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Abstract

In this paper we study the performance of sys-
tem identification methods on a finite data
sample. Our results are of the following form:
with a probability not less than 1—b, minimiz-
ing the empirical identification cost leads to an
estimate which is within an accuracy c from
the theoretical optimal estimate. Explicit ex-
pressions for the accuracy ~ are derived, re-
vealing its dependence on the data generation
characteristics and the choices made in the
system identification procedure. This is be-
lieved to be the first contribution delivering a
finite sample identification theory applicable
to a general linear time-invariant setting.

Keywords: System identification, finite sample
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1 Introduction

In this paper we study the properties of
quadratic identification methods applied to a
linear model class for a finite data sample.
Asymptotic properties of these methods have
been extensively studied over the last three
decades (see e.g. Ljung (1987)) and are now
well understood. However, almost nothing is
known regarding the finite sample properties.

Our main result (Section 2) quantitatively as-
sesses the discrepancy between rninimising a
theoretical identification cost and minimizing
its empirical counterpart. It is shown that a
number of factors affect the result, including
the size of the adopted model class and the

upper bound on the absolute value of the sin-
gularities of the model and the data genera-
tion mechanism. All these dependencies have
meaningful interpret ations.

The approach we take is to cover the para-
meter space by a p-net and to use generalised
exponential inequalities together with conti-
nuity results. This is a general approach, and
we believe it can be extended to other identifi-
cation criteria and nonlinear model structures.
This is an area of current research.

We refer the reader to Campi and Weyer
(1999) for the full proofs.

1.1 The data generation mechanism
We assume that the observed data are gener-
ated by a linear system

~(t) = Gou(t) + Hoe(t)

where the input signal u(t) is deterministic
and bounded by Iu(t)I< U and e(t) is a se-
quence of independent Gaussian random vari-

2. GO andables with zero mean and variance a~
Ho are transfer functions in the backward shift
operator q–l, i.e. q–ly(t) = y(t– 1); however,
for the sake of readability, we omit throughout
to explicitly indicate the dependence on q–l.
Moreover, Go and II. can be written as

where

AC) = 1 +aOlq–l + . ~. + aonoq-no

BQ = bcllq-1 + . . + bclnoq-no

CQ = 1 +cQlq-l + . . . +Conoq-n”

Do = 1 +dQlq-1 + . . . +dQnoq-n”
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and no is an upper bound on the degrees.
Moreover, we assume that thezerosof AO, CO
and DO are inside a circle of a known radius
q <1. The zeros of B. is assumed to be inside
a circle of known radius p, where p might be
larger than 1. Finally we assume that IbolI is
bounded by a known constant B. For simplic-
ity we assume that B ~ p.

1.2 Model class
The model class considered is

y(t) = G(0)u(t) + H(0)w(t) (1)

where w(t) is a sequence of independent Gaus-
sian random variables with zero mean and

For convenience we parameterise the polyno-
mials in terms of their zeros (and the leading
coefficient of B(d)), i.e.

A(6) = H(1 – a2q-1) (2)
i=l

B(6) = blq-l fi(l – &q-l) (3)
i=’2

c(e) = fi(l – ciq-l)
2=1
n 1

D(o) = l-J(l – dig-l)
a=l

(4)

(5)

We let 13c C?nI contain the unknown para-
meters of the polynomials.

We impose the requirement that Obelongs to a
compact set @ such that the polynomials have
real coefficients, and further that IaiI < q, i =
1,.., nl, Ibll < B, lbil ~ /t, i = 2j. ... nl,
Icil <q, i=l,..., nl, Idzl <q, i=l,. -., nl.
These requirements are all in agreement with
our prior information about the data generat-
ing system.

1.3 The identification criterion
From a system identification perspective, the
most important feature of the above models is
their associated predictors which are given by

j(t,6) = (1 – H-1(6) )y(t) + H-l(0) G(6)u(t)

and the corresponding prediction errors are

E(t, 6) = y(t) – y(t, o)

= H-’(d)y(t) – H-l(t?)G(6)u(t(16)

Ideally, one would like to choose O such that
the following theoretical identification cost

F-N(9) = ; ~E&2(t, e) (7)
t=l

is minimised, where N is the number of data
points.

As the data generation mechanism is un-
known, one cannot compute the expected
value in (7) and, in its place, the sample ver-
sion

VN(0) = ; ~c’(t,e) (8)
t=l

is used. Clearly, the minimisation of V~ (0)
may be expected to be equivalent to the min-
imisation of ~jV(6) only when N -+ m (and,
this is indeed the case under mild assump-
tions, see e.g. Ljung (1987)). On the other
hand, in real applications the number of data
points is finite (N < cc) and, therefore, one
question that arises naturally is to quantify
the deterioration in the model quality caused
by a finite data sample. In order to answer
this question, quantitative bounds on

is required where

(9)

2 The main result

The bound for (9) is given in Theorem 2.2
below. The proof of the bound is immediate
from the more general - and perhaps of inde-
pendent interest - result presented next

Theorem 2.1 With probability at least 1 – 6,
we have

sup IVN((3)– ~N(6)l < c(d, ~,no, nl, N)
eeo

where 6(6, q, no, nl, N) is such that

li+moe(b,q,no, nl, N) = cc
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liil E(c$,q,no,nl, N) = m

lim c(d, q,no, nl, fV) = cc
n~+m

lim t(c$, q,no, nI, N) = cm
n~+cu

The actual expression for E(6,~, no, nl, N) can
be obtained by the derivation of the result pro-
vided in Section 3.

From Lemma 3.3 to 3.6 below it follows that
the actual expressions are e = 71 + ‘M + 73 + 74
and d = tcl + ~z + ~4 where ~i and ~i are given
in the lemmas. Although these expressions are
complicated, they can be explicitly evaluated
for any finite number of data points, and they
have a natural functional dependence on the
important variables as shown in the above the-
orem.

Theorem 2.2 With probability at least 1 – d,
we have

vw(e~) – V,,(ON) < 2E(6,~,no, n], N)

Proofi Apply Theorem 2.1 twice. ■

It is important to stress that the result holds
true for any finite data sample of size N, that
is, it is not asymptotic in N.

The form of the result deserves to be further
commented upon. With a certain confidence
1 – 6, minimizing the empirical cost (8) corre-
sponds to minimizing the theoretical cost (7)
to within an accuracy 2e. The presence of a
confidence coefficient 6 is natural and stems
from the stochastic nature of the problem.
When the data sample is finite there is always
a nonzero (even though, possibly small) prob-
ability that the noise plays against the identi-
fication objective, resulting in a deterioration
of the accuracy of the estimate. Not surpris-
ingly, e increases as 6 decreases and tends to
infinity when 6 * O. This is in agreement
with the fact that no level of accuracy can be
guaranteed with confidence 1 for a finite data
sample. This is in contrast to the asymptotic
theory, where the assumption N + m leads
to results valid with probability 1.

Besides 6, c depends on q, no, nl, and N.
We have that c -+ co both when the system

and/or model complexity (as measured by the
parameters no and nl ) tends to infinity and
when q + 1. This behavior can be easily un-
derstood. Increasing no and/or nl, or send-
ing q to 1, leads to a prediction error process
(6) with a long correlation tail. When this
happens, the averaging effect on the noise is
decreased and a larger number of data points
is necessary to guarantee a certain accuracy
level. Finally, c -+ O when N --+ m, as is
expected from averaging effects.

Identification and estimation methods have
been analysed using techniques similar to
those employed in this paper in e.g. Campi
and Kumar (1998) and h40dha and Masry
(1998). However, the finite sample properties
were not explicitly considered in those papers.
Finite sample properties has been considered
in the present setting in Weyer et al (1999)
under more restrictive conditions.

3 Derivation of the main result

In this section, we sketch the proof of the fun-
damental Theorem 2.1.

Lemma 3.1 Under the assumptions in sec-
tion 1.2, the set @ c C?n’ can be covered by

M(p) = ([(*+1)(*+ l)])’;’ ~

([(%+9(*+’)])*([B/p]+1)
fix] stands for the integer part of x) bails of
radius p (in the infinity norm).

Proofi Follows from straightforward calcu-
lations. ■

Denote the balls in Lemma 3.1 by ~i, i =
1,.. ., M(p) and their centres by (32,and let
Ela= Bi n~. Without loss of generality we can
assume that Oi ~ Bi. Let HtI = H–l (0)EIO.
We have the following intermediate result
(throughout, maxi stands for maxie[l,wt,)l)

Lemma 3.2

512

.—.—.. ...—



, ~GB $~(H@e(t))’ - (H,ie(t))’+max sup
t–1

(lo)

max ~ ~(H@ie(t))2 - E(Hoie(t))2 +
i t=l

(11)

max sup ; ~ E(H@,e(t))2 - E(Hee(t))2 +
i t?EB, t= 1

(12)

max sup #$ ~-1(6)(GII - G(0))~(t) ~2 8EB, f=l

H-l(0) H.e(t)l
(13)

Proofi Follows from straightforward ma-
nipulations. ■

Roughly, the main idea is that we can bound
the discrepancy between the theoretical iden-
tification criterion and its sample version for
Oi, i = 1,.. ., M(p), and then extend the
bound to @, since for every O E @ there is a 19i
such that 116– OiII ~ p, and there should only
be small variations in the theoretical criterion
and its sample version when the parameters
are close.

Intuitively, (10) and (12) should be small when
116-19ills p is small and the difference (11) be-
tween the expected and empirical value should
be small when the number of data points is
large. Notice that the maxi in (11) is over a
finite number of parameters. Moreover, (13)
is a sum of zero mean Gaussian random vari-
ables, and is therefore also expected to be
small.

As Lemma 3.3 to 3.6 below show this is indeed
the case, and Theorem 2.1 follows by combin-
ing these lemmas, which separately bound the
four terms (10) to (13).

Lemma 3.3 For ang c1 >0 and c’ >0,

max sup
i OEB,

with probability at least 1 – K1 where

‘2no+3n I+1

(

~E2~m
71 = 2(1_q)2.0+J’1 (1–q)”o+”l+~ +

80:
N(l–q)z(no+nl+l)m +El+a:+q

)
(14)

–+N
(2” Q+2”~)!8(1–2/x)e~

+Cq m.e. z
fil = &7 (ln0+n1)!)2 (1–72)2n O+2n1+f +

-e2N2
4e8e:Ni4+,

(15)

CF1 = max (T+ 1) ..(~+nl)q’ (16)
T=1,2,...

Sketch of Proof. Let F1(0. d;) :=,.,
(H-1(19) --H-1 (Oi))Ho) F2(6,0i) := (H-1(6)+
H–l(oi))Hc), Vi(t) := F1(6, t9i)e(t)
Vz(t) := F’(6, 6i)e(t) . We have that

and

(17)

Furthermore let

From Parseval’s equality and Theorem 2.1 in
Ljung (1987) we have

where RN(U) = V1,~(w) –Fl (6, ~i, ez@)Ejv (u).
After some more algebraic computations the
last expression can be bounded by using Bern-
stein’s inequality (Bosq (1998), Theorem 1.2)
and bounding IIF1(6, @i,e–iu)ll~. The bound

on ~mfollowsusingthe same ap-

preach. ■

Comment on Lemma 3.3. In Lemma 3.3, c1
and C2are arbitrary positive real numbers. Let
cl = 62 = e and make equation (15) explicit
with respect to c as a function of ~1, q, no, nl,

~ fi(fi,ge(t))’ - (H~ie(t))2 57’,
and N: e = c(~l,q, no, nl, N). The following

t=] results readily come from the expression for
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KI:e+CX3aS K1-+O, E-+CC asq-+l, c-+
caasnOand/or nl-+co, and c-i Oas N-+
W

Substitute now t(~l, q, no, nl, N) in the ex-
pression for -H and further let p depend on
N such that p(N) + Oas N + m (decreasing
the radius of the balls - and thereby increas-
ing their number - when N -+ cc cm-responds
to the intuitive idea that a larger number of
expected values can be estimated from data
when the sample size becomes larger). Then,
it is clear that: ~1 -+ co as fil -+ O, -yI +
masq~l,~l-+oaasno and/or nl+m,
andyl+Oas N+ co.

Lemma 3.4 For each integer q E [1, N/2]
and k ~ 3, and any 72 >0

with probability at least 1 – rio where

(

-q?;
K2 = M(p) ale 50K&e:+ 10KHc~?2

at(k) a([N/(q + l)])z~~l
–-)

al = 2Njq +

+

( )
5kKHo: h

az(k) = llN 1 +

K~ = 22”0’
(2nol –:)! 1

((nlJl – 1)!)2 (1 – qt)~~”’-l
nol = no + nl

Q(1) is given in Lemma Al.

Sketch of Proof. The bound follows by using
Theorem 1.4 in Bosq (1998) applied to X~ =
(fi~, e(t))2 – .E(ti~, e(t))2 for 2’= 1,..., M(p).
The theorem in Bosq (1998) is a generalisa-
tion of Bernstein’s inequality to a-mixing pro-
cesses, and it follows from Lemma A.1 that
tie, e(t) and hence (~o, e(t) )2 is a-mixing. ■

Comment on Lemma 3.4. Let q depend on
N in such a way that q(N) -+ co and that
q(N)/N + O as N + m. Also, let p depend
on N and make the expression for K2 explicit
with respect to 72. Then, it is easy to show
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that if P(N) tends
rate, T2 exhibits a
the one for -Y1.

Lemma 3.5

to zero at a sufficiently slow
limiting behavior similar to

max sup
i 0EB4

where

K1 = 22n0+3n1+l (2n0 + 2nl - 1)!

(nl + no)!(no + m – 1)!
(19)

Sketch of Proof. Follows by bounding

Iltioill; - ]ll%ll; ■

Comment on Lemma 3.5. Let as usual p de-
pend on N, p = p(N), where p(N) is any
function tending to zero as N -+ co, Then,
it is clear that: 73 ~ cc as ~ -+ 1, ~S +
cc as no and/ornl + m, and-f3 + O as N +
co

Due to space limitations we omit the exact
expressions in the next lemma.

Lemma 3.6

max sup # &-l(d) (Go - G(d))u(t -1)
i eGB, , t=l

with probability at least 1 – K4

Sketch of proof. The lemma can be proved
using the same techniques as in the proof of
Lemma 3,3 and 3.4. ■

Under the same assumptions as in the com-
ment to Lemma 3.4 it can be shown that 74
exhibits a limiting behavior similar to 72.

Theorem 2.1 now follows by noting that the
probability that one or more of the inequali-
ties in Lemma 3.3 -3.6 is violated is at most
~~=1 ~i, and hence they must simultaneously
hold with probability at least 1 – ~~=1 ~i.



4 Concluding remarks

In this paper, we have studied the quality of
system identification models obtained using a
quadratic prediction error criterion. The main
feature of our results is that they hold true for
a finite data sample and are not asymptotic.

In this concluding remark, we would like to
remark on a technical aspect of our approach
which may be of general interest. The main
result is that the empirical and theoretical
identification criteria are close to one another
uniformly in @ with high probability provided
that a certain (finite) number of data points
is available. The key aspect of this result is
its ztni~omnity in 6. Mathematically, this can
be rephrased by saying that we have studied a
problem of uniform convergence of empirical
expectations to their true values. This type
of problems have received increasing attention
in the control community, see e.g. Vidyasagar
(1997), Weyer et al (1999). However, differ-
ently from the cited literature, we have not
used the notion of Vapnik-Chervonenkis (or
Pollard) dimension in order to measure the
complexity of the function class under consid-
eration (i.e. ~N (6)). Instead, a P-net in the
@ space has been used in conjunction with
generalized Hoeffding or Bernstein inequali-
ties (Bosq (1998)) and continuity results. In
doing so, we have exploited the fundamen-
tal fact that in these inequalities the prob-
ability of a bad multisample decreases expo-
nentially with the number of data points or,
equivalently, the number of data points nec-
essary to guarantee that the result holds true
with a certain confidence 1 – 6 increases only
as log( 1/6) (popularly phrased as “confidence
is cheap”). It is the opinion of the authors
that the same approach can be exploited in
other ident ificat ion/control settings to work
out results tighter than those obtained via the
Vapnik-Chervonenkis /Pollard dimension.
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A a-mixing coefficients

Given a stochastic process Xt, t E Z, the asso-
ciated a(k) -mixing coefficients are defined as:

a(k) := sup sup
tGZ BGu X,,s~t CGcr Xs,s~t+k

IF’(B n c) - P(B)P(C)I.

The process is said to be a-mixing if a(k) -+ O,
when k * O.

Lemma A.1 Let z(t) := H-1(f3)Hoe(t). The
sequence z(t) is a-mixing and for k > 0 the
mixing coefficients are bounded by

cr(k+no+nl+l) 5 C(k+2) - “ ‘ (k+no+nl)#+l
(20)

where

22no+%1+l(2no + 2nl – l)!
c=

((WI + n, - l)!)’ “
1

Proofi See Campi and Weyer (1999).
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