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Abstract. A central issue arising in financial, engineering and, more generally, in many applicative endeavors

is to make a decision in spite of an uncertain environment. Alorapastapproach, the decision should be
guaranteed to work well imll possible realizations of the uncertainty. A less restrictive approach consists
instead of requiring that the risk of failure associated to the decision shousthb#in some — possibly
probabilistic — sense. From a mathematical viewpoint, the latter formulation leadshanae-constrained
optimization program, i.e. to an optimization program subject to constraints in probability. Unfortunately,
however, both the robust approach as well as the chance-constrained approach are computationally intractable
in general.

In this paper, we present a computationally efficient methodology for dealing with uncertainty in opti-
mization based on sampling a finite number of instancesg¢enario$ of the uncertainty. In particular, we
consider uncertain programs with convexity structure, and show that the scenario-based solution is, with high
confidence, a feasible solution for the chance-constrained problem. The proposed approach represents a viable
way to address general convex decision making problems in a risk-adjusted sense.

Keywords: Convex optimization, scenario approach, confidence levels, decision making.

1 Introduction

In this paper we consider decision making problems that can be formalized as robust convex optimization
programs, where the constraints are parameterized by an uncertain parambighn describes the situation

or ‘states of nature’ that can possibly occur. Precisely, letiggA C R’ be the vector of uncertain variables,

the robust convex program writes:

RCP: min ¢’z subjecttof(z,8) <0, Vd€ A, (1)
TEXCR"
whereX is a convex and closed set that represents the feasible set for the solutions and the fi{nctipn
X x A — R s convex inz for any fixedd € A. In typical situations, (1) is a semi-infinite optimization
problem since it contains an infinite number of constraints A das infinite cardinality), while: represents
a finite number of optimization variables.

The functionf(x, d) is here assumed to be scalar-valued without loss of generality, since multiple scalar-
valued convex constraint§(x,6) < 0,7 = 1,...,ny, can always be converted into a single scalar-valued
convex constraint by the positiofiz, §) = maxi—1,..., fi(z,d) < 0. We also note that the cost function
¢TIz is certain (i.e. it does not depend épand is linear inx without loss of generality, since any convex
uncertain program can be reformulated so that it exhibits a linear certain cost. To see this, simply note that a
problemmingcz= g(§, §) subject toh(€,d) < 0,V € A, can be rewritten asiingc= - v subject tog(&, ) —

v < 0andh(, ) <0,V5 € A. Finally, we remark that no assumption is made on the functional dependence
of fond.

In general situations, finding a solution to (1) is a formidable task and no general solution methodology
for (1) is to date available. In special cases, (1) can be solved by reconducting it to a problem with a finite
number of constraints, possibly by conservative relaxation techniques. We refer the reader to (A. Nemirovski
1993) and (G. Calafiore and M.C. Campi 2003) and the references therein for a discussion on the complexity



of solving (1) and on possible relaxation techniques within the specific context of robust control problems.
Program (1) is ‘robust’ since the optimal solution is guaranteed against all possible occurrences of the un-
certain paramete¥, i.e. the constrainf(x, §) < 0 must be satisfied for all possible valuesiof A. In certain
problems it may be convenient to relax such a strong requirement by allowing that a small fraction of con-
straints can possibly be violated, so leaving a small chancefthat) < 0 is not satisfied in correspondence
of the found solution. The resulting optimization problem is named a chance-constrained convex optimization
problem and is formalized as follows.
Let Prob denote a probability measure o¥efi.e. A is endowed with ar-algebraD and Prob is assigned
for every set ofD). Depending on the situation at hand, Prob can have different interpretations. Sometimes,
it is the actual probability with which the uncertainty parametéaikes on value in a certain set, while other
times Prob simply describes the relative importance we attribute to different uncertainty instances. The chance-
constrained (or probabilistic) convex optimization problem then writes:

PCP¢) : Jnin ¢’z subject to Probf(z,8) > 0} < e, 2)

where the parameterc (0, 1) represents the admissileobabilistic riskof violating the constrainf (z, 6) <

0. It is clear that allowing for a probability of violation results in an optimal solution that outperforms

the optimal robust solution for the uncertainty instances that are indeed feasible at the optimum. Moreover,
€ represents a ‘tuning knob’ that can be freely selected and the lavwike closer the chance-constrained
optimization problem to the robust optimization problem.

Chance-constrained optimization has a long history, dating back to the work of Charnes and Cooper for
linear programs in 1959 , (A. Charnes and W.W. Cooper 1959). Still to date, most of the available computa-
tional results on chance-constraints refer to the important but very specific casef\{uhén is linear inz,

i.e. to probability-constrainelinear programs. One reason for this is that chance-constrained problems are
extremely difficult to solve exactly. This can be easily realized by noticing that the mere evaluation of the
probability with which a constraint is satisfied amounts to solving a multi-dimensional integral, which is a
formidable task in general. Moreover, even wh#m, ) is convex (or even linear) im for any fixeds € A,

the feasible sefx : Prob{ f(z,d) > 0} < ¢} may be nonconvex, and hence PCIRasa convex program in
general. We direct the reader to the monograph lek&pa (A. Pekopa 1995) and to (S. Vajda 1972) for an
extensive presentation of many available results in this area.

Problems of the form (2) appear frequently in manufacturing and financial problems. For instance, in the
Value-at-Risk (VaR) framework (see e.g. (T. J. Linsmeier and N. D. Pearson 1996, M. Pritsker 1997)) one
considers the possible loss:(¢, §) of a portfolio of risky assets, whegedescribes the allocations of assets in
the portfolio, and represent the (uncertain) returns of the assets. The VaR is then defined as the minimal level
~ such that the probability that the portfolio loss excegdsbelow a fixed (small) level € (0,1). Hence, the
problem of minimizing the VaR over admissible portfolios takes the form

I?in'y subject to Proby < —r(£,0)} <,
Y

which is a PCP, witlx = (¢,~) and f(z,d) = —r(£,0) — 7.
The previous example indicates also that the class of PCP problems embodies probabilistic counterparts of
classical min-max games. Indeed, a min-max game

i d
LR Ie)

may be expressed as the robust program
Ergé%y subjecttog(&,d) <, Vi € A. (3)
The probabilistic counterpart of this semi-infinite program is a PCP of the form
flélél:lry’y subject to Probg(¢,9) > v} <e, €€ (0,1). 4)
Notice that, for fixed;, the optimaly in problem (3) is the max qf(¢, §) overd, while in (4) it is theprobable

approximate maximuraf g(¢, d) overd, i.e. a value which is exceeded only over a set’sfhaving small
probability measure.



1.1 A computationally feasible paradigm: Scenario-based convex programs

Motivated by the computational complexity of RCP and PCP, in this paper we pursue a solution methodology
which is based on randomization of the paraméter

To this end, we collectV sampless(?, ..., §(N) of the uncertain parameter randomly chosen in an in-
dependent fashion according to probability Prob (these instances shall be referred te@ntre$, and
construct the randomized convex program

RCPy : Ier)r(liCan ¢z subjectto f(x, 5(i)) <0,7=1,...,N.

This randomized program, called tseenario programin the sequel, has a distinctive advantage over RCP

and PCP: it is a standard convex program wifhconstraints, and hence it is typically efficiently solvable.
However, a fundamental question need be addressed: what can we say about the chance-constraint satisfaction
for an optimal solution of RCR? More explicitly, the crucial question to which this paper is devoted is the
following:

How many samples (scenarios) need to be drawn in order to guarantee that the
solution of the scenario problem violates at most a portiohthe constraints
(i.e. itis a feasible solution in a chance-constrained sense)?

Using statistical learning techniques, we provide an explicit bound on the measure (probability) of the set
of original constraints that are possibly violated by the scenario solution. This measure rapidly decreases to
zero asN is increased, and therefore the obtained randomized solution is feasible for the chance-constrained
problem (2).

2 Scenario-Based Convex Programs

We first formalize the concept of violation probability.
Definition 1 (Violation probability). Theprobability of violationof = € X is defined as
V(z) =Prob{d € A: f(z,0) >0}
(here, itis assumed th@d € A : f(x,0) > 0} is an element of the-algebraD). *

For example, if a uniform (with respect to Lebesgue measure) probability density is assuméd(then
measures the volume of the uncertainty instardcesch that the constraint(z, §) < 0 is violated. We next
have the following definition.

Definition 2 (e-level solution).Lete € (0,1). We say thatr € X is ane-level robustly feasible solution if
V(z) <e. *

Notice that, by the above definition, tikdevel solutions are the feasible solutions for the chance-constrained
optimization problem (2). Our goal is to devise an algorithm that retuedgwael solution, where is any fixed
small level. To this purpose, we now formally introduce the scenario convex program as follows.

Definition 3 (Scenario convex program)Let 6V, ..., §(N) be N independent identically distributed sam-
ples extracted according to probability Prob. The randomized convex program (or scenario convex program)
derived from (2) is

RCPy : min ¢’z subjecttof(z,0)) <0, i=1,...,N. (5)

*

For the time being we assume that RCBdmits a unique solution. The uniqueness assumption is temporarily
made for clarity in the presentation and proof of the main result, and it is later removed in Appendix A.

Assumption 1 For all possible extractiong™), ..., 6(N), the optimization problem (5) attains a unique
optimal solution. *



Let theniy be the unique solution of problem REPSince the constraintg(x, 6()) < 0 are randomly
selected, the optimal solutiafyy is a random variable that depends on the extraction of the multi-sample
s ..., 6N) The following key theorem pinpoints the propertiesiaf.

Theorem 1. Fix two real numbers € (0,1) (level parameter) ang € (0, 1) (confidence parameter). If
2 1 2 2
N>N(B) ="In=+2n+ 2mZ, (6)
e pf € €

then, with probability no smaller thah— (3, the optimal solutiort: v of the scenario problerRCPy is e-level
robustly feasible. *

In this theorem, probability — 3 refers to the probability Prdb (= Probx - - - x Prob, N times) of extracting
a ‘bad’ multi-sample, i.e. a multi-samplB?, ..., §(N) such thatiy does not meet the-level feasibility
property.5 cannot be sent to zero, since otherwiégoes to infinity. This corresponds to the natural fact that,
no matter how largeV is, a ‘bad’ multi-sample returning &y with poor violation properties can always be
extracted. For any practical purpose, howegaslays a very marginal role. The reason is thappears under
the sign of logarithm in (6) so that it can be taken to be a really tiny numiter'¢ or even10~2%) without
making N too large. If3 is neglected, in simple words Theorem 1 states that {specified by (6)) random
scenarios are drawn, the optimal solution of RCR a feasible solution of the chance-constrained problem
(2). Thus, while problem (1) admits no solution methodologies in general, (5) represents a viable way to solve
(2) in a risk-adjusted sense, namely the found solution is feasible for the corresponding chance-constrained
problem.

The proof of Theorem 1 is postponed to Section 3 to avoid breaking the continuity of discourse.

2.1 Discussion on main result

We next comment more closely on the proposed randomized approach. Theorem 1 says that if we extract
a finite number N of constraints, then the solution of the randomized problem satisfies most of the other
unseen constraints. This isgeneralizationproperty: the explicit satisfaction of some scenarios generalizes
automatically to the satisfaction of other scenarios. It is interesting to note that generalization calls for some
kind of structure, and the only structure used here is convexity. So, convexity in the scenario approach is
fundamental in two different respects: on the computational side, it allows for an efficient solution of the
ensuing optimization problem, while on the theoretical side it allows for generalization.

Remark 1 (Sample complexity and VC-dimensidhg ‘sample complexity’ of the scenario problem (i.e. the
numberN of random scenarios that need to be drawn in order to achieve the desired probabilistic level in
the solution) exhibits a substantially linear scaling vvéftland a logarithmic scaling with. If e.g.e = 0.01,
8 = 0.0001 andn = 10, we haveN > 12459. In general, for reasonable probabilistic levels, the required
number of these constraints is manageable by current convex optimization numerical solvers. We also mention
that the reader can find a tighter bound than (6) in Section 3.2: in Theorem 1 we have been well advised to
provide bound (6) — derived from the bound in Section 3.2 — to improve readability.

Bound (6) depends on the problem structure througthe number of optimization variables, only. It is
not difficult to conceive situations where the class of §ét& A : f(z,d) > 0} C A, parameterized in,
has infinite VC-dimension, even for small see for instance (V. Vapnik 1996) for definition of VC dimension
and an exposition of learning theory. In these situations, estimating{®rebA : f(z,§) > 0} = V(x)
uniformly with respect tac is impossible and the VC-theory is of no use. Theorem 1 says that, if attention is
restricted taz v, then estimating/ (z ;) becomes possible at a low computational cost. *

Remark 2 Probkindependent boundhn some applications, probability Prob is not explicitly known, and the
scenarios are directly made available as ‘observations’. This could for example be the case when the instances
of § are actually related to various measurements or identification experiments made on a plant at different
times and/or different operating conditions, see e.g. (G. Calafiore and M.C. Campi 2002, G. Calafiore and M.C.
Campi 2003). In this connection, notice that the bound (6) is probability independent, i.e. it holds irrespective
of the underlying probability Prob, and can therefore be applied even when Prob is unknown. *

Remark 3 (A measurability issud@heorem 1 states that PropV () < €} > 1 — 3. However, without any

further assumption, there is no guarantee ihét ) is measurable, so that PrOBV (Z) < €} may not be
well-defined. Similar subtle measurability issues are often encountered in learning theory, see e.g. (A. Blumer,
A. Ehrenfeucht, D. Haussler, and M. Warmuth 1989). Here and elsewhere, the measurabil{tyof, as

well as that of other variables defined ou&f", is taken as an assumption. *



Remark 4 (Comparison betweBCPy and RCP). Since the solution of RCP is obtained by looking aiv
constraints only, it is certainly superoptimal for the robust convex program RCP. Thug; RieRiates the
conservatism inherent in the robust approach to uncertain optimization. On the other hand, we also remark
that in general the optimal solution of PCP outperforms the optimal solution ofyR@#ken such a solution

is feasible for PCP. We do not insist here on this point and refer the reader to (G. Calafiore and M.C. Campi
2003) for more discussion. *

Remark 5 (Computational complexityhrough the scenario approach, the initial semi-infinite optimization
problem is reduced to an optimization problem that can be solved efficiently. On the other hand, a side problem
arising along the scenario approach is that one has to extract constraints out of the uncertainty set. This is not
always a simple task to accomplish, see (G. Calafiore, F. Dabbene and R. Tempo 2000) for a discussion of this
topic and polynomial-time algorithms for the sample generation. *

2.2 A-priori and a-posteriori assessments

It is worth noticing that a distinction should be made between the a-priori and a-posteriori assessments that
one can make regarding the probability of constraint violation. Indeefthrerunning the optimization, it is
guaranteed by Theorem 1 thath\f > N (¢, 3) samples are drawn, the solution of the scenario program will
be e-level robustly feasible, with probability no smaller thar- 5. However, the a-priori parameterss are
generally chosen to be not too small, due to technological limitations on the number of constraints that one
specific optimization software can deal with.

On the other hand, once a solution has been computed (and headey has been fixed), one can make
an a-posteriori assessment of the level of feasibility using standard Monte-Carlo techniques. In this case, a new
batch of N independent random samplesdof A is generated, and thempirical probabilityof constraint

violation, sayV (i), is computed according to the formuig, () = % Zle 1(f(@n,8@) > 0), where
1(-) is the indicator function. Then, the classical Hoeffding’s inequality, (W. Hoeffding 1963), guarantees that

Vy(@n) = V(En)| <€
holds with confidence greater than- 3, provided that

In2/6

2¢2

N > (@)
test samples are drawn. This latter a-posteriori verification can be easily performed using a very large sample
size N, because no numerical optimization is involved in such an evaluation.

2.3 Multi-participant decision making

A decision making has sometimes to be made in presence of collective opinions coming from different partic-
ipants in the optimization problem. In general situations, moving from a single decision maker to a multiple
decision maker situation introduces a great deal of complexity into the analysis. Here, we merely refer to a sim-
ple situation where the different participants share the same objective to be minimized, while having different
opinions on the uncertain environment in which the decision has to be made.

Let us enumerate the participants with= 1,..., M. We assume that all participants aim at minimiz-
ing the same objectiver(in,c v r» ¢ ) while having different perception of the uncertain environment. In
mathematical terms, this is expressed by saying that the constrainf$:ag) < 0, 6; € Ay, for the first
participant;f(x,d2) < 0, d2 € Ao, for the second participant; and so on for all other participants. In a prob-
abilistic chance-constrained framework, letting Prole the probability associated tv;, the problem is as
follows:

. T . <
mer)r(ugan c¢'z subjectto Prob{f(z,d;) >0} <e, (8)
Probp{f(z,d2) > 0} <,

Proby {f(x,0nm) > 0} <e.



As an example of this setting, consider the VaR framework of Section 1. Suppose that more financial
partners (the participants) want to decide how to allocate the assetthat the loss be minimized and each
participant is willing to run a risk at most(according to his/her viewpoint on the uncertain reality) that the
loss is bigger than the found minimum valyeThen, the problem can be mathematically formulated as:

r?in'y subjectto  Prop{y < —r(&,01)} <,
Y
PrOQ{’Y < _r(€762)} < €,

Proby {v < —r(&,6m)} < e

A feasible solution for problem (8) can be found by treating the problem as a aétsafparate problems
and by applying Theorem 1 to each single problem. This corresponds to sele@tamglahen drawingV (¢, 5)
constraints); € A;, an equal number of constraints € A, and so on for all participants. An application of
Theorem 1 leads then to the conclusion that each participant has a confitikat&is constraints are satisfied
with a violation probability at most However, a different standpoint can be taken by asking a deeper question:
to what extent the constraints associated to one participant are going to help the constraint satisfaction of other
participants?

For the sake of simplicity, consider the case of two participahfs= 2). A very simple situation arises
when the two participants share the same set of constralts< A, = A) with , say, Prob absolutely
continuous with respect to Prolwith a uniform coefficientv: Proly(A) < aProb (A), VA in the o-algebra
on A. A simple reasoning then reveals that if the first participant extraidts , 3;) constraints according
to Proh, then, with no extractions whatsoever, the second participants has, with confislercer’N 3, a
violation probabilitye, = cve;.

The above result is rather obvious since the extractions of the first participant correspond to extractions
for the second participant, even though according to a different probability. A more intriguing situation occurs
whenA; andA; are different. Is then still true that the two participants are going to help each other? The fol-
lowing result holdsfix e and 5 and extractN (¢, 3) constraintsy; according toProb and N (e, 3) constraints
02 according toProl,. Solve the optimization problem with all the constraints in place. Then, with probability
no smaller thanl — (3, the optimal solution is robustly feasible for the first and the second participant with
a violation probabilitye; and e, respectively that have to satisfy the relation:+ e — €15 < €. Thus, if
€1 = ¢, thene; has to be zero. This correspond to say that if the extractions of the second participant do not
help the first participant, then the constraints of the second participant are ‘dominated’ by those of the first
participant, and are therefore automatically satisfied. Intermediate situations can be studied as well. So, in all
cases, the two participants are helping each other somehow, even though it may a-priory be unknown who is
helping whom.

A sketch of proof of the above result is as follows. Tge, ) extractions ob;’s andd,’s can be seen as
N (e, B) extractions of couple§, d) from A; x A, with probability Proh x Prok,. Theorem 1 can then be
applied to this space, so concluding that, with confidefcthe violation probability inA; x A, is at most
e. Consider a multi-sample such that the violation probabilitis. If a givend; is violated, thens;, 4,)
is violated in the product spaceéj,. So, ife; is the probability of violation inA4, this leads to a probability
of violation ¢; in the product space too. Similarly, éf is the probability of violation inA,, this leads to a
probability of violationes in the product space. This two sets overlap with a probabhility and there union
has a probability bounded lay so leading to the result above.

3  Technical preliminaries and proof of Theorem 1

This section is technical and contains the machinery needed for the proof of Theorem 1. The reader not
interested in these mathematical aspects may skip to Section 4 without any loss of continuity.

3.1 Preliminaries

We first recall a classical result due to Helly, see (R.T. Rockafellar 1970).

Lemmal (Helly). Let{X;},=1 ., be a finite collection of convex sets Ri". If every sub-collection con-
sisting ofn + 1 sets has a non-empty intersection, then the entire collection has a non-empty intersection.



*

Next, we prove a key instrumental result. Consider the convex optimization program

L. T ; )
P+ min 'z subject tar € N (9)
i€{l,...,m}
whered;,i = 1,...,m, are closed convex sets. Define the convex prog@mé = 1,. .., m, obtained from
‘P by removing the:-th constraint:
< min T i :
P+ min ' subject tor € ﬂ X;. (10)
ie{l,...,mM\k

Let 2* be any optimal solution oP (assuming it exists), and let; be any optimal solution oP; (again,
assuming it exists). We have the following definition.

Definition 4 (support constraint). Thek-th constraintY), is asupport constrainfor P if problem?P;, has an
optimal solutionz} such that” z; < ¢’z *

The following theorem holds.
Theorem 2. The number of support constraints for probléhis at mostn. *

A proof of this result was originally given by the authors of the present paper in (G. Calafiore and M.C.
Campi 2003). We here report an alternative and more compact proof whose outline was suggested us by A.
Nemirovski in a personal communication.

Proof. Let probleniP haveq support constraintd’ , ..., X, , whereS = {s1,..., s,} is a subset of indices
from{1,...,m}. We next prove (by contradiction) that< n.

Letz* be any optimal solution gP, with corresponding optimal objective valué = ¢’ z*, and letz} be
any optimal solution ofP,, k = 1,...,m, with corresponding optimal objective valug = ¢’z . Consider
the smallest objective improvement obtained by removing a support constraint

Thmin = Iknelg(!]* - JZ)

and, for some) with 0 < n < 9y, define the hyperplane
H={zx:cle=J"—n)

By construction, they pointsz}, k € S, lie in the half-spacdx : ¢cTx < J* — n}, while z* lies in the
half-space{z : ¢’z > J* — n}, and thereforé{ separates;, k € S, from z*. Next, for all indicesk € S,
we denote witlt;; the point of intersection between the line segment* and’.

Sincez; € MNicqr,. mp\xXin k € S, andz™ € oy, Ai, then by convexity we have that, €

Nie,....mpx X k € S, and therefore (since, by constructiaij, € H)
T; € N x|(H keS.
ie{l,...m}\k
Fori = 1,...,m, define the convex sef$; = X; (M, and consider any collectioft?, ,...,;, } of n of
these sets.
Suppose now (for the purpose of contradiction) that n. Then, there must existan indgxz {ii,...,%,}

such thatt; is a support constraint, and by the previous reasoning, this means that there existszg point
such thatr} € (ﬂie{lwm}\j Xi) N'H. Thus,z; € Q;, N--- N, that is the collection of convex sets

{Q,,...,9Q;, } has atleast a pointin common. Now, since the §gf$ = 1,...,m, belong to the hyperplane
H —i.e. to R"~ !, modulo a fixed translation — and all collections composed of these sets have a point
in common, by Helly's lemma (Lemma 1) there exists a paisich that € (., ,,, €. Such ai would

therefore be feasible for problef®; moreover, it would yield an objective value = 7z < Lz* = J*
(sincez € H). This is a contradiction, becausé would no longer be an optimal solution f@, and hence
we conclude thag < n. *

We are now ready to present a proof of Theorem 1.



3.2 Proof of Theorem 1

We prove that the conclusion in Theorem 1 holds with

1 1.1 n 1 1 n\" 1
N>——|-In—> —In—+ -1 -) = 11
_1—’7(6 nﬂ—&—n—i—en%—l—en((e) n!))7 (1)
wherey is a parameter that can be freely selecte@iri ). To prove that bound (6) follows from (11), proceed
as follows. Sincex! > (n/e)", the last term in (11) is not positive and can be dropped, leading to the bound

NzL 1lnlJrnJrﬁlni , (12)
1—~v\e 0 € e
Bound (6) is then obtained from (12), by taking= 1/2. We also note that further optimizing (12) with
respect toy always leads tey < 1/2 with a corresponding improvement by at most of a faetor

Proof of Theorem 1 with (11) in place of (6)

We shall prove that, with probability — 3, the solution of RCR is e-level robustly feasible. This part of the
proof in inspired by a similar proof given in a different context in (S. Floyd and M. Warmuth 1995).

Given N scenario®), ... 6(V), select a subsdt = {i1,...,i,} of n indexes from{1,..., N} and let
27 be the optimal solution of the program

i T i (i5)) < P —
mer}(ngan ¢'z subjecttof(z,0"%) <0, j=1,...,n. (13)

Based on:; we next introduce a subse.t?’ of the setA”™ defined as

AV = {(6W .. 6Ny Gy =iy} (14)
(& is the optimal solution with allV constraintsi™"), ..., 6 in place).
Let nowI range over the collectiof of all possible choices af indexes from{1, ..., N} (notice thatZ

contains< nN> sets). We want to prove that

AV =|]ay. (15)
ez
To show (15), take angs") ..., §()) € AN. From the set of constraint!), . .., (") eliminate a constraint

which is not a support constraint (this is possible in view of Theorem 2 gincen). The resulting optimiza-
tion problem withN — 1 constraints admits the same optimal solution as the original problem withv
constraints. Consider now the set of the remainig- 1 constraints and, among these, remove a constraint
which is not a support constraint for the problem wikh— 1 constraints. Again, the optimal solution does not
change. If we keep going this way until we are left witltonstraints, in the end we still hawg; as optimal

solution, showing thats(, ..., (™) € AN, wherel is the set containing the constraints remaining at the
end of the process. Since this is true for any choicgd?, ..., 5(N)) € AN, (15) is proven.
Next, let

B={0W,...,0™M): V(iy)> e}

and
By ={(0W,...,6M™M): V(i) >e

We now have:
B=BnAN
= BN (UrezAY) (apply (15))
= Urez(BN A]IV>
= Urez(Brn AY). (because of (14)) (16)

A bound for Proby (B) is now obtained by bounding PraB; N AY) and then summing over € 7.



Fix any I, e.g.] = {1,...,n} to be more explicit. The seB; = Byy, ., is in fact a cylinder with
base in the cartesian product of the firstconstraint domains (this follows from the fact that condition

V(2{1,..ny) > € only involves the firstz constraints). Fixé(),...,5™) € base of the cylinder. For a
point (6, ..., 60 504D §(N)) to be inByy, 3 N AY L constraintsy("+1) . §(N) must be

satisfied byz(; . ), for, otherwise, we would not hav, ., = Zn, asitis required irAflVl o} But,
n}) > €in By 3. Thus, by the fact that the extractions are independent, we conclude that

.....

ProbV {6+ . sy (5 50 s 5Ny
€ Bu,..myNAY st <@—oN ™

The probability on the left hand side is nothing but the conditional probability that,...,s")) €
Bgi, N A{{Vln} givens® = s .. 5 = 5§ Integrating over the base of the cylindef; ;.
we then obtain

Prob¥ (B, ny N AY ) <1 =N Protf(base ofByy . ny) < (1—€e)V 7" (17)

From (16), we finally arrive to the desired bound for PYgi®):
Prob"(B) <> Prob¥(B; N A/) < (g) (1— )N, (18)
IeT

The last part of the proof is nothing but algebraic manipulations on bound (18) to show tNais ithosen
according to (11), then

n

(N> (1-e¥ " <p, (19)

so concluding the proof.
Any of the following inequality implies the next in a top-down fashion, where the first one is (11):
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N>ZIn-+4+n+ "N - —In(n!), (20)
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where the last implication can be justified by observing that > 1 — % for x > 0, and applying this
inequality withz = W}(,E. Proceeding from (20), the next inequalities in the chain are

Ing>—-eN+en+nlnN —In(n!)

N7
Y —e(N—-n)
Bz —re
N(N—-1)-----(N—n+1
ﬁZ ( ) — ( n+ )(1_€)N—n7

where, in the last implication, we have used the fact that¥ —™) > (1 — €)™, as it follows by taking
logarithm of the two sides and further noting that > In(1 — €). Proceeding,

oz (V) omor =

n

which is (19).



4 A numerical example

As a simple numerical example of application of the scenario methodology, we consider the following linear
program with uncertain constraint matrix

miP? 'z subjectto(A + As)z < b, (22)
zERS®

where

(13 -3 -24 7 —4
19 2 ~11 7 14
76 -4 6 —6
8 —6-21 —1 2
22 15 —12 7
13 2 21 -10
95 6 14 6
4 -7-12 4 17
1213 1 3 0
(12 9 16 20 25 |

" =[0-1-100]

b" =[-2339 -5 -1851 612317 —221],

and where the entries of the uncertainty mattix € R'%:® are independent Normal random variables with
zero mean and variance equabté. If the uncertain constraints are imposed up to a given level of probability
€, we obtain the chance-constrained problem

min c"x subject to Prob(A + As)x £ b} <e. (23)

EAS
Notice that this problem is readily put in the form (2), by rewriting the element-wise constraints in scalar form,
i.e. settingf (z,d) = max;[A + As|;x — [b],;, where[-]; here denotes thgth row of its argument, and vector
¢ contains the uncertain entries of matrly.

Now, fixing probability levels = 0.01, 5 = 0.001, and using bound (6), we obtain

N(e, B) ~ 6689.9.

Fixing thenN = 6690, we solve the scenario problem

mqu 'z subjectto(A + Agn)z <b, i=1,...,N = 6690, (24)
re R

where Ay are the sampled uncertainty matrices, extracted in accordance with the assumed probability dis-
tribution (i.e. each entry is Normal with zero mean and variance equabjoOne instance of the scenario
problem then yielded an optimal objective-p,, = —3.2750, which was attained for

—2.0973
~1.1436
iy = | 4.4186
0.8752
—2.4418

Notice that the nominal problem (i.e. the problem obtained by fixipg= 0) yields optimal objective/,,,, =
—5.3901, which is attained for
—2.0958
—0.0719
Znom | 5.4620
—0.4594
—5.7843



We next proceeded with an a-posteriori Monte-Carlo test on the obtained solutions. Fixing001 and
B = 0.00001, we have from (7) that the a-posteriori test should be run using atdedst0 x 106 samples.
SettingN = 6.1030 x 10° we obtained

Vo (Zn) = 0.0009,
leading to the estimatéy () < AN(iN) + € = 0.0019. Interestingly, running the same test on the nominal
solution yielded

Vi (nom) = 0.969
showing, as expected, that while the nominal problem provides a better optimal objective with respect to the
scenario problem, the nominal solution is actually infeasible for most of the scenarios that may happen in
reality. Contrary, the scenario solution provides a remarkable level of robustness, being in practice feasible in
all but~ 0.2% of the possible situations.

A Relaxing the assumption thatRCPy has a unique solution

In Section 2, the theory has been developed under Assumption 1 requiring that &IDi#ts a unique opti-
mal solution. Here, we drop Assumption 1 and consider the general case allowing for non-uniqueness of the
solution or non-existence of the solution (i.e. the solution escapes to infinity), or even infeasibility @f. RCP

A.1 Non-uniqueness of the solution

Suppose that when problem RGRdmits more than one optimal solution we break the tie by a tie-break rule
as follows:

Tie-break rule: Lett;(x), ¢ = 1,...,p, be given convex and continuous functions. Among the optimal
solutions for RCR;, select the one that minimizes(z). If indetermination still occurs, select among the

x that minimizet, (z) the solution that minimizes,(z), and so on withés(z), t4(z), . ... We assume that
functionst;(x),i =1, ..., p, are selected so that the tie is broken withigteps at most. As a simple example
of a tie-break rule, one can considarnz) = z1, t2(z) = 2o, . . .. *

From now on, by ‘optimal solution’ we mean either the unique optimal solution, or the solution selected
according to the Tie-break rule, if multiple optimal solutions occur.

Theorem 1 holds unchanged if we drop the uniqueness requirement in Assumption 1, provided that ‘optimal
solution’ is intended in the indicated sense.

To see this, generalize Definition 4 of support constraint¥hek-th constraintY}, is a support constraint
for P if problemP;, has an optimal solutior; such thatc; # z*. Indeed this definition generalizes Definition
4 since, in case of a single optimal solutiarf, # =* is equivalent te”z; < ¢T'z*. In (G. Calafiore and
M.C. Campi 2003), Section 4.1, it is proven that Theorem 2 holds true with this extended definition of support
constraint (i.e. the number of support constraints is at mpstnd then an inspection of the proof of Theorem 1
reveals that this proof goes through unaltered in the present setting, so concluding that Theorem 1 still holds.

A.2 Infeasibility of RCPy

It may happen that RGPis infeasible (i.e. the intersection of the domains whge (V) < 0,i =1,..., N

is empty), in which case the initial RCP is clearly infeasible too. In this case, going through the proof of
Theorem 1 reveals that this theorem remains valid with small amendments: the first part remains unchanged,
while the final part reads..””, with probability no smaller than — 3, either the scenario problefRCPy is
infeasible; or it is feasible, and then its optimal soluti®g is e-level robustly feasibl&.

A.3 Non-existence of the solution

Even when RCR is feasible, it may happen that no optimal solution exists since the setdibowed by the
extracted constraints is unbounded in such a way that the optimal solution escapes to infinity. In this section,
we further generalize Theorem 1 so as to cope with this situation too and then provide a reformulation of
Theorem 1 (Theorem 3 below) that covers all possible situations as indicated in Sections A.1, A.2 and the first
part of this section.



Suppose that a random extraction of a multi-samplg . .., (V) is rejected when the problem is feasible
but no optimal solution exists, and another extraction is performed in this case. Then, the result of Theorem 1
holds if attention is restricted to the accepted multi-samples. This idea is now formalized.

Let D C A" be the set where RGPis feasible but an optimal solution does not exist (it escapes to
infinity) and assume that its complemefit= D¢ has positive probability: Prdb(4) > 0. Moreover, let
Prob) be the probability ProB) restricted toA: Prob} (-) = Prob(- N A)/Prob" (A). Prob is therefore a
conditional probability. In addition, assume that if a problem with, saygonstraints is feasible and admits
optimal solution, then, after adding an exftra + 1)-th constraint, if the problem remains feasible, than an
optimal solution continues to exist (this rules out the possibility of pathological situations where adding a
constraint forces the solution to drift away to infinity).

The following theorem holds:

Theorem 3. Fix two real numberg € (0, 1) (level parameter) and € (0, 1) (confidence parameter). If
2
€ )

1
8

then, with probabilityProk)) no smaller thanl — £, either the scenario probleCPy is infeasible; or it is
feasible, and then its optimal solutidn; (unique after the Tie-break rule has been applied}isvel robustly
feasible. .

2 2
N > N(e, ) = —-In +on+ Zln
€ €

The proof of this theorem is here omitted and can be found in (G. Calafiore and M.C. Campi 2003).
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