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Abstract. A central issue arising in financial, engineering and, more generally, in many applicative endeavors
is to make a decision in spite of an uncertain environment. Along arobustapproach, the decision should be
guaranteed to work well inall possible realizations of the uncertainty. A less restrictive approach consists
instead of requiring that the risk of failure associated to the decision should besmall in some – possibly
probabilistic – sense. From a mathematical viewpoint, the latter formulation leads to achance-constrained
optimization program, i.e. to an optimization program subject to constraints in probability. Unfortunately,
however, both the robust approach as well as the chance-constrained approach are computationally intractable
in general.

In this paper, we present a computationally efficient methodology for dealing with uncertainty in opti-
mization based on sampling a finite number of instances (orscenarios) of the uncertainty. In particular, we
consider uncertain programs with convexity structure, and show that the scenario-based solution is, with high
confidence, a feasible solution for the chance-constrained problem. The proposed approach represents a viable
way to address general convex decision making problems in a risk-adjusted sense.
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1 Introduction

In this paper we consider decision making problems that can be formalized as robust convex optimization
programs, where the constraints are parameterized by an uncertain parameterδ which describes the situation
or ‘states of nature’ that can possibly occur. Precisely, lettingδ ∈ ∆ ⊆ R` be the vector of uncertain variables,
the robust convex program writes:

RCP: min
x∈X⊆Rn

cT x subject tof(x, δ) ≤ 0, ∀δ ∈ ∆, (1)

whereX is a convex and closed set that represents the feasible set for the solutions and the functionf(x, δ) :
X × ∆ → R is convex inx for any fixedδ ∈ ∆. In typical situations, (1) is a semi-infinite optimization
problem since it contains an infinite number of constraints (i.e.∆ has infinite cardinality), whilex represents
a finite number of optimization variables.

The functionf(x, δ) is here assumed to be scalar-valued without loss of generality, since multiple scalar-
valued convex constraintsfi(x, δ) ≤ 0, i = 1, . . . , nf , can always be converted into a single scalar-valued
convex constraint by the positionf(x, δ) = maxi=1,...,nf

fi(x, δ) ≤ 0. We also note that the cost function
cT x is certain (i.e. it does not depend onδ) and is linear inx without loss of generality, since any convex
uncertain program can be reformulated so that it exhibits a linear certain cost. To see this, simply note that a
problemminξ∈Ξ g(ξ, δ) subject toh(ξ, δ) ≤ 0, ∀δ ∈ ∆, can be rewritten asminξ∈Ξ,γ γ subject tog(ξ, δ) −
γ ≤ 0 andh(ξ, δ) ≤ 0, ∀δ ∈ ∆. Finally, we remark that no assumption is made on the functional dependence
of f on δ.

In general situations, finding a solution to (1) is a formidable task and no general solution methodology
for (1) is to date available. In special cases, (1) can be solved by reconducting it to a problem with a finite
number of constraints, possibly by conservative relaxation techniques. We refer the reader to (A. Nemirovski
1993) and (G. Calafiore and M.C. Campi 2003) and the references therein for a discussion on the complexity



of solving (1) and on possible relaxation techniques within the specific context of robust control problems.
Program (1) is ‘robust’ since the optimal solution is guaranteed against all possible occurrences of the un-

certain parameterδ, i.e. the constraintf(x, δ) ≤ 0 must be satisfied for all possible values ofδ ∈ ∆. In certain
problems it may be convenient to relax such a strong requirement by allowing that a small fraction of con-
straints can possibly be violated, so leaving a small chance thatf(x, δ) ≤ 0 is not satisfied in correspondence
of the found solution. The resulting optimization problem is named a chance-constrained convex optimization
problem and is formalized as follows.

Let Prob denote a probability measure over∆ (i.e.∆ is endowed with aσ-algebraD and Prob is assigned
for every set ofD). Depending on the situation at hand, Prob can have different interpretations. Sometimes,
it is the actual probability with which the uncertainty parameterδ takes on value in a certain set, while other
times Prob simply describes the relative importance we attribute to different uncertainty instances. The chance-
constrained (or probabilistic) convex optimization problem then writes:

PCP(ε) : min
x∈X⊆Rn

cT x subject to Prob{f(x, δ) > 0} ≤ ε, (2)

where the parameterε ∈ (0, 1) represents the admissibleprobabilistic riskof violating the constraintf(x, δ) ≤
0. It is clear that allowing for a probabilityε of violation results in an optimal solution that outperforms
the optimal robust solution for the uncertainty instances that are indeed feasible at the optimum. Moreover,
ε represents a ‘tuning knob’ that can be freely selected and the lowerε, the closer the chance-constrained
optimization problem to the robust optimization problem.

Chance-constrained optimization has a long history, dating back to the work of Charnes and Cooper for
linear programs in 1959 , (A. Charnes and W.W. Cooper 1959). Still to date, most of the available computa-
tional results on chance-constraints refer to the important but very specific case whenf(x, δ) is linear inx,
i.e. to probability-constrainedlinear programs. One reason for this is that chance-constrained problems are
extremely difficult to solve exactly. This can be easily realized by noticing that the mere evaluation of the
probability with which a constraint is satisfied amounts to solving a multi-dimensional integral, which is a
formidable task in general. Moreover, even whenf(x, δ) is convex (or even linear) inx for any fixedδ ∈ ∆,
the feasible set{x : Prob{f(x, δ) > 0} ≤ ε} may be nonconvex, and hence PCP isnot a convex program in
general. We direct the reader to the monograph by Prékopa (A. Pŕekopa 1995) and to (S. Vajda 1972) for an
extensive presentation of many available results in this area.

Problems of the form (2) appear frequently in manufacturing and financial problems. For instance, in the
Value-at-Risk (VaR) framework (see e.g. (T. J. Linsmeier and N. D. Pearson 1996, M. Pritsker 1997)) one
considers the possible loss−r(ξ, δ) of a portfolio of risky assets, whereξ describes the allocations of assets in
the portfolio, andδ represent the (uncertain) returns of the assets. The VaR is then defined as the minimal level
γ such that the probability that the portfolio loss exceedsγ is below a fixed (small) levelε ∈ (0, 1). Hence, the
problem of minimizing the VaR over admissible portfolios takes the form

min
ξ,γ

γ subject to Prob{γ < −r(ξ, δ)} ≤ ε,

which is a PCP, withx
.= (ξ, γ) andf(x, δ) .= −r(ξ, δ)− γ.

The previous example indicates also that the class of PCP problems embodies probabilistic counterparts of
classical min-max games. Indeed, a min-max game

min
ξ∈Ξ

max
δ∈∆

g(ξ, δ)

may be expressed as the robust program

min
ξ∈Ξ,γ

γ subject tog(ξ, δ) ≤ γ, ∀δ ∈ ∆. (3)

The probabilistic counterpart of this semi-infinite program is a PCP of the form

min
ξ∈Ξ,γ

γ subject to Prob{g(ξ, δ) > γ} ≤ ε, ε ∈ (0, 1). (4)

Notice that, for fixedξ, the optimalγ in problem (3) is the max ofg(ξ, δ) overδ, while in (4) it is theprobable
approximate maximumof g(ξ, δ) over δ, i.e. a value which is exceeded only over a set ofδ’s having small
probability measure.



1.1 A computationally feasible paradigm: Scenario-based convex programs

Motivated by the computational complexity of RCP and PCP, in this paper we pursue a solution methodology
which is based on randomization of the parameterδ.

To this end, we collectN samplesδ(1), . . . , δ(N) of the uncertain parameter randomly chosen in an in-
dependent fashion according to probability Prob (these instances shall be referred to as thescenarios), and
construct the randomized convex program

RCPN : min
x∈X⊆Rn

cT x subject tof(x, δ(i)) ≤ 0, i = 1, . . . , N.

This randomized program, called thescenario programin the sequel, has a distinctive advantage over RCP
and PCP: it is a standard convex program withN constraints, and hence it is typically efficiently solvable.
However, a fundamental question need be addressed: what can we say about the chance-constraint satisfaction
for an optimal solution of RCPN? More explicitly, the crucial question to which this paper is devoted is the
following:

How many samples (scenarios) need to be drawn in order to guarantee that the
solution of the scenario problem violates at most a portionε of the constraints
(i.e. it is a feasible solution in a chance-constrained sense)?

Using statistical learning techniques, we provide an explicit bound on the measure (probability) of the set
of original constraints that are possibly violated by the scenario solution. This measure rapidly decreases to
zero asN is increased, and therefore the obtained randomized solution is feasible for the chance-constrained
problem (2).

2 Scenario-Based Convex Programs

We first formalize the concept of violation probability.

Definition 1 (Violation probability). Theprobability of violationof x ∈ X is defined as

V (x) .= Prob{δ ∈ ∆ : f(x, δ) > 0}

(here, it is assumed that{δ ∈ ∆ : f(x, δ) > 0} is an element of theσ-algebraD). ?

For example, if a uniform (with respect to Lebesgue measure) probability density is assumed, thenV (x)
measures the volume of the uncertainty instancesδ such that the constraintf(x, δ) ≤ 0 is violated. We next
have the following definition.

Definition 2 (ε-level solution).Let ε ∈ (0, 1). We say thatx ∈ X is anε-level robustly feasible solution if
V (x) ≤ ε. ?

Notice that, by the above definition, theε-level solutions are the feasible solutions for the chance-constrained
optimization problem (2). Our goal is to devise an algorithm that returns aε-level solution, whereε is any fixed
small level. To this purpose, we now formally introduce the scenario convex program as follows.

Definition 3 (Scenario convex program).Let δ(1), . . . , δ(N) beN independent identically distributed sam-
ples extracted according to probability Prob. The randomized convex program (or scenario convex program)
derived from (2) is

RCPN : min
x∈X⊆Rn

cT x subject tof(x, δ(i)) ≤ 0, i = 1, . . . , N. (5)

?

For the time being we assume that RCPN admits a unique solution. The uniqueness assumption is temporarily
made for clarity in the presentation and proof of the main result, and it is later removed in Appendix A.

Assumption 1 For all possible extractionsδ(1), . . . , δ(N), the optimization problem (5) attains a unique
optimal solution. ?



Let thenx̂N be the unique solution of problem RCPN . Since the constraintsf(x, δ(i)) ≤ 0 are randomly
selected, the optimal solution̂xN is a random variable that depends on the extraction of the multi-sample
δ(1), . . . , δ(N). The following key theorem pinpoints the properties ofx̂N .

Theorem 1. Fix two real numbersε ∈ (0, 1) (level parameter) andβ ∈ (0, 1) (confidence parameter). If

N ≥ N(ε, β) .=
2
ε

ln
1
β

+ 2n +
2n

ε
ln

2
ε
, (6)

then, with probability no smaller than1−β, the optimal solution̂xN of the scenario problemRCPN is ε-level
robustly feasible. ?

In this theorem, probability1−β refers to the probability ProbN (= Prob×· · ·×Prob,N times) of extracting
a ‘bad’ multi-sample, i.e. a multi-sampleδ(1), . . . , δ(N) such thatx̂N does not meet theε-level feasibility
property.β cannot be sent to zero, since otherwiseN goes to infinity. This corresponds to the natural fact that,
no matter how largeN is, a ‘bad’ multi-sample returning âxN with poor violation properties can always be
extracted. For any practical purpose, however,β plays a very marginal role. The reason is thatβ appears under
the sign of logarithm in (6) so that it can be taken to be a really tiny number (10−10 or even10−20) without
makingN too large. Ifβ is neglected, in simple words Theorem 1 states that ifN (specified by (6)) random
scenarios are drawn, the optimal solution of RCPN is a feasible solution of the chance-constrained problem
(2). Thus, while problem (1) admits no solution methodologies in general, (5) represents a viable way to solve
(1) in a risk-adjusted sense, namely the found solution is feasible for the corresponding chance-constrained
problem.

The proof of Theorem 1 is postponed to Section 3 to avoid breaking the continuity of discourse.

2.1 Discussion on main result

We next comment more closely on the proposed randomized approach. Theorem 1 says that if we extract
a finite numberN of constraints, then the solution of the randomized problem satisfies most of the other
unseen constraints. This is ageneralizationproperty: the explicit satisfaction of some scenarios generalizes
automatically to the satisfaction of other scenarios. It is interesting to note that generalization calls for some
kind of structure, and the only structure used here is convexity. So, convexity in the scenario approach is
fundamental in two different respects: on the computational side, it allows for an efficient solution of the
ensuing optimization problem, while on the theoretical side it allows for generalization.

Remark 1 (Sample complexity and VC-dimension).The ‘sample complexity’ of the scenario problem (i.e. the
numberN of random scenarios that need to be drawn in order to achieve the desired probabilistic level in
the solution) exhibits a substantially linear scaling with1

ε and a logarithmic scaling with1β . If e.g. ε = 0.01,
β = 0.0001 andn = 10, we haveN ≥ 12459. In general, for reasonable probabilistic levels, the required
number of these constraints is manageable by current convex optimization numerical solvers. We also mention
that the reader can find a tighter bound than (6) in Section 3.2: in Theorem 1 we have been well advised to
provide bound (6) – derived from the bound in Section 3.2 – to improve readability.

Bound (6) depends on the problem structure throughn, the number of optimization variables, only. It is
not difficult to conceive situations where the class of sets{δ ∈ ∆ : f(x, δ) > 0} ⊆ ∆, parameterized inx,
has infinite VC-dimension, even for smalln; see for instance (V. Vapnik 1996) for definition of VC dimension
and an exposition of learning theory. In these situations, estimating Prob{δ ∈ ∆ : f(x, δ) > 0} = V (x)
uniformly with respect tox is impossible and the VC-theory is of no use. Theorem 1 says that, if attention is
restricted tôxN , then estimatingV (x̂N ) becomes possible at a low computational cost. ?

Remark 2 (Prob-independent bound).In some applications, probability Prob is not explicitly known, and the
scenarios are directly made available as ‘observations’. This could for example be the case when the instances
of δ are actually related to various measurements or identification experiments made on a plant at different
times and/or different operating conditions, see e.g. (G. Calafiore and M.C. Campi 2002, G. Calafiore and M.C.
Campi 2003). In this connection, notice that the bound (6) is probability independent, i.e. it holds irrespective
of the underlying probability Prob, and can therefore be applied even when Prob is unknown. ?

Remark 3 (A measurability issue).Theorem 1 states that ProbN{V (x̂N ) ≤ ε} ≥ 1−β. However, without any
further assumption, there is no guarantee thatV (x̂N ) is measurable, so that ProbN{V (x̂N ) ≤ ε} may not be
well-defined. Similar subtle measurability issues are often encountered in learning theory, see e.g. (A. Blumer,
A. Ehrenfeucht, D. Haussler, and M. Warmuth 1989). Here and elsewhere, the measurability ofV (x̂N ), as
well as that of other variables defined over∆N , is taken as an assumption. ?



Remark 4 (Comparison betweenRCPN andRCP). Since the solution of RCPN is obtained by looking atN
constraints only, it is certainly superoptimal for the robust convex program RCP. Thus, RCPN alleviates the
conservatism inherent in the robust approach to uncertain optimization. On the other hand, we also remark
that in general the optimal solution of PCP outperforms the optimal solution of RCPN when such a solution
is feasible for PCP. We do not insist here on this point and refer the reader to (G. Calafiore and M.C. Campi
2003) for more discussion. ?

Remark 5 (Computational complexity).Through the scenario approach, the initial semi-infinite optimization
problem is reduced to an optimization problem that can be solved efficiently. On the other hand, a side problem
arising along the scenario approach is that one has to extract constraints out of the uncertainty set. This is not
always a simple task to accomplish, see (G. Calafiore, F. Dabbene and R. Tempo 2000) for a discussion of this
topic and polynomial-time algorithms for the sample generation. ?

2.2 A-priori and a-posteriori assessments

It is worth noticing that a distinction should be made between the a-priori and a-posteriori assessments that
one can make regarding the probability of constraint violation. Indeed,beforerunning the optimization, it is
guaranteed by Theorem 1 that ifN ≥ N(ε, β) samples are drawn, the solution of the scenario program will
beε-level robustly feasible, with probability no smaller than1 − β. However, the a-priori parametersε, β are
generally chosen to be not too small, due to technological limitations on the number of constraints that one
specific optimization software can deal with.

On the other hand, once a solution has been computed (and hencex = x̂N has been fixed), one can make
an a-posteriori assessment of the level of feasibility using standard Monte-Carlo techniques. In this case, a new
batch ofÑ independent random samples ofδ ∈ ∆ is generated, and theempirical probabilityof constraint

violation, sayV̂Ñ (x̂N ), is computed according to the formulâVÑ (x̂N ) = 1
Ñ

∑Ñ
i=1 1(f(x̂N , δ(i)) > 0), where

1(·) is the indicator function. Then, the classical Hoeffding’s inequality, (W. Hoeffding 1963), guarantees that

|V̂Ñ (x̂N )− V (x̂N )| ≤ ε̃

holds with confidence greater than1− β̃, provided that

Ñ ≥ ln 2/β̃

2ε̃2
(7)

test samples are drawn. This latter a-posteriori verification can be easily performed using a very large sample
sizeÑ , because no numerical optimization is involved in such an evaluation.

2.3 Multi-participant decision making

A decision making has sometimes to be made in presence of collective opinions coming from different partic-
ipants in the optimization problem. In general situations, moving from a single decision maker to a multiple
decision maker situation introduces a great deal of complexity into the analysis. Here, we merely refer to a sim-
ple situation where the different participants share the same objective to be minimized, while having different
opinions on the uncertain environment in which the decision has to be made.

Let us enumerate the participants withj = 1, . . . , M . We assume that all participants aim at minimiz-
ing the same objective (minx∈X⊆Rn cT x) while having different perception of the uncertain environment. In
mathematical terms, this is expressed by saying that the constraints aref(x, δ1) ≤ 0, δ1 ∈ ∆1, for the first
participant;f(x, δ2) ≤ 0, δ2 ∈ ∆2, for the second participant; and so on for all other participants. In a prob-
abilistic chance-constrained framework, letting Probj be the probability associated to∆j , the problem is as
follows:

min
x∈X⊆Rn

cT x subject to Prob1{f(x, δ1) > 0} ≤ ε, (8)

Prob2{f(x, δ2) > 0} ≤ ε,

...

ProbM{f(x, δM ) > 0} ≤ ε.



As an example of this setting, consider the VaR framework of Section 1. Suppose that more financial
partners (the participants) want to decide how to allocate the assetsξ so that the loss be minimized and each
participant is willing to run a risk at mostε (according to his/her viewpoint on the uncertain reality) that the
loss is bigger than the found minimum valueγ. Then, the problem can be mathematically formulated as:

min
ξ,γ

γ subject to Prob1{γ < −r(ξ, δ1)} ≤ ε,

Prob2{γ < −r(ξ, δ2)} ≤ ε,

...

ProbM{γ < −r(ξ, δM )} ≤ ε.

A feasible solution for problem (8) can be found by treating the problem as a set ofM separate problems
and by applying Theorem 1 to each single problem. This corresponds to selecting aβ and then drawingN(ε, β)
constraintsδ1 ∈ ∆1, an equal number of constraintsδ2 ∈ ∆2 and so on for all participants. An application of
Theorem 1 leads then to the conclusion that each participant has a confidenceβ that his constraints are satisfied
with a violation probability at mostε. However, a different standpoint can be taken by asking a deeper question:
to what extent the constraints associated to one participant are going to help the constraint satisfaction of other
participants?

For the sake of simplicity, consider the case of two participants (M = 2). A very simple situation arises
when the two participants share the same set of constraints (∆1 = ∆2 = ∆) with , say, Prob2 absolutely
continuous with respect to Prob1 with a uniform coefficientα: Prob2(A) ≤ αProb1(A), ∀A in theσ-algebra
on ∆. A simple reasoning then reveals that if the first participant extractsN(ε1, β1) constraints according
to Prob1, then, with no extractions whatsoever, the second participants has, with confidenceβ2 = αNβ1, a
violation probabilityε2 = αε1.

The above result is rather obvious since the extractions of the first participant correspond to extractions
for the second participant, even though according to a different probability. A more intriguing situation occurs
when∆1 and∆2 are different. Is then still true that the two participants are going to help each other? The fol-
lowing result holds:fix ε andβ and extractN(ε, β) constraintsδ1 according toProb1 andN(ε, β) constraints
δ2 according toProb2. Solve the optimization problem with all the constraints in place. Then, with probability
no smaller than1 − β, the optimal solution is robustly feasible for the first and the second participant with
a violation probabilityε1 and ε2 respectively that have to satisfy the relation:ε1 + ε2 − ε1ε2 ≤ ε. Thus, if
ε1 = ε, thenε2 has to be zero. This correspond to say that if the extractions of the second participant do not
help the first participant, then the constraints of the second participant are ‘dominated’ by those of the first
participant, and are therefore automatically satisfied. Intermediate situations can be studied as well. So, in all
cases, the two participants are helping each other somehow, even though it may a-priory be unknown who is
helping whom.

A sketch of proof of the above result is as follows. TheN(ε, β) extractions ofδ1’s andδ2’s can be seen as
N(ε, β) extractions of couples(δ1, δ2) from ∆1×∆2 with probability Prob1×Prob2. Theorem 1 can then be
applied to this space, so concluding that, with confidenceβ, the violation probability in∆1 × ∆2 is at most
ε. Consider a multi-sample such that the violation probability is≤ ε. If a given δ̄1 is violated, then(δ̄1, δ2)
is violated in the product space,∀δ2. So, if ε1 is the probability of violation in∆1, this leads to a probability
of violation ε1 in the product space too. Similarly, ifε2 is the probability of violation in∆2, this leads to a
probability of violationε2 in the product space. This two sets overlap with a probabilityε1ε2 and there union
has a probability bounded byε, so leading to the result above.

3 Technical preliminaries and proof of Theorem 1

This section is technical and contains the machinery needed for the proof of Theorem 1. The reader not
interested in these mathematical aspects may skip to Section 4 without any loss of continuity.

3.1 Preliminaries

We first recall a classical result due to Helly, see (R.T. Rockafellar 1970).

Lemma 1 (Helly). Let {Xi}i=1,...,p be a finite collection of convex sets inRn. If every sub-collection con-
sisting ofn + 1 sets has a non-empty intersection, then the entire collection has a non-empty intersection.



?

Next, we prove a key instrumental result. Consider the convex optimization program

P : min
x∈Rn

cT x subject tox ∈
⋂

i∈{1,...,m}
Xi, (9)

whereXi, i = 1, . . . , m, are closed convex sets. Define the convex programsPk, k = 1, . . . , m, obtained from
P by removing thek-th constraint:

Pk : min
x∈Rn

cT x subject tox ∈
⋂

i∈{1,...,m}\k
Xi. (10)

Let x∗ be any optimal solution ofP (assuming it exists), and letx∗k be any optimal solution ofPk (again,
assuming it exists). We have the following definition.

Definition 4 (support constraint). Thek-th constraintXk is asupport constraintfor P if problemPk has an
optimal solutionx∗k such thatcT x∗k < cT x∗. ?

The following theorem holds.

Theorem 2. The number of support constraints for problemP is at mostn. ?

A proof of this result was originally given by the authors of the present paper in (G. Calafiore and M.C.
Campi 2003). We here report an alternative and more compact proof whose outline was suggested us by A.
Nemirovski in a personal communication.

Proof. Let problemP haveq support constraintsXs1 , . . . ,Xsq , whereS .= {s1, . . . , sq} is a subset ofq indices
from {1, . . . , m}. We next prove (by contradiction) thatq ≤ n.

Let x∗ be any optimal solution ofP, with corresponding optimal objective valueJ∗ = cT x∗, and letx∗k be
any optimal solution ofPk, k = 1, . . . ,m, with corresponding optimal objective valueJ∗k = cT x∗k. Consider
the smallest objective improvement obtained by removing a support constraint

ηmin
.= min

k∈S
(J∗ − J∗k )

and, for someη with 0 < η < ηmin, define the hyperplane

H .= {x : cT x = J∗ − η}.
By construction, theq pointsx∗k, k ∈ S, lie in the half-space{x : cT x < J∗ − η}, while x∗ lies in the
half-space{x : cT x > J∗ − η}, and thereforeH separatesx∗k, k ∈ S, from x∗. Next, for all indicesk ∈ S,
we denote withx∗k the point of intersection between the line segmentx∗kx∗ andH.

Sincex∗k ∈ ⋂
i∈{1,...,m}\k Xi, k ∈ S, andx∗ ∈ ⋂

i∈{1,...,m} Xi, then by convexity we have thatx∗k ∈⋂
i∈{1,...,m}\k Xi, k ∈ S, and therefore (since, by construction,x∗k ∈ H)

x∗k ∈

 ⋂

i∈{1,...,m}\k
Xi


⋂

H, k ∈ S.

For i = 1, . . . , m, define the convex setsΩi
.= Xi

⋂H, and consider any collection{Ωi1 , . . . , Ωin} of n of
these sets.

Suppose now (for the purpose of contradiction) thatq > n. Then, there must exist an indexj 6∈ {i1, . . . , in}
such thatXj is a support constraint, and by the previous reasoning, this means that there exists a pointx∗j
such thatx∗j ∈

(⋂
i∈{1,...,m}\j Xi

) ⋂H. Thus,x∗j ∈ Ωi1 ∩ · · · ∩ Ωin , that is the collection of convex sets

{Ωi1 , . . . , Ωin} has at least a point in common. Now, since the setsΩi, i = 1, . . . ,m, belong to the hyperplane
H — i.e. toRn−1, modulo a fixed translation — and all collections composed ofn of these sets have a point
in common, by Helly’s lemma (Lemma 1) there exists a pointx̃ such that̃x ∈ ⋂

i∈{1,...,m}Ωi. Such ãx would

therefore be feasible for problemP; moreover, it would yield an objective valuẽJ = cT x̃ < cT x∗ = J∗

(sincex̃ ∈ H). This is a contradiction, becausex∗ would no longer be an optimal solution forP, and hence
we conclude thatq ≤ n. ?

We are now ready to present a proof of Theorem 1.



3.2 Proof of Theorem 1

We prove that the conclusion in Theorem 1 holds with

N ≥ 1
1− γ

(
1
ε

ln
1
β

+ n +
n

ε
ln

1
γε

+
1
ε

ln
((n

e

)n 1
n!

))
, (11)

whereγ is a parameter that can be freely selected in(0, 1). To prove that bound (6) follows from (11), proceed
as follows. Sincen! ≥ (n/e)n, the last term in (11) is not positive and can be dropped, leading to the bound

N ≥ 1
1− γ

(
1
ε

ln
1
β

+ n +
n

ε
ln

1
γε

)
, (12)

Bound (6) is then obtained from (12), by takingγ = 1/2. We also note that further optimizing (12) with
respect toγ always leads toγ ≤ 1/2 with a corresponding improvement by at most of a factor2.

Proof of Theorem 1 with (11) in place of (6)

We shall prove that, with probability1− β, the solution of RCPN is ε-level robustly feasible. This part of the
proof in inspired by a similar proof given in a different context in (S. Floyd and M. Warmuth 1995).

GivenN scenariosδ(1), . . . , δ(N), select a subsetI = {i1, . . . , in} of n indexes from{1, . . . , N} and let
x̂I be the optimal solution of the program

min
x∈X⊆Rn

cT x subject tof(x, δ(ij)) ≤ 0, j = 1, . . . , n. (13)

Based on̂xI we next introduce a subset∆N
I of the set∆N defined as

∆N
I

.= {(δ(1), . . . , δ(N)) : x̂I = x̂N} (14)

(x̂N is the optimal solution with allN constraintsδ(1), . . . , δ(N) in place).
Let nowI range over the collectionI of all possible choices ofn indexes from{1, . . . , N} (notice thatI

contains

(
N
n

)
sets). We want to prove that

∆N =
⋃

I∈I
∆N

I . (15)

To show (15), take any(δ(1), . . . , δ(N)) ∈ ∆N . From the set of constraintδ(1), . . . , δ(N) eliminate a constraint
which is not a support constraint (this is possible in view of Theorem 2 sinceN > n). The resulting optimiza-
tion problem withN − 1 constraints admits the same optimal solutionx̂N as the original problem withN
constraints. Consider now the set of the remainingN − 1 constraints and, among these, remove a constraint
which is not a support constraint for the problem withN − 1 constraints. Again, the optimal solution does not
change. If we keep going this way until we are left withn constraints, in the end we still havêxN as optimal
solution, showing that(δ(1), . . . , δ(N)) ∈ ∆N

I , whereI is the set containing then constraints remaining at the
end of the process. Since this is true for any choice of(δ(1), . . . , δ(N)) ∈ ∆N , (15) is proven.

Next, let
B

.= {(δ(1), . . . , δ(N)) : V (x̂N ) > ε}
and

BI
.= {(δ(1), . . . , δ(N)) : V (x̂I) > ε}

We now have:

B = B ∩∆N

= B ∩ (∪I∈I∆N
I ) (apply (15))

= ∪I∈I(B ∩∆N
I )

= ∪I∈I(BI ∩∆N
I ). (because of (14)) (16)

A bound for ProbN (B) is now obtained by bounding Prob(BI ∩∆N
I ) and then summing overI ∈ I.



Fix any I, e.g.I = {1, . . . , n} to be more explicit. The setBI = B{1,...,n} is in fact a cylinder with
base in the cartesian product of the firstn constraint domains (this follows from the fact that condition
V (x̂{1,...,n}) > ε only involves the firstn constraints). Fix(δ̄(1), . . . , δ̄(n)) ∈ base of the cylinder. For a
point (δ̄(1), . . . , δ̄(n), δ(n+1), . . . , δ(N)) to be inB{1,...,n} ∩∆N

{1,...,n}, constraintsδ(n+1), . . . , δ(N) must be

satisfied bŷx{1,...,n}, for, otherwise, we would not havêx{1,...,n} = x̂N , as it is required in∆N
{1,...,n}. But,

V (x̂{1,...,n}) > ε in B{1,...,n}. Thus, by the fact that the extractions are independent, we conclude that

ProbN−n{(δ(n+1), . . . , δ(N)) : (δ̄(1), . . . , δ̄(n), δ(n+1), . . . , δ(N))
∈ B{1,...,n} ∩∆N

{1,...,n}} < (1− ε)N−n.

The probability on the left hand side is nothing but the conditional probability that(δ(1), . . . , δ(N)) ∈
B{1,...,n} ∩∆N

{1,...,n} givenδ(1) = δ̄(1), . . . , δ(n) = δ̄(n). Integrating over the base of the cylinderB{1,...,n},
we then obtain

ProbN (B{1,...,n} ∩∆N
{1,...,n}) < (1− ε)N−n · Probn(base ofB{1,...,n}) ≤ (1− ε)N−n. (17)

From (16), we finally arrive to the desired bound for ProbN (B):

ProbN (B) ≤
∑

I∈I
ProbN (BI ∩∆I) <

(
N
n

)
(1− ε)N−n. (18)

The last part of the proof is nothing but algebraic manipulations on bound (18) to show that, ifN is chosen
according to (11), then (

N
n

)
(1− ε)N−n ≤ β, (19)

so concluding the proof.
Any of the following inequality implies the next in a top-down fashion, where the first one is (11):

N ≥ 1
1− γ

(
1
ε

ln
1
β

+ n +
n

ε
ln

1
γε

+
1
ε

ln
((n

e

)n 1
n!

))

(1− γ)N ≥ 1
ε

ln
1
β

+ n +
n

ε
ln

1
γε

+
1
ε

ln
((n

e

)n 1
n!

)

(1− γ)N ≥ 1
ε

ln
1
β

+ n +
n

ε

(
ln

n

γε
− 1

)
− 1

ε
ln(n!)

N ≥ 1
ε

ln
1
β

+ n +
n

ε

(
ln

n

γε
− 1 +

γNε

n

)
− 1

ε
ln(n!)

N ≥ 1
ε

ln
1
β

+ n +
n

ε
ln N − 1

ε
ln(n!), (20)

where the last implication can be justified by observing thatln x ≥ 1 − 1
x , for x > 0, and applying this

inequality withx = n
γNε . Proceeding from (20), the next inequalities in the chain are

ln β ≥ −εN + εn + n ln N − ln(n!)

β ≥ Nn

n!
e−ε(N−n)

β ≥ N(N − 1) · · · · · (N − n + 1)
n!

(1− ε)N−n,

where, in the last implication, we have used the fact thate−ε(N−n) ≥ (1 − ε)N−n, as it follows by taking
logarithm of the two sides and further noting that−ε ≥ ln(1− ε). Proceeding,

β ≥
(

N
n

)
(1− ε)N−n, (21)

which is (19).



4 A numerical example

As a simple numerical example of application of the scenario methodology, we consider the following linear
program with uncertain constraint matrix

min
x∈R5

cT x subject to(A + Aδ)x ≤ b, (22)

where

A




13 −3 −24 7 −4

19 2 −11 7 14

7 6 −4 6 −6

8 −6 −21 −1 2

−2 2 15 −12 7

−1 3 2 21 −10

−9 5 6 −14 6

4 −7 −12 4 17

12 13 1 3 0

12 9 16 20 25




cT =
[
0 −1 −1 0 0

]

bT =
[−23 39 −5 −18 51 61 23 17 −22 1

]
,

and where the entries of the uncertainty matrixAδ ∈ R10,5 are independent Normal random variables with
zero mean and variance equal to0.5. If the uncertain constraints are imposed up to a given level of probability
ε, we obtain the chance-constrained problem

min
x∈R5

cT x subject to Prob{(A + Aδ)x 6≤ b} ≤ ε. (23)

Notice that this problem is readily put in the form (2), by rewriting the element-wise constraints in scalar form,
i.e. settingf(x, δ) = maxj [A + Aδ]jx− [b]j , where[·]j here denotes thej-th row of its argument, and vector
δ contains the uncertain entries of matrixAδ.

Now, fixing probability levelsε = 0.01, β = 0.001, and using bound (6), we obtain

N(ε, β) ' 6689.9.

Fixing thenN = 6690, we solve the scenario problem

min
x∈R5

cT x subject to(A + Aδ(i))x ≤ b, i = 1, . . . , N = 6690, (24)

whereAδ(i) are the sampled uncertainty matrices, extracted in accordance with the assumed probability dis-
tribution (i.e. each entry is Normal with zero mean and variance equal to0.5). One instance of the scenario
problem then yielded an optimal objectiveJRCPN

= −3.2750, which was attained for

x̂N =




−2.0973
−1.1436
4.4186
0.8752
−2.4418




.

Notice that the nominal problem (i.e. the problem obtained by fixingAδ = 0) yields optimal objectiveJnom =
−5.3901, which is attained for

xnom




−2.0958
−0.0719
5.4620
−0.4594
−5.7843




.



We next proceeded with an a-posteriori Monte-Carlo test on the obtained solutions. Fixingε̃ = 0.001 and
β̃ = 0.00001, we have from (7) that the a-posteriori test should be run using at least6.1030 × 106 samples.
SettingÑ = 6.1030× 106 we obtained

V̂Ñ (x̂N ) = 0.0009,

leading to the estimateVÑ (x̂N ) ≤ V̂Ñ (x̂N ) + ε̃ = 0.0019. Interestingly, running the same test on the nominal
solution yielded

V̂Ñ (xnom) = 0.969

showing, as expected, that while the nominal problem provides a better optimal objective with respect to the
scenario problem, the nominal solution is actually infeasible for most of the scenarios that may happen in
reality. Contrary, the scenario solution provides a remarkable level of robustness, being in practice feasible in
all but∼ 0.2% of the possible situations.

A Relaxing the assumption thatRCPN has a unique solution

In Section 2, the theory has been developed under Assumption 1 requiring that RCPN admits a unique opti-
mal solution. Here, we drop Assumption 1 and consider the general case allowing for non-uniqueness of the
solution or non-existence of the solution (i.e. the solution escapes to infinity), or even infeasibility of RCPN .

A.1 Non-uniqueness of the solution

Suppose that when problem RCPN admits more than one optimal solution we break the tie by a tie-break rule
as follows:

Tie-break rule: Let ti(x), i = 1, . . . , p, be given convex and continuous functions. Among the optimal
solutions for RCPN , select the one that minimizest1(x). If indetermination still occurs, select among the
x that minimizet1(x) the solution that minimizest2(x), and so on witht3(x), t4(x), . . .. We assume that
functionsti(x), i = 1, . . . , p, are selected so that the tie is broken withinp steps at most. As a simple example
of a tie-break rule, one can considert1(x) = x1, t2(x) = x2, . . .. ?

From now on, by ‘optimal solution’ we mean either the unique optimal solution, or the solution selected
according to the Tie-break rule, if multiple optimal solutions occur.

Theorem 1 holds unchanged if we drop the uniqueness requirement in Assumption 1, provided that ‘optimal
solution’ is intended in the indicated sense.

To see this, generalize Definition 4 of support constraints to:Thek-th constraintXk is a support constraint
forP if problemPk has an optimal solutionx∗k such thatx∗k 6= x∗. Indeed this definition generalizes Definition
4 since, in case of a single optimal solution,x∗k 6= x∗ is equivalent tocT x∗k < cT x∗. In (G. Calafiore and
M.C. Campi 2003), Section 4.1, it is proven that Theorem 2 holds true with this extended definition of support
constraint (i.e. the number of support constraints is at mostn), and then an inspection of the proof of Theorem 1
reveals that this proof goes through unaltered in the present setting, so concluding that Theorem 1 still holds.

A.2 Infeasibility of RCPN

It may happen that RCPN is infeasible (i.e. the intersection of the domains wheref(x, δ(i)) ≤ 0, i = 1, . . . , N
is empty), in which case the initial RCP is clearly infeasible too. In this case, going through the proof of
Theorem 1 reveals that this theorem remains valid with small amendments: the first part remains unchanged,
while the final part reads: ”..., with probability no smaller than1 − β, either the scenario problemRCPN is
infeasible; or it is feasible, and then its optimal solutionx̂N is ε-level robustly feasible.”

A.3 Non-existence of the solution

Even when RCPN is feasible, it may happen that no optimal solution exists since the set forx allowed by the
extracted constraints is unbounded in such a way that the optimal solution escapes to infinity. In this section,
we further generalize Theorem 1 so as to cope with this situation too and then provide a reformulation of
Theorem 1 (Theorem 3 below) that covers all possible situations as indicated in Sections A.1, A.2 and the first
part of this section.



Suppose that a random extraction of a multi-sampleδ(1), . . . , δ(N) is rejected when the problem is feasible
but no optimal solution exists, and another extraction is performed in this case. Then, the result of Theorem 1
holds if attention is restricted to the accepted multi-samples. This idea is now formalized.

Let D ⊆ ∆N be the set where RCPN is feasible but an optimal solution does not exist (it escapes to
infinity) and assume that its complementA = Dc has positive probability: ProbN (A) > 0. Moreover, let
ProbNA be the probability ProbN restricted toA: ProbNA (·) .= Prob(· ∩ A)/ProbN (A). ProbNA is therefore a
conditional probability. In addition, assume that if a problem with, say,m constraints is feasible and admits
optimal solution, then, after adding an extra(m + 1)-th constraint, if the problem remains feasible, than an
optimal solution continues to exist (this rules out the possibility of pathological situations where adding a
constraint forces the solution to drift away to infinity).

The following theorem holds:

Theorem 3. Fix two real numbersε ∈ (0, 1) (level parameter) andβ ∈ (0, 1) (confidence parameter). If

N ≥ N(ε, β) .=
2
ε

ln
1
β

+ 2n +
2n

ε
ln

2
ε
,

then, with probabilityProbNA no smaller than1 − β, either the scenario problemRCPN is infeasible; or it is
feasible, and then its optimal solution̂xN (unique after the Tie-break rule has been applied) isε-level robustly
feasible. ?

The proof of this theorem is here omitted and can be found in (G. Calafiore and M.C. Campi 2003).
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