can obtained the desired properties for #̂t, while pre-
serving the closed-loop identi�cation property of #̂LSt .

Theorem 2 Suppose that ut is Ft-measurable. Given
Æ > 0, select

�t := log1+Æ �max(

tX
s=1

's�1'
T
s�1) (9)

and ftg to be a positive diverging sequence of real num-
bers satisfying t = o(�t). Then,

i) (#Æ � #̂ti)
T

tiX
s=1

's�1'
T
s�1(#

Æ � #̂ti) = O(�ti ) a.s.,

ii) lim sup
t!1

J?(#̂t) � J?#Æ , a.s.,

iii) if
NX
t=1

k't�1k
2 = O(N) a.s., then

NX
t=1

k#̂t� #̂t�1k =

o(N) a.s.

Proof: Point i): Dt(#)� Vt(#̂
LS
t ) can be written as

Dt(#)� Vt(#̂
LS
t ) = #T

tX
s=1

's�1'
T
s�1#� 2#T

tX
s=1

's�1ys

+ �tJ
?(#) + tk#� #̂t�1k � (#̂LSt )T

tX
s=1

's�1'
T
s�1#̂

LS
t

+ 2(#̂LSt )T
tX

s=1

's�1ys: (10)

The LS estimate #̂LSt minimizing Vt(#) satis�esPt

s=1 's�1ys =
Pt

s=1 's�1'
T
s�1#̂

LS
t : Substituting this

last expression in equation (10), we obtain

Dt(#)� Vt(#̂
LS
t ) =(#� #̂LSt )T

tX
s=1

's�1'
T
s�1(#� #̂LSt )

+ �tJ
?(#) + tk#� #̂t�1k: (11)

Set #t := argmin#2�Dt(#). By de�nition of #t we

have Dt(#t) � Vt(#̂
LS
t ) � Dt(#) � Vt(#̂

LS
t ), # 2 �: By

choosing # = #Æ and using expression (11), we then get

(#t � #̂LSt )T
tX

s=1

's�1'
T
s�1(#t � #̂LSt ) + �tJ

?(#t)

+ tk#t � #̂t�1k � (#Æ � #̂LSt )T
tX

s=1

's�1'
T
s�1(#

Æ � #̂LSt )

+ �tJ
?(#Æ) + tk#

Æ � #̂t�1k = O(�t); a:s:; (12)

where the last equality follows from Theorem 1, the def-
inition (9) of �t, the fact that k#

Æ � #̂t�1k is bounded
and the relation t = o(�t). Since �tJ

?(#t) + tk#t �

#̂t�1k � 0, we have (#t � #̂LSt )T
Pt

s=1 's�1'
T
s�1(#t �

#̂LSt ) = O(�t), a.s. From de�nition (9) of �t and The-



orem 1, we then have

(#t � #Æ)T
tX

s=1

's�1'
T
s�1(#t � #Æ)

� 2
h
(#t � #̂LSt )T

tX
s=1

's�1'
T
s�1(#t � #̂LSt )+

(#̂LSt � #Æ)T
tX

s=1

's�1'
T
s�1(#̂

LS
t � #Æ)

i
= O(�t);

a.s., thus concluding the proof of point i), since #̂t = #t,
for t = ti, i = 0; 1; : : :.

Point ii): A simple elaboration of (12) shows that

J?(#t) �
(#Æ � #̂LSt )T

Pt

s=1 's�1'
T
s�1(#

Æ � #̂LSt )

�t

+ J?(#Æ) +
t
�t
k#Æ � #̂t�1k

=
O(log �max(

Pt

s=1 's�1'
T
s�1))

log1+Æ �max(
Pt

s=1 's�1'
T
s�1)

+
o(�t)

�t
+ J?(#Æ);

a.s., where in the second equation we have used
the de�nition (9) of �t and the fact that t =
o(�t). To conclude the proof, it suÆces to show that
limt!1 log�max(

Pt

s=1 's�1'
T
s�1) = 1. The easy

proof of this fact is omitted.

Point iii): By de�nition (6) of #̂t, then Vt(#̂t) +

�tJ
?(#̂t)+tk#̂t�#̂t�1k � Vt(#̂t�1)+�tJ

?(#̂t�1); which
implies

NX
t=1

tk#̂t � #̂t�1k �

NX
t=1

[Vt(#̂t�1)� Vt(#̂t)]

+

NX
t=1

�t[J
?(#̂t�1)� J?(#̂t)]: (13)

The �rst term in the right-hand-side of equation (13)
can be bounded as follows

NX
t=1

[Vt(#̂t�1)� Vt(#̂t)]

� V1(#̂0)� VN (#̂N ) +
N�1X
t=1

[Vt+1(#̂t)� Vt(#̂t)]

� V1(#̂0) +

N�1X
t=1

['Tt (#
Æ � #̂t) + nt+1]

2

� k1[1 +

NX
t=1

k't�1k
2 +

N�1X
t=1

n2t+1];

k1 being a suitable constant, where we used the bound-
edness of #̂t.
By Remark 1, the second term in the right-hand-side

of equation (13) can be bounded as follows

NX
t=1

�t[J
?(#̂t�1)� J?(#̂t)]

= �1J
?(#̂0)� �NJ

?(#̂N ) +

N�1X
t=1

(�t+1 � �t)J
?(#̂t)

� �1J
?(#̂0) + max

#2�
J?(#)

N�1X
t=1

(�t+1 � �t)

= k2[1 + �N ];

where k2 is a suitable constant.
Substituting these bounds in equation (13), we get

1

N

NX
t=1

tk#̂t � #̂t�1k ��k
h 1
N

+
�N
N

+
1

N

NX
t=1

k't�1k
2

+
1

N

N�1X
t=1

n2t+1

i
: (14)

with �k = suitable constant. Observe now that all the
terms in the right-hand-side of equation (14) are O(1).

This in particular follows from
PN

t=1 k't�1k
2 = O(N)

and Assumption 1, point 2. Then, 1
N

PN

t=1 tk#̂t �

#̂t�1k = O(1). Since t tends to in�nity, this last equa-

tion implies 1
N

PN

t=1 k#̂t � #̂t�1k = o(1), that is the
thesis.

By de�nition (9), f�tg is chosen to be an increasing se-
quence of real numbers adaptively selected on the basis
of the data generated by the controlled system. Ac-
cording to result ii), this selection is e�ective in push-
ing the estimate towards the region where the optimal
LQG cost is not larger than J?(#Æ). In turn, result i)
shows that the closed-loop identi�cation property (5) is
preserved with two slight di�erences: 1) the exponent
1+Æ appears in the right-hand-side, 2) the rate of diver-
gence in point i) of Theorem 2 only concerns with the

time instants ti when the estimate #̂t is updated, while
the original closed-loop identi�cation property refers to
all t's. Nevertheless by a suitable manipulation of the
sole result i) in Theorem 2, we are able to prove that

the estimation error et := 'Tt [#
Æ�#̂t] is small compared

to the signal involved in the closed-loop suystem. The
technical proof of this result is omitted due to space
limitations. The interested reader is referred to [17] for
a proof of this result.

Proposition 2 The estimation error et = 'Tt [#
Æ � #̂t]

satis�es the following equation

NX
t=0; t62BN

jetj
p = o(

NX
t=0

k'tk
p +N); p � 2; a:s:;

where BN is a set of instant points which depends on
N , whose cardinality is bounded: jBN j � CB;8N .



4 Stability and optimality

In this section we state the stability and optimality re-
sults for the cost-biased adaptive LQG control scheme
introduced in Section 2. The proof of the theorem is
omitted due to space limitations (see [17]).

The closed-loop system�
yt+1 = [1�A(#Æ; q�1)] yt+1 + B(#Æ; q�1)ut + nt+1
ut = S(#̂t; q

�1) yt +R(#̂t; q
�1)ut

(15)
can be represented as a variation system with respect
to the estimated system of equation (7) as follows

�
yt+1 = [1�A(#̂t; q

�1)] yt+1 + B(#̂t; q
�1)ut + nt+1 + et

ut = S(#̂t; q
�1) yt +R(#̂t; q

�1)ut:

The uniform stability property of the estimated system
(7) (Proposition 1) and the property of et stated in
Proposition 2 are exploited in the next theorem to prove
the stability of system (15). Properties ii) and iii) in
Theorem 2 are needed to show that system (15) is self-
optimizing.

Theorem 3 (stability & optimality) The adaptive
LQG control scheme (15) is Lp-stable:

lim sup
N!1

1

N

N�1X
t=0

[jytj
p + jutj

p] <1; a.s., for all p > 0:

Moreover, it is self-optimizing:

lim sup
N!1

1

N

N�1X
t=0

�
y2t + � u2t

�
= J?(#Æ); a.s.

5 Conclusions

We introduced a new LQG adaptive control scheme
based on the certainty equivalence principle able to en-
sure both stability and optimality results irrespectively
of the excitation characteristics of the involved signals.
This is obtained by adopting a cost-biased approach,
which is e�ective in overcoming the identi�ability prob-
lems usually arising in certainty equivalence adaptive
control and causing sub-optimality.

Interesting research issues has still to be addressed.
First, in this paper we deal with the case when the
noise a�ecting the system is white. This hypothesis is
necessary mainly for the applicability of the proposed
cost-biased least squares identi�cation method, whose
properties are in fact derived on the basis of the least
squares estimate properties. As a consequence of this
fact, the extension to the ARMAX system case is not
trivial. An encouraging starting point is represented
by the fact that the extended least squares algorithm

satis�es closed-loop properties similar to those valid for
the least squares algorithm (see e.g. [5]).
Moreover, the proposed identi�cation method is non-
recursive. The cost-biased identi�cation index has, in
general, multiple local minima and its minimization
is not straightforward. Therefore, it should be min-
imized by resorting to some global optimization algo-
rithm. This limitation must be removed by introducing
some recursive way to minimize our performance index
so as to retain all the properties relevant to control.
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