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Preface

Inductive reasoning refers to the process of synthesizing general principles, and in-
terpretative models, from observations. This is key not only to the physical sciences,
it also plays a fundamental role in large areas of applied fields such as engineering,
medicine and economics. Even more broadly, induction forms the footing of all pro-
cesses by which we learn from experience, with paramount implications in describing
the world we live in and making decisions on how to operate on it. But, in virtue of
what can observations be used to derive principles and to construct models meant to be
applied to a new, out-of-sample, case? Why can observations drive our way of thinking
and acting in situations that have not been previously encountered?

In this monograph, we pose and address these questions in a formal, mathematical,
language. This comes with two advantages:

(i) mathematics demands to be precise about the hypotheses that we make and to
be clear and explicit in the formulation of the conclusions. This is key to avoid
the subtle pitfall of missing to clarify details and circumstances whose consid-
eration would have shed a different light on the results or even shown internal
inconsistencies in them;

(ii) the mathematical language is perfectly structured for making inference. This
means that, by analytical methods, one can drive a long way to work out far-
reaching results, which would otherwise be difficult to obtain.

It has to be said that any mathematical theory proceeds from premises to conclu-
sions. Indeed, a formal language requires to first introduce the object the theory is
intended to analyze and this process charges the object with specific properties and
tells it apart from other entities that lie outside the scope of the theory. For example,
in group theory one starts off considering a “group”, that is, a set with an internal
binary operation that obeys a given body of rules by which any two elements of the
set are mapped into another element of the set. Integers 0,±1,±2, . . . with the sum
operation is an example of group. Then, one proves theorems that are specific to the
introduced setup. The theory of induction is no exception to this rule: one presents
modeling premises meant to formalize inductive reasoning and investigates the impli-
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cations they lead to.1 Interestingly, the acceptance of the premises – and, thereby, the
rational commitment to its implications – is on a voluntary basis, one accepts them
inasmuch as they adhere to the way one reasons, or, in other cases, just to speculate on
what a certain way of reasoning implies.

Inductive reasoning generates conclusions that acquire strength, or lose it, depend-
ing on the observations one is exposed to. Along the process, the conclusions are
not certain, they have a given degree of belief. A proper tool to quantify the degree
of belief is probability theory and this monograph is deeply grounded on probabilis-
tic concepts. However, we do not require the reader to have any specific background
in this discipline: the probabilistic tools necessary to comprehend the content of this
work are introduced, and analyzed in their meaning, within this monograph. What this
monograph does not contain are instead the proofs of the theoretical results. For this,
the reader is referred, case by case, to the scientific publication in which the result has
been demonstrated.

Some specific facts that are explored in this monograph are:

(a) in some contexts, probabilistic statements that certify the reliability of inductive
conclusions can be formulated without any knowledge on the probability dis-
tribution by which observations are generated (distribution-free results). This
corresponds to an agnostic point of view, where one admits the existence of
a probability distribution but abstains from describing it. These findings shed
light on the possibility of creating knowledge from experience, as opposed to,
e.g., generating conclusions by blending probabilistic priors with observations,
as is done in Bayesian inference;

(b) the time at which one speaks is crucial. Indeed, it makes a universe of differ-
ence making a reliability claim before the observations are actually collected and
used (so that the claim refers to the inductive method, meant as the algorithm
that maps observations into models) and after the application of the inductive
method to a given set of observations (so that the claim refers to the outcome
for the observations at hand). Both stances (“before” and “after”) have practical
interest and a clear separation between them help clarify intrinsic limits inherent
in inductive reasoning.2

(c) when various individuals who bear different views get exposed to the same ob-
servations, their opinions tend to converge, with perhaps the exception of indi-
viduals who hold extreme views, incompatible with each others.

1This is not different from any other philosophical discourse even posed outside the mathemat-
ical language; however, at times, philosophical presentations conflate the process of deriving logical
consequences with setting the stage for the premises from which these consequences follow.

2In a fortunate description due to Simone Garatti, these two stances have been related to the point of
view of the seller and that of the buyer: the seller is interested in certifying the quality of the algorithm,
so that he can set prices and policies, while the buyer is interested in the quality of the single item he is
about to buy.
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Throughout our exposition, we shall look for results that hold rigorously for any fi-
nite number of observations. This matters as one always uses in practice finite datasets;
still, this is in contrast with much of the statistical literature, which is instead grounded
on asymptotics, results that become valid only when the data set grows unbounded.

Finally, some notes on the origins of this work and its limits of scope.

The idea of writing this monograph came to its author after some twenty years
of mathematical investigation in the field of inductive reasoning. These studies have
generated results that are believed to be of general interest to epistemologists, and
yet the technical journals in which they have been published do not provide space
for an in-depth presentation of the ensuing philosophical implications. Through this
monograph, our intention is to fill this gap and position these findings so as to elucidate
the importance we believe they have for a philosophical audience.

A comment is also due to explain the title of the monograph, “Inductive reasoning
under consistency”. The specification “under consistency” clarifies that this mono-
graph is not omni-comprehensive, it pertains to specific reasoning procedures that in-
volve the concept of consistency. Broadly interpreted, consistency refers to the prop-
erty that a decision gets confirmed when it is appropriate for new incoming observa-
tions while it is refuted, and has to be changed in favor of a new decision, when con-
fronted with incoming observations for which the initial decision is not appropriate.
This framework applies broadly to models that incorporate a principle of parsimony of
representation, as well as to large areas of observation-driven decision-making. How-
ever, it does not cover everything, chiefly it leaves out least squares approaches where
the decision is determined through an averaging process (so that the decision changes
whatever new observations are collected). Limiting the scope of this monograph this
way is not a choice; more simply, at the time of writing this work, no theory is avail-
able that covers other frameworks to a similar depth. Nonetheless, it is essential to
emphasize that the focus of this work is not comprehensiveness, rather it aims to high-
light facts and principles by which inductive methods find a justification and to clarify
intrinsic limits in the process of creating knowledge from observations.

A last thought goes to my co-author of all the technical facts exposed in this mono-
graph. I wish to express my deep gratitude to Simone Garatti, his profound intelli-
gence, generosity and dedication have been fundamental assets in a twenty-year voy-
age of enjoyable exploration in this field.

Milano, January 2024, Marco C. Campi
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Chapter 1

MODELS AND DECISIONS:
CONCEPTS BY EXAMPLES

This first chapter aims to provide, by way of simple examples, a first acquaintance with
various concepts relating to the generalization theory that will play a prominent role
in this monograph. We first consider the problem of constructing a model to describe
a population and, then, move to the more general setup of decision-making.

1.1 Observation-Driven Models and Decisions

§1 Observation-driven models. A first, primary, goal of inductive reasoning is
that of building models meant to describe a whole population by the inspection of a
restricted sample of members taken from the population. Here is an example.

EXAMPLE 1 (height and weight of Italians) Suppose we are interested in the
height and weight of Italians, so that Italians is our reference population and the height
and weight of Italians are the two attributes we want to describe. Given that the height
and the weight of a sample of Italians have been measured, a new Italian can be
predicted to be not shorter than the shortest in the sample and not taller than the
tallest, and, likewise, not lighter than the lightest or heavier than the heaviest in the
sample.3 This leads to constructing a model for the height and weight of Italians given
by the rectangle [min{heighti},max{heighti}]× [min{weighti},max{weighti}], where
index i= 1, . . . ,N runs over the sample, and one next Italian is predicted to have height
and weight so that it is represented by a point within the boundaries of this rectangle.
See Figure 1.1 for an example. ∗

3The use of the verb “can be predicted” indicates that this is a choice, and other possibilities would
exist; for example, one might be willing to discard individuals whose somatic attributes are deemed
extreme and unlikely to be met in the future.
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Figure 1.1: A rectangle describing the height and the weight of Italians. A new Italian is predicted to
belong to the rectangle.

More generally, when speaking of model of a population, the world “population”
does not necessarily refer to living beings, and it has to be given a broad meaning.
For example, it may refer to a collection of objects, or even to the set of conditions in
which a machinery operates.

The usefulness of a model, like the one in the previous example, hinges on

(i) characteristics of the model itself (for example, the size of the spread of the
interval used to predict an attribute); and

(ii) properties that relate to the interplay of the model with the population (what is
the proportion of the members of the population that lie in the model?)

Point (ii) is relevant for judging the level of reliability of the model and may have
significant consequences on our willingness to use it in applied problems. A notable
difference between (i) and (ii) is the following: the model’s characteristics can be
directly inspected after the model has been built, whereas the reliability of the model
remains hidden because it depends on the distribution of the population.4 This raises
fundamental generalization questions: is it possible to draw conclusions on members
of the population we have not seen? how trustworthy are these judgments? what are
the principles that logically support such a generalization process? These questions
indeed point to the very essence of inductive reasoning.

§2 Decisions. More generally, inductive reasoning can be employed to make deci-
sions with wide-ranging consequences for our way of acting and operating in the real
world.

4If we knew the distribution of the population, the problem of finding a descriptor of the population
from observations would disappear altogether.



Chapter 1 MODELS AND DECISIONS: CONCEPTS BY EXAMPLES 9

EXAMPLE 2 (an investment problem) Suppose that q assets A1, . . . ,Aq are
available for trading. On period i, the asset A j may gain or lose value in the market.
Denoting p j

i the closing price of asset A j on period i, the ratio ω
j

i = (p j
i − p j

i−1)/p j
i−1

is called the rate-of-return of asset A j on period i. It represents the percentage change
in the value of asset A j during period i. To manage uncertainty, investors diversify their
portfolio. Thus, the investor will invest fractions θ 1, . . . ,θ q of his capital on A1, . . . ,Aq

(we assume that θ j ≥ 0 for all j, and ∑
q
j=1 θ j = 1). The vector θ = (θ 1, . . . ,θ q) is

called a “portfolio”, and ∑
q
j=1 θ jω

j
i is the rate-of-return of the portfolio on period

i: the investor increases/decreases his capital on period i by an amount equal to the
rate-of-return of the portfolio per unit of money invested. The portfolio loss is simply
the opposite of this quantity:

L(θ ,ωi) =−
q

∑
j=1

θ
j
ω

j
i , (1.1)

where ωi is the vector (ω1
i , . . . ,ω

q
i ).

Suppose now that the investor has actually observed n values ω1 . . . ,ωn on pre-
vious trading periods. Substituting these values in (1.1), a set of n linear functions is
obtained; see Figure 1.2 for a graphical representation in the case q= 2. This is called

Figure 1.2: Graphical representation of the functions in (1.1). The abscissa represents θ 1 while θ 2 is
obtained from relation θ 2 = 1−θ 1. Hence, the value θ 1 = 0 corresponds to investing all capital on A2

and θ 1 = 1 to investing all capital on A1.

an “empirical bundle” of loss functions and it represents the observational wealth in
the hands of the investor, who can employ it to make decisions on how to invest.

As an illustrative example, consider min-max optimization:

min
θ

max
i

L(θ ,ωi), (1.2)
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which returns the portfolio selection θ 1∗ and the corresponding value L∗ in the case
of Figure 1.2.5 Suppose that the value L∗ turns out to be satisfactory to the investor.
Should he then invest according to θ 1∗? Notice that real trading consists in first in-
vesting (i.e., choosing the value for θ 1 and θ 2) and only after the investment is made
the market evolves, setting a value for ω that determines the final loss/reward. In con-
trast, the value L∗ has been obtained by first observing ω1 . . . ,ωn and then selecting
θ 1∗ with the goal of optimizing the result for the cases that had been seen. This simply
reverses the order one operates in reality. As a consequence, the value of L∗ can be
over-optimistic, and the obvious question is: how large is the chance that the actually
incurred loss will be larger than L∗? This is the problem of linking the “visible” to the
“invisible”, the past to the future, a generalization issue that is central to all inductive
decision processes. ∗

In this monograph, we investigate the grounds on which generalization in inductive
processes can be rationally justified. Concepts and ideas will be expressed in the math-
ematical language whenever possible. While we understand that this is not customary
to most of the philosophical literature, we believe it better serves the requirements of
precision and clarity to which we feel obliged. In addition, the mathematical language
– which is perfectly structured to make logical inference – will give us a helpful hand
to run a tight ship while venturing in territories that can hardly be explored by other,
less structured, means. On our side, we take full responsibility to introduce the math-
ematical tools, and elucidate their meaning, with care and gradualness, making them
accessible even to the reader who only has a limited background in mathematics. This
is our duty, and should we fail in this respect we would be the only ones responsible
for that. Upon embarking on this journey, our hope is that we shall be able to convey
to the reader at least half of the wonder we experienced when we first encountered the
results we are about to narrate here.

1.2 An overview of this monograph

§3 Description by the chapters. The next two chapters are dedicated to the prob-
abilistic concepts that are in use throughout this monograph. After introducing the
mathematical definition of probability, Chapter 2 presents the concepts of independent
and exchangeable observations, which play a central role in the temporal description
of events. In turn, Chapter 3 carefully puts forward our interpretation of probability.
While this chapter is not technical, its importance should not be underestimated: it
sheds the correct light under which all this monograph must be read. In Chapter 4, the

5Min-max corresponds to a conservative attitude that places all emphasis on the worst (the investor
selects the portfolio that minimizes the loss on the worst trading periods). This approach is seldom
applied to real trading. We use it here because it allows us to illustrate some concepts more easily; see
Example 10 in §35 for a more realistic approach.
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reader makes a first encounter with some theoretical issues that are central to induc-
tive methods. By way of simple examples, this chapter guides through an exploration
of the intrinsic boundaries within which inductive reasoning proceeds, coming to the
conclusion that agnostic reasoning (in which probabilistic beliefs are built from obser-
vations without any prior knowledge) is possible. Chapter 4 prepares the reader for the
following two chapters, which form the theoretical core of this work: Chapter 5 intro-
duces a broad framework for inductive modeling and decision-making centered around
the concept of consistency, and the following Chapter 6 presents the ensuing general-
ization theory. More specifically, after formally introducing the concept of “consistent
rule”, Chapter 5 provides various examples to better appreciate their meaning and ap-
plicability. In turn, Chapter 6 furnishes an ample account of the generalization results
that are applicable to a consistent framework. By introducing an essential separation
between an inductive statement and the reasoning by which this statement is obtained,
this chapter justifies the process of learning from observations while also identifying
the intrinsic limits this process has necessarily to meet.



12 1.2 An overview of this monograph



Chapter 2

PROBABILITY, INDEPENDENCE
AND EXCHANGEABLE
OBSERVATIONS

Inductive reasoning is deeply grounded in probability theory, which provides the tools
used to describe uncertain knowledge. This chapter introduces the probabilistic con-
cepts that are relevant to this monograph. The presentation is self-contained and easily
accessible without any specific background knowledge.

2.1 Probability

§4 Elementary probability. Consider a set Ω that contains a finite number of
elements. In this monograph, we regard Ω as the set of the possible outcomes of
an experiment (observations).6 For example, when modeling coin tossing, we may
want to choose Ω = {head, tail} and, when throwing a die, Ω = {1,2,3,4,5,6}. To
each element ω ∈ Ω, we associate a real number P(ω) ∈ [0,1], called the probabil-
ity of ω , in such a way that the sum of all such numbers adds up to the value 1:
∑ω∈ΩP(ω) = 1. Any subset E of Ω is called an event. The probability is extended
to events by the definition P(E) = ∑ω∈E P(ω). This defines a map, called probabil-
ity function or probability distribution, that associates to any subset of Ω a number
in [0,1], its probability. The probability function is clearly additive, in the sense that
P(E1 ∪ ·· · ∪Em) = P(E1)+ · · ·+P(Em), whenever E1, . . . ,Em are incompatible, i.e.,
they are disjoint sets.

§5 A general definition of probability. While elementary probability is easy to
understand and therefore holds pedagogical value (indeed, we shall resort to elemen-

6More generally, in probability theory Ω may also contain hidden variables that are not directly
accessible through experiments.
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tary probability to explain various concepts in many parts of this monograph), it is
unable to cover needs that emerge in multiple contexts. More generally, set Ω may
contain infinitely many elements, and one may like to give the status of event to a re-
duced collection of subsets of Ω, rather than all subsets of Ω. These generalizations
are captured by the axiomatic definition of probability introduced in 1933 by Andrej
N. Kolmogorov, [46], as explained in the following.

Given an arbitrary set Ω, let us consider a collection of subsets E of Ω that has the
following properties:

(i) Ω ∈ E (the whole set Ω, called the universe, is in E );
(ii) if E ∈ E , then Ec ∈ E (if a set is in E , then its complement, formed by all

elements of Ω but those in E, is also in E );
(iii) if E1,E2 ∈ E , then E1 ∪E2 ∈ E (if E1 and E2 are in E , then their union is also in

E ).

A collection of sets that satisfy (i)-(iii) is called an algebra and E is referred to as the
algebra of events. It is easy to show that (i)-(iii) imply that also the union and the
intersection of any finite collection of sets in E is in E .

Further, to each E ∈ E , one associates a real number, called its probability and in-
dicated with the symbol P(E), in such a way that the following properties are satisfied:

(iv) P(E) ∈ [0,1] for any E ∈ E , and P(Ω) = 1 (the probability of the universe is 1);
(v) given any finite or infinite list of disjoint events E1,E2, . . . such that their union

E = ∪iEi is also in E ,7 it holds that P(E) = ∑iP(Ei) (this property is known as
σ -additivity).

As can be easily verified, elementary probability as in §4 is just a simple instance of
the general framework introduced here.

Properties (i)-(v) define Kolmogorov’s axiomatic system of probability. Using the
same terminology as in the elementary case, the map P that associates a number in [0,1]
to any element of E is called the probability function or the probability distribution.
Given Ω and E , there are clearly many possible choices of probability functions that
satisfy Kolmogorov’s axiomatic system. For example, if Ω = {1,2,3, . . .} (the set of
natural numbers) and E contains all subsets of Ω, then a possible choice is to give
probability 1

10 to the first 10 natural numbers and zero to all others (which, by property
(v), defines the probability of all other events); another choice that attributes non-zero
probability to all natural numbers is that of giving probability 1

2 to the first natural 1,
probability 1

4 to the second natural 2, probability 1
8 to the third natural 3, and so on, or,

in more compact writing, P(z) = 1
2z to any z ∈ Ω.

7This needs to be specified because the infinite union of events need not necessarily be an event,
i.e., it can be that ∪iEi /∈ E .
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It has been said that Kolmogorov’s axiomatic system contains elements that are
unessential – and even undesirable – in a definition of probability because these el-
ements are not motivated by any practical reason when probability is used to model
real situations. Firstly, one may wonder why the collection of events E to which a
probability is associated must be an algebra, rather than just a generic collection of
sets. Secondly, σ -additivity applies to an infinite sequence of events, which hardly
reflects any realistic requirement in practical usage since infinity is not found in the
real world.8 It is a fact that σ -additivity limits the applicability of the theory because,
otherwise well-conceived, candidate probability functions have to be discarded on the
ground that they do not satisfy the σ -additivity property. On the other hand, using the
axiomatic apparatus proposed by Kolmogorov provides the undeniable advantage that
it casts probability within the well-established wake of measure theory (in which σ -
additivity plays a central role), which grandly simplifies its use. This is indeed the main
reason of the great success of Kolmogorov’s approach. Throughout this monograph,
we shall make exclusively use of Kolmogorov’s axiomatic system of probability. In
§16, we shall come back to this choice when commenting on de Finetti’s definition of
probability, a framework that is more general and strictly contains that of Kolmogorov.

Beyond mathematical definitions, it is important to highlight that the concept of
probability has many interpretations, as witnessed by a truly vast and multiform scien-
tific and philosophical literature. We make clear at this early stage that, throughout this
monograph, probability will be given only one, well-identified, meaning as subjective
probability, as we shall discuss in full detail in the next Chapter 3.

§6 Elementary conditioning. Consider two events A and C in E with P(C) ̸= 0.
The conditional probability of A given C is defined as P(A|C) = P(A∩C)

P(C) . The idea is
that one takes the probability of A under the condition that C also happens, which gives
P(A∩C), and then normalizes such a probability by dividing by P(C). It is easy to see
that, for any given C, P(A|C), seen as a function of A ∈ E , is itself a probability dis-
tribution. Often, the operation of conditioning is used to describe how knowledge up-
dates: what is the probability of A if I know that C has happened? This interpretation is
discussed in §17. More generally, one may want to condition on events C that have zero
probability. Probability theory admits such an operation, and this topic is dealt with in
any textbook on probability. Interestingly, when considering zero-probability events,
the mathematical notion of conditioning may introduce extra elements that cannot be
directly traced back to the interpretation that one initially associates to the elementary
operation of conditioning (particularly, due to the fact that conditional probability can

8See, e.g., the thought-provoking article [17]; in there, we read: “If we, on the basis of a convention,
state that P(Ei) = 0, i ≥ 1, entails P(∪iEi) = 0, then we intuitively think of ∪iEi as a nearly impossible
event, whereas the formal definition allows us only to conclude that 0 is the value at ∪iEi of the function
which we, conventionally, have called probability.” Kolmogorov himself seems to be aware of this
arbitrariness; in [46], he writes: “Since the new axiom [σ -additivity] is essential for infinite fields of
probability only, it is almost impossible to elucidate its empirical meaning [· · ·]. We limit ourselves,
arbitrarily, to only those models which satisfy Axiom VI.”
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be redefined arbitrarily on events of probability zero).9 We feel fortunate that these
issues do not affect to any significant degree any of the concepts we deal with in this
monograph.

§7 Elementary image probability. Consider the set Ω = {1,2,3,4,5,6} as in §4
with the probability distribution given by P(ω) = 1

6 for any ω ∈ Ω. Suppose we place
a bet on even numbers, 2, 4 and 6, so that we receive one unit of money if ω is even
and lose one unit of money if ω is odd. This defines a function f from Ω to the set
{−1,1} that maps 1,3,5 in −1 and 2,4,6 in 1. Its inverse f−1 is a multi-valued map
that returns the subset of values in Ω that are brought by f to the chosen target value,
either −1 or 1. For example, f−1(1) = {2,4,6}. Function f−1 allows us to introduce a
probability distribution (let us indicate it with the symbol P′) on the subsets of {−1,1}
defined by the following two relations: P′(−1) = P( f−1(−1)) and P′(1) = P( f−1(1)).
Clearly, this gives P′(−1) = P′(1) = 1

2 . P′ is called the image probability and it may
be interpreted as the probability of losing/winning one unit of money, see §17. The
notion of image probability can be carried over to the context of functions defined
on a generic set Ω as in §5, with some care for so-called measurability issues10 (the
interested reader can consult any textbook on probability for a full treatment).

§8 Elementary composition probability. Suppose that a set contains only two ele-
ments, α and β . We probabilize the subsets of {α,β} according to two alternative pos-
sibilities as follows: P1(α) = 0.4; P1(β ) = 0.6 or P2(α) = 0.7; P2(β ) = 0.3. Further,
we also assign a probability distribution to the subsets of {1,2}, say π(1)= π(2)= 0.5.
Using these ingredients, we can construct a probability distribution on the domain
of the pairs formed by an element taken from {1,2} and a second element taken
from {α,β}: P(i,α) = Pi(α) · π(i); P(i,β ) = Pi(β ) · π(i), i = 1,2. For example,
P(1,α) = 0.4 · 0.5 = 0.2, this is the probability of α in condition 1 times the proba-
bility of condition 1 and it is often interpreted as the probability of the simultaneous
happening of 1 and α , see §17. This concept can be extended to arbitrary sets using
the notion of Markov kernel, with due attention to measurability issues, as discussed
in any good probability theory textbooks.

9Even more intriguing, according to definitions of probability alternative to the one due to Kol-
mogorov (we are referring in particular to non σ -additive probabilities, see, e.g., [56]), conditioning to
zero-probability events may produce values that are systematically strictly smaller than the value ob-
tained by directly conditioning on the union of all these events even when this union has a non-zero
probability, a manifestation of so-called non-conglomerability (see [3] for a comprehensive treatment
of this topic). The fact that advanced mathematical definitions raise interpretative doubts is in no way a
specificity of probability theory; for example, in the theory of partial differential equations the concept
of derivative in weak solutions may as well give rise to interpretative issues.

10These functions are called random variables.
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2.2 Independent and exchangeable lists of observations

§9 Independent and indetically distributed (i.i.d.) lists in the elementary case.
We first consider the setup of elementary probability in which Ω contains a finite num-
ber of elements.

Consider lists (ω1,ω2, . . . ,ωn) of n elements ωi from Ω with repetition (i.e., the
same element can appear more than once).11 We want to introduce a probability func-
tion on the space of all such lists. One (easy) way is to define the probability of a single
list as Q(ω1,ω2, . . . ,ωn) = Πn

i=1P(ωi) (symbol Π indicates numerical product). Thus,
the probability of a list is just the product of the probabilities associated with each
element in the list. Then, the probability of any set of lists is defined by summing up
the probabilities of all lists in the set. This defines a probability on lists in full analogy
with the definition of probability on subsets of Ω as done in §4.

We can now state some simple properties of Q. Introduce the notation
(E1,E2, . . . ,En) to represent all lists in which ω1 ∈ E1,ω2 ∈ E2, . . . ,ωn ∈ En. Then,
one has Q(E1,E2, . . . ,En) = Πn

i=1P(Ei).12 (The fact that probability Q can be bro-
ken up as a product probability is referred to as that each component in the list is
independent of the others.13) It immediately follows that Q(Ω, . . . ,Ω,Ei,Ω, . . . ,Ω) =
Q(Ω, . . . ,Ω,E j,Ω, . . . ,Ω), whenever Ei and E j are the same set but placed in a differ-
ent position in the list14 (this is expressed by saying that the components are identically
distributed).

§ 10 Independent and identically distributed lists. The treatment for general
probabilities follows the same path as for elementary probability, with just a bit of
attention for technical details.

In the elementary case, single lists played the role of fundamental building blocks,
and matters of convenience suggested to start from them. Instead of single lists, in
the general case one starts off by considering (E1,E2, . . . ,En), the set of all lists whose
first component is in E1, whose second component is in E2, and so on, where each Ei
is a set in E .15 One defines Q(E1,E2, . . . ,En) = Πn

i=1P(Ei). However, the collection
of all sets (E1,E2, . . . ,En) that are obtained as the Ei’s vary in E does not form an
algebra. To obtain an algebra, one considers all finite unions of such disjoint sets:

11In inductive reasoning, a list is interpreted as an ordered collection of observations.
12For example, take n = 2 and let E1 = {ωk,k ∈ K}, where K is a subset of the indexes that

identify elements in Ω and, similarly, E2 = {ω j, j ∈ J}. Then, Q(E1,E2) = ∑k∈K ∑ j∈J Q(ωk,ω j) =

∑k∈K ∑ j∈J [P(ωk) ·P(ω j)] = [∑k∈K P(ωk)] · [∑ j∈J P(ω j)] = P(E1) ·P(E2).
13The terminology “independent” finds its motivation in the interpretation of conditional probability

as knowledge updating, see §17. In fact, if, e.g., n = 2 and P(E1) ̸= 0, then Q({ω2 ∈ E2}|{ω1 ∈ E1}) =
Q({ω1∈E1}∩{ω2∈E2})

Q({ω1∈E1})
= Q(E1,E2)

P(E1)
= P(E1)·P(E2)

P(E1)
= P(E2), which is interpreted that seeing ω1 ∈ E1 does not

alter the probability that ω2 ∈ E2.
14Indeed, the two sides equal P(Ei) and P(E j) respectively, which are equal because Ei = E j.
15Starting from single lists is inappropriate for various reasons, in particular a singleton {ω i} need

not be in E and, hence, there might be no probability associated to it.
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∪m
i=1(E1,i,E2,i, . . . ,En,i), where m is any positive integer and all sets E j,i are chosen

arbitrarily from E in such a way that (E1,i,E2,i, . . . ,En,i), i = 1, . . . ,m, are disjoint.16

To each of these unions, one attributes probability ∑
m
i=1Q(E1,i,E2,i, . . . ,En,i) and, by a

cumbersome calculation, one can show that this Q is σ -additive.17

§11 Exchangeability. Exchangeability is more general than “independence with
identical distribution”, and contains it as a particular case.

Consider any probability distribution Q over the algebra in the space of lists that
has been described in §10 (i.e., the algebra of all finite unions of disjoint sets of the
form (E1,E2, . . . ,En)) such that Q(E1,E2, . . . ,En) =Q(Ei1,Ei2, . . . ,Ein) for any permu-
tation (i1, i2, . . . , in) of the indexes (1,2, . . . ,n).18 Then, the list is said to be exchange-
able.

Clearly, i.i.d. lists are exchangeable because in the i.i.d. case Q(E1,E2, . . . ,En) is
computed as a product, which renders the order of the factors inessential. The con-
verse is only partially true: exchangeable lists are identically distributed, however they
are not independent in general. To see that they are identically distributed, one takes
Q(E,Ω, . . . ,Ω). As E varies in E , this gives the probability distribution of the first
component. By the property of invariance under permutation, one obtains, for exam-
ple, that Q(E,Ω, . . . ,Ω) =Q(Ω,E,Ω, . . . ,Ω), so that the probability distribution of the
first component equals that of the second. Similarly, one shows that all components
share the same probability distribution. The fact that exchangeability is more general
than independence is shown by means of an example.

EXAMPLE 3 (Pólya’s urn) A Pólya’s urn, named after the Hungarian mathe-
matician George Pólya, is an urn that contains balls colored in two ways: red and
white. One ball is drawn from the urn and its color is observed. It is then returned
in the urn, and an additional ball of the same color is added to the urn. We suppose
that the urn contains initially two balls, one red and one white, and that we repeat the
drawing process n times. While we do not venture here to explain the exact interpreta-
tion we attribute to probability in this experiment (for, we have postponed describing
our interpretation of probability altogether until the next chapter), we take Pólya’s urn
just as an intuitive expedient to introduce the following probability distribution over
lists. Given a list, say, (r,w,r,r, . . . ,w) (“r” stands for red and “w” for white), its
probability is given the value 1

2 ·
1
3 ·

2
4 ·

3
5 · . . . ·

∗
n+1 because in the first draw there are

in the urn two balls one of which is red, in the second draw there are three balls and
only one is white, in the third draw there are four balls and two are red, and so on (the
reader will figure out what “∗” stands for). Clearly, components are not independent
since previous draws affect the probability of subsequent draws. However, they are

16Showing that this is an algebra is a simple and instructive exercise.
17In the following, to indicate the probability Q here defined we shall often use the symbol Pn, which

helpfully recalls the fact that Q is a “product probability”.
18A permutation of (1,2,3) is (2,1,3), another permutation is (3,1,2).
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exchangeable. Indeed, by a re-arrangement of terms, one easily see that the probabil-
ity of a list in which the numerosity of reds is #(r) and that of whites is #(w) is given
by #(r)!·#(w)!

(n+1)! ,19 which does not depend on the order in which red and white balls are
drawn. ∗

Arguably, the property that the probability distribution of the components does not
change through time has connections with David Hume’s “Principle of Uniformity”,
[41, 40]. We shall come back to this point in §18.

By and large, this monograph is centered around the concept of independence,
rather than exchangeability. The main reason for this choice is that the theory of in-
ductive reasoning under consistency has been amply developed for independent lists
of observations, while the corresponding theory for exchangeable lists has not grown
mature at the time this monograph is being written. Nonetheless, to the author of this
work this limitation does not seem to have any severe implication because the main
messages this monograph is meant to convey can well be cast within the independent
framework.

§12 Beyond exchangeability. The concepts of exchangeability and that of inde-
pendence with identical distribution play a fundamental role in formalizing the idea
that the past bears resemblance with the future, which is central in the theory of in-
ductive reasoning that we shall develop in subsequent chapters. Still, one can conceive
to go beyond exchangeability. Suppose for instance that the outcomes belong to the
finite alphabet {a,b,c, . . . ,z} and that the probability of seen a “b” that is not preceded
on its immediate left by an “a" is zero, and so is the probability of seeing a “c” that is
not preceded on its immediate left by a “b” and so on, and suppose also that changing
the position of “blocks” does not modify probabilistic values: so, (a,b,c,a,b) has the
same probability as (a,b,a,b,c). We see that in this case past and future are still linked
to each other, while certainly exchangeability does not hold (for, if, e.g., (a,b,a) has
non-zero probability, (b,a,a) has probability zero). We see that, in a sense, exchange-
ability not only imposes that past and future are linked to each other, it also entails that
the quantum of time in this link is one unit. We shall not come back to this matter in
the remainder of this monograph.

19Given and integer q, the symbol q! (to be read “q factorial”) indicates the number q · (q−1) · · ·2.



20 2.2 Independent and exchangeable lists of observations



Chapter 3

INTERPRETATION OF
PROBABILITY

In science and philosophy, the concept of probability has been used in diverse contexts
and a multitude of alternative interpretations have been associated to it. Consequently,
when employing probabilistic concepts, it is essential to explicitly define what prob-
ability represents. This chapter is entirely dedicated to explaining how probability
must be interpreted in this monograph, and it plays a key role in ensuring a proper
understanding of the entire work.

3.1 Subjective probability

§13 The necessity of declaring the interpretation of probability. Probability
is ubiquitous. It plays an essential role in engineering, underlies much of the social
sciences, figures prominently in quantum and statistical mechanics, and takes center
stage in financial and actuarial studies. Nonetheless, how probability has to be inter-
preted in a given context is often not obvious and claiming that it is an “idealization” is
simplistic and it is no excuse to using it without providing an explicit statement about
what it is meant to represent. To make this point clear beyond any doubt, we feel ad-
visable to illustrate it by means of a simple example. To model the water level in a
tank with an orifice at its bottom, I can employ the ordinary differential equation

dℓ(t)
dt

=−
√

ℓ(t)+q(t),

where ℓ(t) is a function of time that represents the water level, symbol d
dt denotes the

operation of derivation that describes how a quantity varies with time (for example,
velocity of a car is the derivative of its position), q(t) is the water in-flow rate and
−
√

ℓ(t) describes the out-flow rate through the orifice according to Torricelli’s law. If,
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e.g., we take ℓ(0) = 1 (tank initially full at level 1) and q(t) = 0 for any t (no water
inflow), the differential equation yields the solution ℓ(t) = 1− t + 1

4t2 for t ≤ 2 and
ℓ(t) = 0 afterward, a function that starts from value 1, initially decreases fast, then
slows down and touches zero (empty tank) at time t = 2. I don’t believe that this
is a perfect description of the evolution of the water in the tank, and the differential
equation captures only an idealized version of the phenomenon. Still, it is clear what
it is meant to describe: the water level in the tank, a quantity that I can measure with
a yardstick. This clarity of interpretation is not germane to probability: what do we
exactly mean when we say that the probability of a certain event to happen tomorrow is
90%? or when we say that the probability of throwing an ace with a die is 1/6? Is this
our belief or rather something that is inherent in the object under consideration? Since
the word “probability” can be used with different meanings, it is our duty to declare
what probability is meant to describe when we use it.

§ 14 Subjective probability. Let us consider an individual (myself)20 who has
partial knowledge about a phenomenon. Suppose that the phenomenon can instantiate
in two ways, A or B (for example, team A or team B will win tonight’s match). I am
unsure about which of the two will happen but, still, I feel that the chance of A is higher
than that of B. This feeling is called degree of belief ; how degrees of belief are built
is discussed in §15. Probability can then be used to express my degree of belief: I
attribute value 2/3 to A and 1/3 to B or, perhaps, if my degree of belief on A is even
higher, 3/4 to A and 1/4 to B.

Importantly, the degree of belief describes an intimate interplay between me and
the phenomenon, also in the light of the knowledge I have on it. For example, if
someone has thrown two dice and I can’t see any of them, I may give probability
1/36 to the outcome (1,1); however, if I see one die and it indeed shows an ace, then
I may give probability 1/6 to (1,1). Since lack of knowledge itself justifies partial
belief (epistemic uncertainty), the use of probability does not assume – nor does it
exclude – intrinsic uncertainty that cannot be compensated for by experience (aleatoric
uncertainty).

The above interpretation of probability, named subjective probability, has been
proposed and developed independently by Bruno de Finetti, [21] and [23], and Frank
P. Ramsey, [55], in the first half of the 20th century.21 We shall give more space to de

20While I do not necessarily embrace a solipsistic vision, which would lead me into a territory for
which I feel unprepared, I hold that there is no reason for me to assume the existence of others through-
out my discussion on the interpretation of probability. Hence, probability, as described here and used
throughout this monograph, refers to myself, to the way I think. Nevertheless, I shall often indulge
in expression like “one” or “we” (not only as pluralis majestatis) to indicate bearers of probabilistic
beliefs. This is an expedient that helps when it comes to comparing the consequences of various prob-
abilistic beliefs I can have (and, moreover, indulging in referring to others makes me feel less lonely in
the endeavor of writing this monograph, a weakness for which I beg the reader’s indulgence).

21While de Finetti and Ramsey have championed subjective probability, already almost a century
before in 1847 Augustus De Morgan, [51], had written: “By degree of probability, we really mean, or
ought to mean, degree of belief”.
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Finetti’s approach in §16.

In this monograph, we shall exclusively interpret probability according to the
aforementioned subjective point of view. While we need not to justify this choice,
as it is our choice, we also make explicit that we do not adamantly exclude that prob-
ability can be satisfactorily employed with other interpretations.22 But even so, what
matters is that probability is an appropriate instrument to describe partial beliefs, and
their evolution as new information is acquired, which is the subject matter of this
monograph.

§15 How degrees of belief are built. Degrees of belief are created in various ways.
(i) I can analyze an object to form an opinion on how it operates. For example, if I
analyze a coin and deem it to be a true coin with no manipulations, then I can assign
equal probability of 0.5 to it landing heads or tails; (ii) previous trials can suggest prob-
abilistic values. Suppose I execute an experiment 1000 times and record the empirical
frequency with which the outcome takes one of three possible values a,b,c. I can then
use these relative frequencies as the probability to obtain an a or b or c at the next trial
(more on the relation between frequencies and probabilities in §19); (iii) probabilistic
values can be suggested by a person I interact with, who claims to have an experience
on the phenomenon at hand; (iv) in the presence of outcomes that exhibit apparent
symmetry (for example, receiving a given set of five cards in a card game), one can
appeal to a principle of indifference (a terminology coined by John M. Keynes) and
assign the same probability to each outcome. While inchoate versions of this principle
were already present in Blaise Pascal, Jacob Bernoulli and Gottfried W. von Leibniz,
the principle of indifference was fully developed into a theoretical apparatus mainly
by Abraham de Moivre, [24], and, later, by Pierre S. Laplace, [48]; (v) yet another
approach, proposed by Bruno de Finetti, consists of relating probabilities to odds in a
wager: the probability of an event is a fair price to enter a bet on that event. We do
not dwell here on describing this latter approach in more detail because we shall give
a close attention to it in the next §16.

§16 Obedience to the laws of probability. The axioms of probability provide
a mathematical model for the degrees of belief. I am not obliged to abide by these
axioms, I can or cannot accept them depending on whether my way of thinking aligns
with them and, if I accept them, they provide the foundation to construct a theoretical
framework for describing the evolution of beliefs by using deductive logic. This is
not different from accepting or not accepting a frictionless model for describing the
movement of a cart, from which certain logical conclusions can be drawn. Hence, the
axioms of probability need not be justified or proven, rather they should be selected so

22We do not reject, for instance, that probability can be used to describe an intrinsic indetermination
in physical quantities beyond any possibility to compensate for it by observations, as is held in quan-
tum mechanics. Henri Poincaré would disagree with us, in [52] he writes: “If we were not ignorant,
there would be no probabilities; there would only be room for certainty”. However, delving into a thor-
oughgoing presentation of the interpretations of probability alternative to the subjective one simply lies
outside the scope of this monograph.
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as they get broad acceptance, on pain of losing interest.

Kolmogorv’s definition of probability in §5 has become mainstream in probabilis-
tic studies. Most of its prescriptions are broadly acceptable according to a subjective
point of view: particularly, it seems reasonable that the probability of the universe is 1
and that the probability with which one among two mutually exclusive events happens
is the sum of the probabilities of the two events. However, the requirements that the
set of events E form an algebra and the property of σ -additivity are more question-
able. It is a fact that alternative formalizations of the concept of probability have been
proposed that eschew these requirements, and we feel obliged to briefly describe the
one proposed by Bruno de Finetti as, we believe, it adds value to our discussion.23

De Finetti introduced a framework for coherent bets, that is, bets that do not entail
a sure loss, and proved that the axioms of probability can be logically derived within
this framework. Consequently, the axioms of probability emerge as a consequence
of coherence, rather than serving as the starting point of the theory. To be specific,
consider any collection E (finite or infinite) of subsets from a universe Ω. For any
E ∈ E , let us assign a price p(E) for entering a bet where one receives one unit of
money if the event E proves true and zero otherwise. The opponent can purchase
bets on multiple, albeit finitely many, events E1, . . . ,Eq and pay us the corresponding
prices, while he can simultaneously force us to buy additional bets on Eq+1, . . . ,Eq+m
under analogous, but reversed, conditions. In other words, we set the prices, but the
opponent decides which side will be ours in each bet. For example, if the opponent
purchases the bet on E1 and gets us to buy the bet on E2, we immediately receive the
sum p(E1)− p(E2) (either positive or negative). Subsequently, we pay one unit of
money to the opponent if E1 proves true while E2 does not; conversely, we receive one
unit of money from the opponent if E2 proves true while E1 does not. No payment
occurs in the other cases (both E1 and E2 are true or both are not true). A set of prices
is deemed coherent if it prevents the opponent from constructing sets of multiple bets
in which we incur a certain loss. This implies that the prices are additive: if E1,E2 ∈ E
are incompatible and E1 ∪E2 is also in E , then p(E1 ∪E2) = p(E1)+ p(E2). To see
this, suppose that p(E1 ∪E2) < p(E1)+ p(E2) (the opposite case is similar). If the
opponent bets on E1 ∪E2 and gets us to bet on E1 and E2, he immediately receives the
net positive amount p(E1)+ p(E2)− p(E1∪E2), and certainly there is no exchange of
money afterward, so that this situation contradicts coherence. Coherence also implies
that the price for betting on the universe is 1. What coherence does no imply is that
the set E is an algebra, nor does it imply the property of σ -additivity. Next, de Finetti
argues that the prices we assign to bets mirror our personal degrees of belief. Indeed,
if I believe that event E is likely to occur, I will demand a high price to bet on it;
however, I cannot exaggerate, as doing so would entail an expected loss should the
opponent force me to bet on it. Therefore, probabilities are equated with prices.24

23De Finetti first proposed his ideas in [21], while a classic, extended, exposition is [22].
24Identifying probabilities with prices may be viewed as a stretch, and indeed it has raised perplexi-
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As it may have appeared, we lean towards sympathizing with de Finetti’s proba-
bility framework because it avoids an (artificial) use of the mathematical concept of
infinite (as it does the property of σ -additivity). On the other hand, it is a fact that
the whole theory of inductive reasoning under consistency, which is the central focus
of this treatise, has been developed in technical papers within the tradition of Kol-
mogorov’s probability, and we don’t dare reposition it here outside this established
framework. Therefore, throughout we shall make reference to the axiomatic system of
probability described in §5. While asking for the reader’s mercy for this choice, we
also notice that the σ -additivity does not affect in its essence any of the fundamen-
tal ideas that we mean to put forward in this work and, therefore, we suggest taking
σ -additivity just as an idealization at the service of mathematical simplicity.

We conclude this point by noting that the axioms of probability delimit the feasible
domain within which a probability distribution can be chosen, but the actual selection
of probabilistic values rests with the individual, who makes a choice guided by back-
ground knowledge, also in the light of personal inclinations.25 In a fortunate simile,
de Finetti himself compared a probability distribution to a drawing, wherein the laws
of perspective correspond to the axioms in probability theory; in [23], he writes: “If
someone draws a house in perfect accordance with the laws of perspective but choos-
ing the most unnatural point of view, can I say that he is wrong? [· · ·] the various
internally consistent opinions about probabilities can analogously be conceived as all
the perspectives obtainable by varying our point of view”.

§17 Conditioning and image/composition probability. The operation of con-
ditioning has been described in §6. In subjective probability, conditioning has of-
ten been advocated as a mathematical tool that describes the updating of beliefs
when a new piece of information comes along. For example, suppose that I believe
that having two consecutive days of sun, tomorrow and the day after, has proba-
bility 45% while the probability of just having one sunny day, tomorrow, is 60%
and so is the probability that is sunny the day after. So, before any observation,
I hold the belief that in two days from now I’ll have a sunny day with probability
60%; however, if I wait until tomorrow and tomorrow is a sunny day, then I up-
date my belief to the probability P({day after tomorrow sunny}|{tomorrow sunny}) =
P({day after tomorrow sunny}∩{tomorrow sunny})

P({tomorrow sunny}) = 45%
60% = 75%.26

ties. For instance, Edwin T. Jaynes, [43] writes “it seems to us inelegant to base the principles of logic
on such a vulgar thing as expectation of a profit”. For example, a Buddhist monk may have little inter-
est in money, so much so that he can accept any set of prices, while he may carry strong beliefs on the
world. We here take the defense of de Finetti for the same reason that an axiomatic probability system
has to be accepted, not justified: de Finetti’s model will be accepted, and put at work, only when one
agrees to identify probabilities with prices as a reasonable modeling assumption.

25This point is further commented upon in §20, where we briefly discuss logical probability.
26Some authors contend that conditional probability should only be interpreted as a state of mind

prior to actually seeing any observations: “if I would see that . . .”. We do not embrace this point of view,
and take conditioning as a factual updating rule that can be used after actually collecting an observation.
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Similarly to §16, I am not compelled to adopt conditioning as a rule for updating
probabilities: it is a model, and I will accept it provided I see it describes my way of
thinking.27

Instead, image probability, as discussed in §7, is a tool to introduce a probability
distribution on the co-domain of a function whose domain already admits a probability
distribution. Domain and co-domain describe two separate entities, and – while sen-
sible and easily acceptable – assuming that we build a probability on the co-domain
as an image probability is again a modeling assumption that I can, or cannot, abide
by. Similarly, the composition probability discussed in §8 is a model of the degree of
belief in the simultaneous occurrence of two events, and its acceptance is, once more,
a modeling assumption.

Throughout this monograph, we adhere to the modeling interpretation of condi-
tioning and image/composition probability as described in this section. Consequently,
for instance, we assume consistently that the image probability is an accepted model
of our beliefs in induced phenomena, without having to explicitly declare it each time.

§18 Exchangeable observations. In §11 we noted that the notion of exchangeabil-
ity has connections with David Hume’s “Principle of Uniformity”. We come back to
this observation here and discuss it in some detail. In [40], Hume questioned whether
one can rationally use observations collected in the past to predict the future. He ar-
gued that this requires that the future will resemble the past, i.e., that the course of
nature is uniform. However, he denied the possibility of rationally drawing the con-
clusion that nature is uniform with his famous two-pronged criticism: (a) the unifor-
mity of nature cannot be proven deductively because “it implies no contradiction that
the course of nature may change, and that an object, seemingly like those which we
have experienced, may be attended with different or contrary effects”; (b) it cannot be
proven by referring to experience either since “all our experimental conclusions pro-
ceed upon the supposition that the future will be conformable to the past”, hence using
experience would lead to circularity. Therefore, according to Hume, no reasoning can
justify forming conclusions that go beyond the past instances of which we have had
experience. This dilemma is famously known as “the problem of induction”.

As we have seen in §11, exchangeability implies the invariance of the probability
distribution (and so does the i.i.d. assumption of §10), which can be interpreted as
an attempt to formalize the principle of uniformity.28 It is of the utmost importance,

27When walking down a long path in probabilistic computations, it is not credible that we describe
how we think; rather, we are describing how we would think, should we be endowed with enough mental
power. Additionally, the exercise of deriving conclusions from premises by mathematical manipulations
that use accepted probabilistic rules suggests me what I must think if I want to be consistent with the
adopted probabilistic model.

28In a probabilistic framework, the probability distribution is a complete description that as-
signs a probability to each single event. Let us consider, for example, a simple set Ω that only
comprises two elements: {radionuclide R decays within a time T from its generation} and its opposite
{radionuclide R does not decay within a time T from its generation}. Assuming invariance of the prob-
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however, that exchangability is a property of the probability distribution of lists of ob-
servations, and the only meaning given in this monograph to probability is subjective.
Therefore, assuming exchangability in no way posits a state of nature, it merely puts
forward a modeling assumption on the way I expect that the flow of observations un-
folds, an assumption that I can or cannot accept depending on the circumstances as
dictated by the problem at hand. Our primary interest in this work is to investigate
– by the only use of deductive logic – how knowledge advances when a model that
assumes exchangeable observations is accepted. This endeavor will bring us into a
territory of deep exploration, e.g., about the possibility of creating knowledge from
observations in a condition of initial absence of probabilistic prejudgments, or about
the convergence of the opinions of (hypothetical) individuals who hold distinct initial
ideas and get exposed to common experiences.

Before concluding this point, we find it advisable to add that accepting the invari-
ance of probabilities is not a condition we have, or have not, to accept universally; in
fact, its acceptance is highly dependent on the specific problem that we are dealing
with. It has been argued, as seen in [27], that laws with temporal restrictions would
be inherently more mysterious and puzzling than ones that are temporally universal.
While this can be true for fundamental laws of physics, it is important to recall that
inductive reasoning is an essential tool in applied fields spanning from economics to
engineering, from medicine to meteorology, from control to social sciences. In all
these disciplines, one looks at specific portions of the real world, and I want to argue
here that adopting such a partial perspective can introduce an apparent time-variability,
which we need to recognize in our process of modeling. To understand this point, con-
sider the following system of differential equations:{

dx1(t)
dt = i1(t)

dx2(t)
dt = −x1(t) · x2(t)+ i2(t),

where i1(t) and i2(t) are two inputs. This is clearly a time-invariant system in the sense
that it reacts to external stimuli and initial conditions independently of when we start
operating on it. In fact, suppose that the system is initialized at time t = 0 with (x̄1, x̄2)
and is fed with the inputs ī1(t) and ī2(t), and let (x̄1(t), x̄2(t)) be the corresponding
movement (i.e., (x̄1(t), x̄2(t)) is the solution to the system of differential equations). If
we now postpone the initialization until time t̃: (x1(t̃),x2(t̃)) = (x̄1, x̄2) and apply the
delayed version of the inputs ī1(t − t̃) and ī2(t − t̃), then the corresponding movement
becomes (x̄1(t − t̃), x̄2(t − t̃)), that is, the same movement as before with the only
difference that it is delayed by t̃ instants, which we interpret as time-invariance. On
the other hand, suppose that, say, i1(t) = 1 for any t and that x̄1 = 0. By integrating
the first equation dx1(t)

dt = i1(t), we obtain x1(t) = t. Substituting this solution in the

ability distribution means that the probability of decaying within time T remains constant over time,
allowing us to conceive of learning this probability through experiments conducted in a laboratory.
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second equation now gives

dx2(t)
dt

=−t · x2(t)+ i2(t),

in which time t appears explicitly; hence, in the partial perspective of the second
equation, the system looks now time-varying. This phenomenon of apparent time-
variability is ubiquitous in applied sciences and may challenge our willingness to ac-
cept a model that postulates the invariance of the probability distributions. For ex-
ample, when dealing with the rate-of-returns of financial assets, we may assume uni-
formity of behavior over a limited time window, while it is common opinion that the
behavior of the market does change across longer periods of time. Still, it is worth
noticing that entire fields in telecommunications, machine leaning, control and infor-
mation theory, to cite but a few examples, regularly assume the invariance of the prob-
ability distributions. Therefore, studying inductive reasoning within this framework
is well worth it not only in connection with fundamental laws but also to deal with
problems in more applied fields.

§ 19 Repeated experiments. I instinctively prefer certainty to uncertainty and,
hence, concentrated probability distributions are more palatable because they are
closer to certainty. Interestingly, concentration in the distribution often emerges out
of repetition. For example, suppose that a string of symbols has probability 4%
of getting corrupted in the transmission through a channel. Correspondingly, the
universe contains the following two elements: a = {the string gets copputed} and
b = {the string does not get corrupted}, where the first has probability 4% and the
second 96%. To describe repeated, independent experiments, we use the procedure
described in §10. Hence, the probability of a list (ω1,ω2, . . . ,ωn), where each ωi is
either a or b, is given by (0.04 ·#(ωi = a)) · (0.96 ·#(ωi = b)). Suppose, for example,
that n = 10000 and consider f = #(ωi=a)

10 000 , the empirical frequency of corrupted strings.
A calculation that involves Bernullian distributions shows that the distribution of f is
concentrated around 0.04 so much that it belongs to the interval (0.032,0.048) with
probability 99.99%.29

Importantly, the above result must be given exclusively a subjectivist interpre-
tation: if my degree of belief in a is 4%, then my degree of belief that f is in
(0.032,0,048) is 99.99%. This result has nothing to do with the frequentist inter-
pretation of probability along an approach first proposed by John Venn, [66], and then
developed, among others, by Richard von Mises, [67], and Hans Reichenbach, [57],
according to which the probability of an event is the limiting relative frequency with
which such an event occurs in repeated trials. While this latter interpretation leads to
a number of inconsistencies that have already taken up too much time of many gifted
researchers, we just want to dismiss it here as being uninteresting (because of its in-
finitary nature) and poorly defined (because the mutual relation among trials are not,
and cannot be, precisely characterized).

29This is the image probability of f according to §17.
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§20 Logical probability. While we mentioned earlier that a thoroughgoing ex-
ploration of the various interpretations of probability goes beyond the scope of this
monograph, we feel advisable to digress momentarily on the notion of logical proba-
bility because this can better position our use of subjective probability.

Early proponents of logical probability were John M. Keynes, [45], and Harold
Jeffreys, [44], but the most unyielding supporter of this interpretation has been Rudolf
Carnap, [15]. Logical probability holds that any piece of evidence confers an objec-
tive support (or confirmation) to given hypotheses. The relation between evidence and
hypothesis is logical, and probability extends sure, deductive logic to partial, inductive
logic. Quoting directly from [15]: “Deductive logic may be regarded as the theory
of the relation of logical consequence, and inductive knowledge as the theory of an-
other concept which is likewise objective and logical, viz, probability1 [Carnap calls
“probability1” the logical probability, in contrast to the frequentist probability, which
he calls “probability2”] or degree of confirmation. That probability1 is an objective
concept means this: if a certain probability1 value holds for a certain hypothesis with
respect to a certain evidence, then this value is entirely independent of what any person
may happen to think about these sentences, just as the relation of logical consequence
is independent in this respect.” He adds: “Suppose somebody makes the statement in
deductive logic: ‘h follows logically from j.’ [...] The statement ‘the probability of h
on the evidence e is 1

5 ’ has the general character as the former statement; therefore
it cannot violate empiricism any more than the first. Both statements express a purely
logical relation between two sentences.”

Let me now express my personal take on logical probability. Logical probability
can perhaps be viewed as a model of perfect thinking in the absence of certainty. If
so, in a sense logical probability is akin to our subjective probability, for we have said
that subjective probability is a model of my thinking. However, the problem with this
interpretation of logical probability is that it is not clear what it is meant to be a model
of, that is, what “perfect thinking’ means. Is it perhaps a mysterious entity whose
existence we are here positing? Altogether, it seems to me that associating perfect
thinking to something beyond the circularity of what logical probability itself defines
turns out to be difficult. Alternatively, logical probability can be seen as a rational
way of thinking, which extends deductive logic, and indeed this is the interpretation
put forward by Carnap. However, if I am dragged into discussing this point of view,
which I reluctantly do, I must say that it is not obvious to me that even deductive
logic can be given a “logical status”. Take the sentence: if all elements in a set A have
property P, then all elements of a set B that is contained in A have property P (a relation
between two propositions established by deductive logic); isn’t this a transposition of
the experience that if we remove a bucket of balls from a box that contains all red
balls, then, upon inspection, all balls in the bucket are red? While I do not want to
open a discussion on deductive logic here, certainly I cannot accept that probability
theory is a logical extension of deductive logic that extends, and is justified, beyond
experience, for not even deductive logic has this status in my mind. On the other hand,
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deductive logic is quite specific and so well delimited that I feel authorized to “freeze”
it and treat it as being given beyond any reasonable doubt as part of my model for
inductive reasoning, while probability theory refers to such a multitude of situations
and conditions that coming to a consolidated ground is impossible, and indeed this is
the very reason why probability theory only introduces general rules that limit the way
a probability distribution can be chosen.

Beyond all the foregoing conceptual criticisms, what might be the practical ef-
fect of assuming logical probability in a scientific theory of induction?30 In whatever
conception of logical probability, determining the actual values of the degree of confir-
mation for the claims that stand in a certain relation to evidence is practically impossi-
ble. Then, lacking a quantitative support, the role of logical probability in a scientific
theory of induction, however conceived, becomes doubtful. But there is more than
that. Assuming that my probabilistic judgments somehow follow – or even, to a cer-
tain degree, conform to – a perfect way of judging may encumber my ability to freely
speculate on the very reasons by which probabilistic reasoning is effective, which is
detrimental to the development of a scientific theory of induction. Altogether, the role
of logical probability seems to us more akin to that of God in a religion, its existence
is reassuring and certainly has a value, but this value lies outside the domain of free
speculation in a scientific theory of induction.31

§ 21 Sets of probabilities. Probability is a suitable instrument to describe my
thinking in conditions of uncertainty. On the other hand, there is no reason why we
should only use probability, warding off the possibility of mixed descriptions, partly
probabilistic and partly set-theoretic. For example, if I know that in an urn there are
100 balls, partly red and parly white, but I do not have any evidence of the mutual
proportion of the two, why should I not model my belief by saying that the probability
of extracting a red ball in the next draw is m

100 , where m is any number between 0 and
100?32

While using a set of probabilities seems to us a perfectly legit way of modeling,
at times the principle of indifference has been advocated to create fully probabilis-
tic models. However, the principle of indifference may generate inconsistencies and
should be applied with care. The following example taken from [65] illustrates the
idea. A factory produces wooden squares with variable side-length between 0 and 1
meter. If I have no information about the production process, by advocating the princi-

30By “scientific theory of induction” we mean a free speculation that pursues logical consequences
stemming from a prescribed model of inductive reasoning.

31Certainly, we do not deny the right of philosophy to speak of God and other metaphysical entities.
We simply observe that introducing logical probability in a scientific theory of induction may hinder
one’s ability of free speculation.

32In Bayesian probability, all elements present in the problem are probabilized according to sub-
jective beliefs. As a consequence, the subjective interpretation of probability is largely adopted in
Bayesianism, which has spawned the widespread misconception that subjectivism implies the use of
Bayesian probability.
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ple of indifference I may assume uniform probability distribution of the length. Then,
I conclude that the probability of drawing a square with side-length between 0 and 0.5
meters is 50%. Let us re-formulate our model. A factory produces wooden squares
with variable area between 0 and 1 square meter. Since I have no information about
the production process, I advocate the principle of indifference and assume uniform
probability distribution of the area, leading to the probability 50% of drawing a square
with area between 0 and 0.5 square meters. This result is in contradiction with the
previous conclusion, which leads to probability 50% of drawing a square whose area
is between 0 and 0.25 square meters (to draw this conclusion, use the image proba-
bility distribution for area = length2 obtained from the probability distribution of the
length, see §17). Clearly, this inconsistency is generated by there being more than one
way to carve up the space of alternatives, which show that adopting the principle of
indifference may imply choices that surreptitiously drive our evaluations.

Hence, the principle of indifference is not a suitable way to create fully probabilis-
tic models. On the other hand, it is a plain fact that in many problems we nowadays
address in applied fields such as finance, medicine and engineering, assuming that
we hold probabilistic beliefs on all uncertain elements present in the problem is com-
pletely unrealistic. For instance, when modeling the effect of a defibrillator in the
resuscitation of an individual in cardiac arrest, I well accept that a probability distri-
bution describes the physiological conditions of the individual and the ability of the
defibrillator to resuscitate him. On the other hand, describing this probability distribu-
tion, or providing probabilistic weights for the various probability distributions that I
can envisage as done in a Bayesian approach, does not appear to be a reasonable mod-
eling methodology. Interestingly, theories can be conceived that are able to generate
results of practical utility without introducing any knowledge on the possible distribu-
tions by which cases are generated (distribution-free theories). Hence, the existence of
a probability is a necessary mental condition to apply the theory, but the actual assign-
ment of the probabilistic values is not required to use the ensuing results. The theory
of inductive reasoning under consistency that we shall present later in this monograph
is (in a sense to be carefully specified) one such theory.

3.2 What is the role of subjective probability?

§22 Knowledge and decision processes. If probabilistic beliefs are purely sub-
jective, why are they so important? one might ask. The simple answer is that they
describe my expectations on events when full, certain knowledge is not possible. They
have, in a sense, the same character as certain knowledge insofar they describe my
understanding and take on things, but also have the additional flexibility to account for
the level of trust I hold when full trust is not reasonable. This knowledge matters as it
is my knowledge, and it plays an essential role in those deliberations that are intended
to guide my practical decisions.
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Correspondingly, the impact of probabilistic beliefs is quite broad, and indeed it
extends beyond what is commonly thought. It is normal experience that only partial
and imprecise knowledge is available in many endeavors of everyday life. On the other
hand, many fields in decision-making involving financial, medical and engineering
evaluations are the realm of uncertainty, which is the sole reason for the quest for
a trade-off between robustness and performance. But there is more, and indeed all
physics is based on “consolidated probabilistic beliefs”: physical laws are nothing but
the crystallization of relations among natural variables on which our belief is so high
that it is practically convenient to treat them as certain. They are not proven to be
universally valid, they are just conventionally deemed to be universally valid, and they
drive our way of thinking and acting.33

§23 What is then left to an engineer? What is then left to an engineer who is in-
terested in a design that must work when applied to the real world? We do not have an
answer at this stage, simply because the real world is not in the picture yet. Probabilis-
tic beliefs describe a state of mind, and probability theory models its evolution under
the effect of observations. The observations are the inputs to the model, but how they
are generated is in no way contained in the probabilistic model. On the other hand, it
makes perfect sense to complement a probabilistic model of beliefs with a model of
the real world and ask how the two interact. The best explanation is by an example.

EXAMPLE 4 (RandN) In the manual of Matlab, the routine RandN is de-
scribed as a generator of normally distributed random numbers34 with zero mean and
unitary variance. And this is what I hold in my mind. Suppose that my interest lies in
the mean m = x1+x2+···+x50

50 of lists of 50 independent numbers (x1,x2, . . . ,x50) gener-
ated with RandN. By a simple calculation, I conclude that m is a random number from
a Gaussian distribution with mean zero and variance equal to 1/50 (this is the image
probability of m obtained from (x1,x2, . . . ,x50) according to the procedure in §17). As
a consequence, m belongs, e.g., to the interval (−0.42,0.42) with probability 99.73%.
This is what I hold in my mind, it is my belief. How does it relate to the actual mean I
obtain when I really generate 50 numbers with RandN? This question finds no answer
in my probabilistic model simply because the way RandN really operates is not in the
picture yet. It is a fact that RandN operates on the ground of a seed, whose value can
also be specified by the user and, once the seed is given, the list is generated by a fully
deterministic procedure. I can then consider a large amount of seeds, say 10 000, look
at the corresponding lists of 50 numbers, and verify for how many, and possibly which,
seeds the ensuing mean m indeed falls in the interval (−0.42,0.42). ∗

33De Finetti, referring to Henri Poincaré, wrote in [23] “he has clearly understood that only an
accomplished fact is certain, that science cannot limit itself to theorizing about accomplished facts but
must forsee, that science is not certain, and that what really makes it go is not logic but the probability
calculus.”

34A normally distributed random number is a number generated as value of a random variable that
has a Gaussian distribution.
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This example was about an extremely simple situation. However, it makes perfect
sense to employ the same conceptual scheme in complex, real-life problems. Given
any probabilistic method that proceeds using partial information to draw conclusions
(which are then possibly applied in feedback to the real world), one can wonder how
this method will work in practice. This question cannot be answered until one posits a
model of the real world, describing how it generates observations and how it reacts to
the stimuli we impose on it.35,36 To accomplish this descriptive task, our preference37

is to adopt a deterministic approach because, otherwise, we would find ourselves in the
awkward position of having to clarify to which part of the real world the introduced
probability refers. It also makes quite a bit of sense to assume multiple deterministic
alternatives to describe the real world so as to safeguard against various occurrences
and possible time-variability, and it can be reassuring to see that the adopted procedure
works well in many of the envisaged alternatives.38

§24 About the existence of the real world. Although unfolding this point is un-
necessary for the development of this monograph, a voice suggests us to briefly clarify
the implications of §23 on our perspective on the real world. Indeed, there aren’t any.
When modeling the real world, we are not assuming that the real world exists in any
given form, we do not give any ontological value to our action of modeling. Describ-
ing the real world is simply a mental exercise to verify the quality and effectiveness
of a probabilistic procedure in relation to our perception of the real. To me, it makes
perfect sense to say: if I describe the operation of the real world I perceive this way
and I accrue knowledge on it and process it this other way, then the overall structure
formed by the model of the real world and my operating on it behaves according to the
following scheme. It is just a dissociation of my thinking between how the world is de-
scribed and how I come to learn about it and, hence, operate on it. This position stands
in the face of the obvious objection that I can only think my thoughts. Making clear
this view matters because this monograph does not want to provide any contribution to
the debate on the existence and nature of the real world beyond our perceptions: this

35One can also operate empirically by a verification of the actual effectiveness of the conclusion.
However, a factual verification cannot testify to the correctness and quality of the probabilistic method
(in whatever sensible sense one can give to the words “correctness” and “quality”), it only puts in
relation a specific action, or judgment, determined from a probabilistic method with a reaction of the
real world.

36At times, these two modeling levels – what I think and the model of how the real world operates
– are made to coincide. For example, when an engineer designs a bridge, he may make reference
to principles of structural engineering that are deemed certain in first approximation (see §22), which
constitutes both his beliefs and the model of reality.

37We say “preference” because, as already noted at the end of §14, we have no fundamental reasons
to exclude other possibilities.

38At times, when the real world is assumed to operate in one among various ways, we reduce our
judgment about the adopted procedure to a single number by averaging (with weights adding up to one
and describing, perhaps, the relative importance we attribute to cases) the performances obtained over
the possible operating conditions. Despite the weights having the mathematical structure of a probability
distribution, one should refrain from giving any probabilistic interpretation to this operation.
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monograph takes a distance from any support, or refutation, and indeed any judgment
on the nature of reality.



Chapter 4

GUARANTEES AND
PERSPECTIVES IN AN AGNOSTIC
SETUP

This chapter is not yet about inductive reasoning under consistency (which is the sub-
ject of the next two chapters), rather it is preparatory to it. Through the examination
of simple examples, it is shown that precise reliability claims are possible in an ag-
nostic setup in which no preliminary probabilistic knowledge is assumed. However, a
fundamental distinction must be drawn between judging the reliability of an inductive
procedure and evaluating the outcome of the procedure when applied to a given sample
of observations. This distinction is explored in the second section of the chapter under
the title of “conditional knowledge”.

4.1 Observations as a means to create knowledge

§25 The agnostic setup. Using the rules of probability, probabilistic beliefs can
be updated into new probabilistic beliefs. At times, however, I start from a set of
probabilities, rather than one single probability distribution, so as to accommodate my
subjective inability to describe uncertainty by way of one single probabilistic stand
(see §21). The extreme situation is encountered when any probability distribution is
deemed possible, so embracing a fully agnostic attitude.39 If so, is it still possible to
draw conclusions of theoretical value – and practical interest – by using probabilis-
tic methods? As mentioned, for the largest part of this monograph, we shall adopt

39While in this monograph the word “agnostic”simply means that any probability distribution of the
observations is possible, we also note that our use of agnostic well conforms to the ethos of Thomas H.
Huxley; in [42], he writes: “Agnosticism is not a creed, but a method, the essence of which lies in the
rigorous application of a single principle [...]: in matters of intellect, follow your reason as far as it
will take you, without regard to any other consideration.”
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the mental stance that observations follow an i.i.d. (independent and identically dis-
tributed) scheme, which reflects our idea that the problem at hand exhibits invariant
properties over time. Within this framework, in subsequent chapters we shall present
deep-seated and fully agnostic results in relation to the broad area of inductive reason-
ing under consistency. In the current chapter, we focus on a simpler framework that
allows us to put forward some initial, and yet fundamental, facts about the possibility
of making agnostic judgments.

The value of the exploration in an agnostic setup rests in the fact that there is a
substantial difference between accepting that a probability distribution exists and that
it is known. In fact, when grappling with problems involving complex and articulated
data generation mechanisms, assuming the availability of a description of the underly-
ing probability distribution is often unrealistic. At a deeper conceptual level, updating
a distribution only describes how a priori knowledge morphs into updated beliefs as
new observations are acquired. Nonetheless, this does not resolve the fundamental
quandary of inductive reasoning: the origin of knowledge. In fact, a priori knowledge
is in need of justification as much as the process of updating beliefs based on new
observations. In contrast, generating informative probabilistic results in an agnostic
setup goes deep into exploring the mechanisms by which knowledge can be created out
of ignorance in the light of observations, and this points to the very core of inductive
reasoning.

We start with an example.

EXAMPLE 5 (drawing a red ball from an urn) Consider an urn containing
100 balls colored in red and white. I hold that drawing any ball is equally proba-
ble, so that the probability of drawing a red ball equals the proportion of red balls in
the urn. On the other hand, I have no idea of what the actual proportion is. Con-
sequently, I model the probability of drawing a red ball in the next draw as p = m

100 ,
where m is any number between 0 and 100 (we have already encountered this setup in
§21). Next, I make an experiment: a ball is drawn from the urn, its color is observed
and the ball is returned to the urn. This operation is in fact repeated 1000 times (which
I hold to be independent draws), at the end of which I compute p̂ = #(r)

1000 , the ratio be-
tween the number of times a red ball has been observed over the total number of trials.
I interpret this ratio as an estimate of the probability p of drawing a red ball.40

Figure 4.1 depicts the image probability distribution of p̂ when m = 70. As it
appears, this distribution is concentrated around p= 0.7. Quite interestingly, a similar
concentration result occurs regardless of the value of m, and the concentration level of

40One might correctly argue that the setup described here is not entirely agnostic, in fact p takes one
of the values m

100 rather than any real value from [0,1]. The reason for considering an urn with 100 balls
is to give a more concrete appeal to the example (and it also facilitates better graphical representations
of the ensuing results). However, all mathematical facts stated in this example remain valid when p can
be any real value from [0,1], which indeed corresponds to an agnostic setup.
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Figure 4.1: Distribution of p̂ when p = 0.7.

p̂ around p can be rigorously characterized for any value of m by means of Hoeffding’s
inequality:41

P1000
p {|p̂− p|> α} ≤ 2exp(−1000 ·α2). (4.1)

The interpretation of this formula is as follows. Pp is the probability distribution that
assigns probability p to drawing a red ball. For any given number α , the probability
of drawing an independent sequence of 1000 balls42 such that the estimate p̂ deviates
from p more than α is no more than 2exp(−1000 ·α2), twice the exponential function
with negative exponent given by 1000, the number of trials (so that with increasingly
many trials the probability goes to zero exponentially fast), multiplied by α2 (so that
taking a small value for α increases the value of the bound on the probability). For
example, with the choice α = 0.08, the left-hand side of (4.1) yields a value of 3.23 ·
10−3, and we can draw the conclusion that p̂ is an estimate of p within a tolerance
of 0.08 with (high) probability 1− 3.23 · 10−3 for all values of p. Figure 4.2 shows
graphically this result: for any horizontal line corresponding to a value of p, one sees
that the number of red balls that are drawn in 1000 trials takes a value so that p̂= #(r)

1000
is apart from p no more than 0.08 with high probability. From this result we conclude
that p̂ provides valuable knowledge on p without resorting to any prior knowledge
(agnostic setup). ∗

The previous example demonstrates that probabilistic knowledge can be generated
from observations in a fully agnostic setup. This fact has implications of paramount

41This inequality was proven by Wassily Hoeffding in [38].
42For the notation P1000

p , make reference to Footnote 17.
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Figure 4.2: Distributions of p̂ for all values of p. For each value of p, the white strip is an interval of
semi-width 0.08 centered at p.

importance in inductive reasoning that we shall amply explore in this monograph
within the framework of learning under consistency. For now, in the next point we
will analyze some direct consequences for the example of the urn.

§26 Some consequences. Referring again to Example 5, suppose that we set up a
lottery in which an opponent wins one unit of money if the next draw yields a red ball.
The composition of the urn is not within our control and, initially, we do not know it;
however, we are allowed to conduct experiments on the urn to determine the lottery
entry price. After drawing a ball 1000 times, we set the price c = (p̂+ 0.08) · (1−
3.23 ·10−3)+1 ·3.23 ·10−3. What conclusions can we draw? For any value of p, the
expected value of our opponent’s winnings is equal to p itself.43 Also c is a random
variable, defined over the set of lists of 1000 draws. Its expected value can be lower
bounded as follows: over the lists of draws for which |p̂− p| ≤ 0.08 (which occurs with
a probability of at least 1−3.23 ·10−3), it holds that p̂+0.08 ≥ p, while for all other
lists we use the trivial bound 1 ≥ p. It then easily follows that E[c]≥ p = E[w], that is,
the expected value of the price is no less than the expected value of the win. Does this
mean that we shall certainly make money in the next bet? Certainly not. However, an
application of the law of large numbers44 reveals that, if the entire scheme (i.e., an urn
is displayed, we make 1000 draws to determine the lottery price, and then the gambling
takes place) is repeated (each time independently of previous instances with a new urn

43In elementary probability, the expected value of a random variable f is given by E[ f ] = ∑ω f (ω) ·
P(ω). This is the mean value of f with probability values acting as weights. In the case at hand, the
random variable that describes the winnings – let us denote it with the symbol w – takes the value 1 if a
red ball is drawn (which has probability p) and zero otherwise. Hence, E[w] = 1 · p+0 · (1− p) = p.

44In this monograph, we often refer to classical results from probability theory. In doing so, we
exempt us from recalling any time that these results can be found in any textbook on probability.
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containing an arbitrary proportion of red and white balls) over and over again, in the
long run we shall not lose money with probability 1, which is written in formulas as
follows:

liminf
N→∞

1
N

N

∑
i=1

[ci −wi]≥ 0 with probability 1,

where i is an index that runs over lotteries, ci −wi gives our net random income (price
minus win) on the i-th bet and “with probability 1” means that the result holds over an
event that has probability 1 or, which is the same, it can only fail on an event whose
probability is zero.45 Moreover, using results akin to Hoeffding’s inequality, one can
also establish conclusions that are valid with arbitrarily high probability for an N that
is sufficiently large (large, but finite). Of the most importance is that all these results
hold without any a priori knowledge of the composition of the urns in the various
lotteries: information on the composition is only acquired through the experiments.

Since the reader’s attention may, at this point, have got trapped into too many
technical details, it is important to pause and examine the above result from a distance
to appreciate the importance it has in relation to applied fields. For instance, when
considering problems in actuarial sciences, by a similar approach one can establish
data-driven policies that are probabilistically guaranteed without requiring any a priori
knowledge on the underlying probability distributions. An insurance company, for
example, can set premiums for clients belonging to various groups (categorized by
age range, location, educational degree, et cetera) by analyzing historical accident
records specific to each group (akin to knowledge gained from 1000 extractions in
the example of the urn). Likewise, broad are the implications in countless other fields,
with the impact of agnostic results growing alongside technological advancements. For
example, agnostic results play an increasingly crucial role in machine learning theory
and, consequently, in practical applications utilizing machine learning techniques. We
shall give more room to various application domains in subsequent chapters.

4.2 Conditional knowledge

§27 Guarantees for a single experimental outcome. Let us take a closer look at
the meaning of equation (4.1). It says that observing 1000 balls such that the estimate p̂
deviates from p more than α occurs with low probability. This probabilistic statement
holds true regardless of the specific value of p. Hence, I can use it when I hold an a
priori knowledge that restricts the possible values for p, but I can also use it in a fully
agnostic setup, as we did in the previous two points.

Now, suppose that, with the data collected in an experiment, I obtain the value
p̂ = 0.72. What can I conclude for this specific value? Let me remark that the im-

45To be precise, one needs to specify that the latter probability refers to an infinite product space
whose existence is guaranteed by Ionescu-Tulcea theorem, see, e.g. [61].
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portance of this question for a correct understanding of inductive reasoning cannot be
overestimated. Suppose I also happen to hold the following sharp a priori belief: the
value of p is 0.7. Then, I conclude that my experiments have indeed provided me with
an estimate closer to p than α = 0.08. On the other hand, if I hold a different sharp a
priori belief that p = 0.5, then I draw the opposite conclusion that I have fallen into
the rare event where the estimate is away from p more than α = 0.08. From this, we
see that there is no univocal appraisal of the result p̂ = 0.72 because the evaluation
changes depending on extra a priori information. Is this result in contradiction with
what we found in §25? Only seemingly. Indeed, a closer inspection reveals that our
perspective here has completely changed from §25 in that in §25 we considered all the
possible outcomes of the experiments, and our probabilistic statement referred to the
overall behavior of the estimation procedure, while here we concentrate on a specific
value of the outcome ( p̂ = 0.72). Hence, the two results are not directly comparable.
As it often happens, ideas become clear beyond any reasonable doubt by the use of
the mathematical language; therefore, in the next point we repeat more precisely the
somehow informal reasoning of this point with the help of mathematics.

§ 28 Total vs. conditional probability. Consider again Figure 4.1. It depicts
the probability distribution of p̂ when p = 0.7,46 and we can notice that the in-
terval [0.7 − 0.08,0.7 + 0.08] contains most of the probabilistic mass. Let us now
consider the interval [0.5,0.65]. What is the conditional probability of the event
A = [0.7− 0.08,0.7+ 0.08] given C = [0.5,0.65]? The answer is provided in §6: it
is P′

0.7(A|C) =
P′

0.7(A∩C)

P′
0.7(C)

(we use the symbol P′
0.7 because this is the image probabil-

ity of the random variable p̂ when p = 0.7), which in the present context becomes
P′

0.7([0.62,0.65])
P′0.7([0.5,0.65]) ≃ 0.9999. According to §17, the interpretation is the following: if we

are given the information that p̂ is in C, then we should update our subjective belief in
the occurrence of an estimate that is no more than 0.08 apart from p = 0.7 to the value
0.9999. Graphically, this is the ratio between the area over the interval [0.62,0.65]
and the area over the interval [0.5,0.65] (see Figure 4.3). Next, by an inspection of
Figure 4.2, we also see that this same reasoning leads to quite disparate values of the
conditional probability when p varies. Indeed, the conditional probability of mak-
ing a correct estimate within a tolerance of 0.08 conditional on the information that
p̂ ∈ [0.5,0.65] spans all the way from 0 to 1.47 This is the reason why no meaningful
conditional evaluations can be made according to an agnostic approach. Upon reflec-
tion, this fact is not so surprising: it is simply a manifestation of the fact that, in the
face of the validity of agnostic evaluations for the total probability, when taking a more
fine-grained point of view referring to a subset of cases, we can lose our ability to make
meaningful assessments. In retrospect, the situation discussed in §27 is nothing but the

46This is called the total probability when one wants to contrast it with the conditional probability,
a concept that comes soon after in our discussion.

47For those values of p for which [0.5,0.65] belongs to the interval [p− 0.08, p+ 0.08], the condi-
tional probability is 1, while it drops to zero when [0.5,0.65] and [p−0.08, p+0.08] do not overlap.
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0.5 0.62 0.65

Figure 4.3: Graphical interpretation of the conditional probability P′
0.7([0.7 − 0.08,0.7 +

0.08]|[0.5,0.65]) = P′0.7([0.62,0.65])
P′0.7([0.5,0.65]) : this is the ratio between the dark blue area and the sum of the light

and the dark blue areas. The figure is an enlargement of the distribution in Figure 4.1; however, to better
emphasize the regions of interest, the drawing in this figure is not in scale.

extreme case when conditioning is taken with respect to one single value of p̂ (instead
of an interval like [0.5,0.65]), corresponding to full knowledge of the experimental
outcome.

§29 It’s all about when one speaks. The previous findings highlight the impor-
tance of when one speaks. In the example of the urn, speaking after seeing the result of
the experiment (as done in §27) is too late a stage to draw any meaningful conclusions
in an agnostic setup. However, if one speaks prior to the experiments and considers a
more comprehensive standpoint encompassing all possible experimental outcomes (as
done in §25), one sees that meaningful evaluations can be formulated. As discussed in
§26, in the urn example this matters to set up prices to enter a lottery. More generally,
assessing the overall behavior of an experimental procedure is relevant for establishing
effective policies,48 with implications in vast domains of control theory, telecommu-
nications, economic sciences, et cetera. We shall have opportunities to look into these
aspects in later sections of this monograph.

48A policy is a rule that indicates the way to operate depending on the observations that have been
collected.
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4.3 A fully probabilistic model

§ 30 A Bayesian perspective. Suppose that a procedure is proven to return a
correct answer in an agnostic setup with some high probability, as it happens in Exam-
ple 5 where “correct” means that the estimate p̂ is within a distance α = 0.08 from
p and “high probability” is quantified by the value 1 − 3.23 · 10−3. Suppose also
that an individual A holds an a priori probabilistic belief that assigns equal prob-
abilities to each value of p: π(p) = 1

101 , for any p ∈ {0,1, , . . . ,100}.49 Then, A
can construct the composition probability P on the domain of pairs (p, p̂) follow-
ing the approach of §8 and can lower bound the probability P with which the an-
swer is correct. This gives: P{|p̂ − p| ≤ 0.08} = ∑pP′

p{|p̂ − p| ≤ 0.08} · π(p) ≥
∑p(1−3.23 ·10−3) ·π(p) = 101 ·(1−3.23 ·10−3) · 1

101 = 1−3.23 ·10−3. Interestingly,
another individual B that holds a different prior πB arrives, by the same calculation, to
the same result 1−3.23 ·10−3. This is interpreted that a probabilistic belief that holds
uniformly across all possible cases translates into a numerically equal probabilistic
belief for any Bayesian individual regardless of that individual’s personal prior.

Suppose next that individual A computes the value p̂ = 0.72 using the data in an
experiment. In force of his prior, he can certainly draw meaningful conditional con-

clusions. Precisely, P({|p̂− p| ≤ 0.08}|{ p̂ = 0.72}) = ∑p:|0.72−p|≤0.08P′
p{ p̂=0.72}·π(p)

∑pP′
p{ p̂=0.72}·π(p) =

0.999999996, which is a fairly high probability.50 It is interesting to note, on the other
hand, that this is no way out of the conundrum that no conditional knowledge can be
secured in an agnostic setup since a Bayesian individual surely is not agnostic, as he
carries his a priori belief.

§31 A comment on the philosophical literature. The concepts dealt with in this
chapter about when one speaks and about using Bayesian priors to formulate guar-
antees is well present in the philosophical literature on inductive methods. However,
the discussion has often proceeded without an adequate formalization, resulting in
slips and misconceptions. Donald C. Williams, [68], draws conditional conclusions
without suitable premises to license their validity. David Stove, [63], fallaciously en-
dorses William’s thesis. On the other hand, Ian Hacking, [36], lucidly notes that from
Williams’ premises one cannot infer conclusions that hold for any given sample fre-
quency. We also agree with Patrick Maher, [50], who correctly argues that the con-
ditional step of Williams can only be justified in a Bayesian perspective (even though
he does not phrase it this way) by an assumption about a priori probabilities “that is
at least as much in need of justification as is induction itself ”. This agreeable jumble
suggests us that a considerable amount of time and effort might have been saved by
using precise mathematical definitions by which one is obliged to stay focused on the
correct meaning of concepts.

49The probability distribution π over the values of p is called a Bayesian prior.
50This probability does depend on π , hence the value B finds will be different.



Chapter 5

DECISIONS UNDER
OBSERVATIONAL CONSISTENCY

An inductive procedure for constructing models is said to be “observational consis-
tent” if it responds to incorrectly-described incoming observations by invalidating the
current model and updating it into a new one. This chapter initially explores modeling
procedures grounded in the concept of optimization, and shows that optimization leads
naturally to consistency. By this choice, we mean to provide an easy access-point for a
concrete understanding of various concepts central to our study. Later, the scope is ex-
tended by introducing a more abstract formalization of consistency that moves beyond
optimization-based modeling and into decision-making processes.

5.1 Models of a population

§ 32 Models based on observation-constrained optimization. Let S =
(ω1,ω2, . . . ,ωn) be a list of observed members of a population.51 In this section, we
describe a prototypical procedure by which a model M∗ of the population can be con-
structed based on S . In §34 we shall see that this procedure is a special case of a
general framework for observation-driven decision-making.

Let M be a class of candidate models. In broad terms, our goal is to select a model
M∗ from M driven by the following two requisites:

(i) M∗ correctly describes the available sample;
(ii) M∗ optimizes a quality criterion (typically favoring models that describe the

sample with minimal redundancy).

51S will also be referred to as a “sample”, which justifies our using the symbol S .
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Requisite (ii) expresses a principle of optimality, indicating that the model aims to be
informative and useful; instead, requisite (i) necessitates agreement between the model
and those members of the population that have been sampled. It sets constraints on the
optimization procedure.52 Before moving to a formal definition, let us swiftly revisit
our height and weight Example 1 in §1 to facilitate an intuitive understanding.

EXAMPLE 6 When a rectangle is employed to describe the height and the
weight of the Italian population, as is done in Example 1, requisite (ii) corresponds
to minimizing the area of M∗, while (i) prescribes that the points in the sample lie
within the rectangle. ∗

Selecting a suitable quality criterion in (ii) is problem-dependent and, in a given
application, the choice is often influenced by practical considerations dictated by the
intended use of the model. Regardless of the particular choices, a quality criterion as
in (ii), along with a class of candidate models M and the constraints enforced by (i),
define a procedure P according to which M∗ is selected.

Procedure P
1. input: sample S ;
2. optimize with respect to M ∈ M the “quality criterion”

subject to ωi ∈ M, for any ωi in S ;
3. output: M∗ that solves the optimization program in point 2.

Hence, M∗ is the output of procedure P when applied to the sample S , which justifies
our using P(S ) in place of M∗ when we want to be explicit about the sample that has
been used.

§33 Examples. We begin with a simple example, well known in the philosophical
literature, that of enumerative induction.

EXAMPLE 7 (Enumerative induction) A classical problem in inductive rea-
soning takes the following form: all objects of type T observed so far have attribute A;
what can I conclude about one next object of type T that I shall observe in the future?
Will it also have attribute A? For example, all pieces of bread of a certain appearance
have thus far been nourishing, can I conclude that a next similar piece of bread will
also be nourishing? This is known as the problem of “enumerative induction”, see,
e.g., Nelson Goodman, [34], and Daniel Steel, [62].

To cast enumerative induction within the framework of our procedure P, let us
consider attribute A and its negation Ā (for example: nourish and does not nourish).
Given a sample S consisting of a list of A’s and Ā’s, P returns the smallest model that

52In some cases, the model is allowed to fail in representing specific members in the sample that
exhibit a “odd” behavior as compared to other members (outliers); this results in a smaller model, with
improved descriptive capabilities. This situation is part of the framework in §34.
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contains all cases that have been encountered thus far (consequently, if the sample
only contains A, then the model is A itself, whereas encountering also a Ā results in
the uninformative model {A, Ā} that allows for all possibilities, and observing all Ā’s
yields the model Ā). In other words, the “quality criterion” in procedure P is the
total number of cases (A and Ā) included in the model, and the selected model is the
smallest possible while including all cases that have been observed. As we shall see,
the generalization theory presented in the next chapter can be easily applied to this
elementary learning scheme. ∗

Our second example is a continuation of Example 1.

EXAMPLE 8 (Chebyshev layer) Instead of considering a rectangle that con-
tains a sample of Italians as in Example 1, we aim to construct a linear regression
model in which the weight is put in relation to the height. Begin by observing that the
smallest strip that contains the sample can be constructed by means of the following
optimization program:

min
θ1,θ2,θ3

θ3 (5.1)

subject to: |weighti − [θ1 +θ2 ·heighti]| ≤ θ3, i = 1, . . . ,n.

Indeed, for given values of θ1 and θ2, relation weight = θ1 + θ2 · height defines a
straight line in the (height,weight) domain, called the “central line” of the model. A
visualization is provided in Figure 5.1 where θ1 = 6Kg and θ2 = 52Kg/m. Quantity
weighti− [θ1+θ2 ·heighti] is the vertical displacement of the weight of the i-th individ-
ual in the sample from the value taken by the central line corresponding to the height
of this same individual. The optimization procedure selects values for θ1 and θ2 so

Figure 5.1: Interpretation of the three parameters, θi, i = 1,2,3.

that an upper bound θ3 on the maximum displacement in the sample, always taken as
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positive thanks to the absolute value |·|, is minimized.53 Hence, according to program
(5.1), all the individuals are “squeezed” into a layer with the smallest possible width
θ3 (which is taken here as the quality criterion to be minimized).54

In practice, a model like the one represented in Figure 5.1 can be used for esti-
mation purposes: given the height of a new member of the population, the member’s
weight is estimated to belong to the line segment at the intersection of the layer with
the vertical line corresponding to the member’s height. While as futile as it appears
in the height-weight example, this scheme gains importance when applied to estimate
hidden, difficult-to-measure, features of interest from attributes that are easy to mea-
sure. Practical examples include medical applications where the health of a patient is
estimated from the outcome of a clinical test. Point §42 presents one such application
for the diagnosis of breast tumors. ∗

We next consider the problem of distinguishing objects belonging to two cate-
gories.

EXAMPLE 9 (Two classes of objects) Suppose that the domain Rd is divided
by a hyper-plane in two half spaces (for example, in R2 the hyper-plane is a straight
line, and the two half spaces are the regions on either side of the line) containing
objects of two different types, denoted as A and B. The location of the separation hyper-
plane is unknown, but a sample of observations S = ((u1,y1),(u2,y2), . . . ,(un,yn)),
where each ui is a point in Rd and yi ∈ {A,B} is the corresponding object’s type, is
provided. The task at hand is to derive a model to determine the spatial distribution of
objects belonging to types A and B.

An approach to tackle this problem is as follows. Let y(u) = wT u−b be a family of
linear functions with parameters w ∈ Rd and b ∈ R, where wT u is the scalar product
between w and u.55 Then, a specific linear function in the family is obtained by solving
the optimization problem

min
w∈Rd ,b∈R

∥w∥2 (5.2)

subject to: α(yi) · (wT ui −b)≥ 1, i = 1, . . . ,n,

53For the sake of mathematical precision, we note that if all values heighti, i = 1, . . . ,n, are coinci-
dent (which is clearly a peculiar situation), then the solution to (5.1) is not unique (think of tilting the
boundaries of the strip as though they were hinged at the two points corresponding to the lowest and to
the highest weights). In this case, we assume that a specific solution to (5.1) is singled out by means of
an arbitrary rule of preference (for example one can decide to select the flat solution with θ2 = 0).

54The construction in this example is a special case of L∞ regression, see e.g. [37]. It was introduced
by Leonhard Euler, [26], some half a century before least squares regression, although a first resolution
method for particular cases was provided only in the late 18th century by Pierre S. Laplace, [47]. Since
then, L∞ regression has been considered by various authors, notably by Pafnuty L. Chebyshev and Alfréd
Haar, [16, 35], and a layer like the one depicted in Figure 5.1 is at times referred to as a “Chebyshev”
layer.

55The scalar product between two vectors in Rd , w and u, is given by wT u = w1 ·u1 + · · ·+wd ·ud ,
the sum of the products of the components of equal position in the two vectors.
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where α(·) is a function that returns −1 if yi = A and 1 if yi = B. Referring to the
top panel in Figure 5.2, function y∗(u) = (w∗)T u− b∗ (with (w∗,b∗) being the solu-

A

B

Figure 5.2: Top: The linear function selected by problem (5.2). Downward and upward sticks represent
the data points with label A and B, respectively. Bottom: The model M∗. M∗ predicts that objects A and
B are located in the corresponding gray regions.

tion to problem (5.2)) is visualized as a slope whose gradient (a directional measure
of steepness) is given by w∗ while b∗ is an offset (changing the value of b shifts the
position of the slope). Each observation (ui,yi) is represented as a stick of length 1,
pointing downward (if yi = A) or upward (if yi = B). Constraints α(yi) ·(wT ui−b)≥ 1
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ensure that the slope avoids intersecting the sticks, and minimizing ∥w∥2, as done in
(5.2), generates the flattest slope among those satisfying these constraints. If we then
select the model M∗ that assigns A to u when y∗(u) = (w∗)T u− b∗ is below −1 and
B when is above 1 (refer to the bottom panel of Figure 5.2), this provably generates a
model consistent with all the observations while maximizing the distance between the
regions labeled as A and B in the model (this distance is called the “margin” in the
figure).56,57

5.2 Decisions with consistency requirements

§34 Procedures with consistency requirements. A model M as in §32 can be
seen as a decision for the problem of describing a population. However, the concept of
decision is broader than this, and it generically refers to any deliberation we make in a
given problem. For example, it addresses questions like: how do we allocate a capital
across various assets in an investment problem? which therapy is best administered to a
patient? or, what maneuvering should be made to avoid a vehicle’s collision? Here, we
present a comprehensive framework centered around the concept of consistency58 for
making decisions based on observations, of which the setup described in the previous
§32 is a particular case.

Let D be a set of decisions. Each ω has associated a subset Dω ⊆ D , the set of
decisions that are appropriate for ω . For example, in the context of §32 a decision
is a model M, and M is appropriate for ω if ω ∈ M (hence, Dω is the collection of
all models that contain ω , and the requirement (i) can be expressed that the selected
model must be appropriate for all observations). Generalizing from §32, we consider
procedures P that are maps from a sample of observations S = (ω1,ω2, . . . ,ωn)

59 to
an element D∗ ∈ D that satisfy the following assumptions.

(a) permutation invariance: for every permutation (i1, . . . , in) of (1, . . . ,n), it holds
that P(ω1,ω2, . . . ,ωn) = P(ωi1,ωi2, . . . ,ωin) (this means that the order in which
observations have been collected is immaterial for the selection of the decision);

56If all observed objects are of the same type, say yi = A, then the solution to (5.2) remains un-
determined: w∗ is chosen to be zero, while any b ≥ 1 satisfies the constraints. However, such an
indetermination does not affect the model, which remains the same (the model returns A everywhere)
for any feasible choice of b.

57Interestingly, the above construction is well-known in the machine learning literature where it
underlies a prominent method for classification called Support Vector Machine (SVM), see, e.g., [18,
60, 12]. Classification problems are considered in §35.

58This framework has been formulated by Simone Garatti and Marco C. Campi in [29].
59The size n of the sample is any non-negative integer and the conditions (a)-(c) below are required

to hold for any n.
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(b) stability in the case of confirmation: for any m ≥ 1, if P(ω1,ω2, . . . ,ωn) is ap-
propriate for m new observations ωn+1, . . . ,ωn+m (i.e., P(ω1,ω2, . . . ,ωn)∈Dωn+i

for all i = 1, . . . ,m), then P(ω1,ω2, . . . ,ωn,ωn+1, . . . ,ωn+m) = P(ω1,ω2, . . . ,ωn)
(that is, new observations for which the decision is appropriate confirm the de-
cision and leave it unaltered);

(c) responsiveness to contradiction: if instead among m new observa-
tions ωn+1, . . . ,ωn+m there is at least one observation ωn+i for which
P(ω1,ω2, . . . ,ωn) is not appropriate (i.e., P(ω1,ω2, . . . ,ωn) /∈Dωn+i , for some i),
then P(ω1,ω2, . . . ,ωn,ωn+1, . . . ,ωn+m) ̸= P(ω1,ω2, . . . ,ωn) (that is, if the deci-
sion is inappropriate even for just one observation, then the decision is changed).

Requirements (b) and (c) are denoted as the conditions of consistency. When referenc-
ing a procedure that satisfies (a)-(c), we shall often use the term “consistent procedure”,
even though this implies a slight abuse of language since (a)-(c) also include property
(a) of permutation invariance.

It is easy to verify that the procedure P in §32 satisfies (a), (b) and (c): optimiza-
tion is not affected by the order in which observations appear (permutation invariance);
adding extra observations that are included in the model does not change the optimal
solution (stability in the case of confirmation); adding even just one new observation
that is not in the model forces a change in the solution so as to include the new ob-
servation (responsiveness to contradiction). On the other hand, in comparison to §32,
defining a procedure by the three requirements (a)-(c) introduces a more abstract stand-
point that accommodates problems in inductive reasoning beyond model-making via
optimization (see §35 for examples).

It is interesting to observe that the conditions of consistency naturally induce dom-
inance, broadly meant as the property that some observations are more important, and
hence dominate, other observations in the process of making a decision. Indeed, sup-
pose that new observations coming downstream in the process of data acquisition do
not lead to contradiction (point (c)), so that the decision is maintained (point (b)).
Then, these new observations are inconsequential in the formulation of the decision
(if they are removed, the decision does not change). Likewise, new observations that
change the decision may render previous observations irrelevant to formulate the de-
cision when observations are scanned in a backward fashion. This leads to a condition
of dominance: the decision is dictated by only a sub-sample of the observations. Any
sub-sample of the observations that returns the same decision as the entire sample is
called a support sub-sample,60 and it is not uncommon that support sub-samples are
quite restricted as compared to the total amount of observations that have been col-
lected. As we shall see in the next chapter, the concept of support sub-sample plays a
prominent role in the reliability theory of inductive reasoning under consistency.

60The support sub-sample is in general not unique, indeed adding one of the other observations to a
support sub-sample gives another support sub-sample. Moreover, there may be two, or more, support
sub-samples that are not nested.
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Examples, as presented in the next §35, help understand the generality of the
framework introduced in this point.

§35 More examples. The first example is a generalization of Example 2 in §2, it
describes a methodology that is often employed in real trading.

EXAMPLE 10 (CVaR) Conditional Value at Risk (CVaR) is a coherent risk
measure in the sense of Philippe Artzner et al., [1], which has been introduced and
popularized by R. Tyrrell Rockafellar and Stanislav Uryasev in [58] and [59]. Re-
ferring to the investment Example 2, for any θ , let L(i)(θ), i = 1, · · · ,n, be the values
attained by L(θ ,ω1), · · · ,L(θ ,ωn) arranged in descending order: L(1)(θ)≥ L(2)(θ)≥
·· · ≥ L(n)(θ). In statistical terminology, [19], L(n−i+1)(θ) is called the i-th order
statistic of the random sample L(θ ,ω1), · · · ,L(θ ,ωn).

Given an integer k in the range {1, . . . ,n}, consider the optimization problem

min
θ

1
k

k

∑
i=1

L(i)(θ). (5.3)

When k = 1, this comes down to the worst-case approach of Example 2. See instead
Figure 5.3 for a graphical representation of the function 1

k ∑
k
i=1 L(i)(θ) when k = 2

for the same data set as in Example 2. The reason why in applications one often

Figure 5.3: Graphical representation of CVaR in the case q = 2 and k = 2. The dashed red line is
1
2 [L(1)(θ

1)+L(2)(θ
1)] , the function minimized in (5.3). The value L̄∗ is called the “shortfall threshold”.

prefers to take k > 1 over the worst-case choice k = 1 is that, in this latter case,
all the emphasis is placed on just one single (ill) observation and this may result in
conservative decisions. In contrast, selecting a k > 1 (e.g., in a given proportion to n,
for example 5% or 10%) corresponds to minimizing the average of the k worst cases.
Intuitively, this allows safeguarding against the occurrence of poor investments while
avoiding the over-conservatism inherent in the worst-case approach.
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Letting θ ∗
CVaR be the minimizer of (5.3),61 define

L∗
CVaR =

1
k

k

∑
i=1

L(i)(θ
∗
CVaR), (5.4)

the CVaR value, and
L̄∗ = L(k+q−1)(θ

∗
CVaR), (5.5)

which is called the “shortfall threshold” (see again Figure 5.3 for an example). The
value of L̄∗ represents the tipping point separating shortfalls (tail values bigger than
L̄∗) from non-shortfalls (values smaller than or equal to L̄∗), and it brings in valuable
information in addition to L∗

CVaR that the user may want to consider when deciding
whether or not the solution θ ∗

CVaR should be accepted and used.62,63

If one decides to use the solution θ ∗
CVaR, then the hope is that a new case ω en-

countered in the future will not correspond to a shortfall case, i.e., θ ∗
CVaR will give a

performance no worse than the shortfall threshold:

L(θ ∗
CVaR,ω)≤ L̄∗. (5.6)

This suggests taking as decision the triple D∗ = (θ ∗
CVaR,L

∗
CVaR, L̄

∗), which also incor-
porates the shortfall threshold L̄∗, and say that it is appropriate for a new ω when
(5.6) holds.64

The reader is invited to verify that CVaR satisfies (a)-(c) in §34, in which en-
deavor one should note that a new loss function L(θ ,ωn+i) that satisfies condition
L(θ ∗

CVaR,ωn+i)≤ L̄∗ does not expunge the existing decision, while, certainly, one such
that L(θ ∗

CVaR,ωn+i)> L̄∗ does prompt a change of the decision: either θ ∗
CVaR moves to

a new location or, if θ ∗
CVaR remains the same, then L∗

CVaR certainly increases.65,66

61It is possible that the minimizer is not unique, which happens if the function minimized in (5.3)
is flat along a line of iso-cost; in this case, a θ ∗

CVaR is singled out by a rule of preference in the domain
of θ (e.g., in the case q = 2 as in Figure 5.3, one can take the θ 1 with largest value among those that
minimize (5.3)).

62If the value of L̄∗ is deemed unsatisfactory, the user can take various corrective actions, among
which increasing the dimension of θ (which means that more assets are included in the portfolio), or
even deciding not to operate altogether.

63In real applications, the values of L∗
CVaR and L̄∗ are often complemented with additional indexes

such as the average of the empirical values below the shortfall threshold, which provides insight into
how well θ ∗

CVaR performs in non-shortfall cases.
64In inductive reasoning, one is interested in evaluating the probability with which a new ω is appro-

priate. This takes different interpretations depending on the context at hand. For instance, in the context
of §32 this means that a new case lies in the model, and therefore it is correctly predicted by the model;
in CVaR, it means that ω incurs a loss no more than L̄∗, that is, it lies outside the range of shortfalls.

65In the verification of (a)-(c), there is a detail we have glossed over that we feel pressed to at least
touch upon here: in CVaR, k in (5.3) has to be regarded as a fixed parameter (if k varies with n, then
consistency is easily seen to fail); on the other hand, (a)-(c) must hold for any non-negative value of n
(see Footnote 59), which clashes with the fact that n must be greater than or equal to k for (5.3) to make
sense (in other words, strictly speaking the procedure is undefined for n < k). We advise the reader that
this detail is inconsequential, and a comprehensive discussion is given in Section 4.2 of [31].

66The reader may have noticed that, in CVaR, D∗ is not appropriate for some of the observations



52 5.2 Decisions with consistency requirements

In the next chapter, we shall present generalization results that are applicable to
all consistent procedures. Having verified that CVaR is one of them, these findings will
enable us to obtain rigorous evaluations of the probability of exceeding the shortfall
threshold. Example 21 in §42 will further provide a numerical study on CVaR (bor-
rowed from [54]) that utilizes real data of 10 assets in the Standard & Poor’s S&P500
index. ∗

We next consider binary classification. A binary classifier is a predictor that clas-
sifies a case described by a vector of attributes into one among two classes, −1 or 1,
whose meaning varies depending on the application and can, e.g., be sick or healthy,
right or wrong, functioning or faulty. A vector of attributes is called an “instance” and
−1,1 are the two possible “labels”. For example, in a medical application an instance
may contain the outcome of medical tests along with the patient’s medical history, and
the classifier is employed to determine whether the patient suffers from a particular
disease (see §42 for an application to breast tumor diagnosis). Classifiers are often
constructed using observations through machine learning techniques. An observation
consists of a pair (ui,yi), where ui is an observed instance and yi is the corresponding
label; a sample of observations is termed a “training set” (SVM, briefly touched upon
in Footnote 57, is a technique used to address this problem). The following example
describes a classification technique called Guaranteed Error Machine (GEM).

EXAMPLE 11 (GEM) The Guaranteed Error Machine is an algorithm for con-
structing classifiers that has been introduced in [6] and further developed in [14, 5].67

Unlike most techniques used in binary classification, GEM returns a classifier ŷ(·) that
is permitted to abstain from classifying: ŷ(u) ∈ {−1,1,0}, where issuing the value 0
is interpreted as a declaration that the case at hand is too difficult and, hence, the
classifier prefers not to provide an answer.

Let S = ((u1,y1),(u2,y2), . . . ,(un,yn)) be a sample of observations with ui ∈ Rd

and yi = y(ui) ∈ {−1,1}, where y(·) is an unknown, however complex, two-valued
function.68 GEM requires the user to choose an integer k ∈ {1,2 . . . ,n}, called the
“complexity parameter”, which specifies the maximal cardinality of the smallest sup-
port sub-sample (refer to §34 for the definition of support sub-sample – we said “the
smallest” support sub-sample because there are many support sub-samples and k is
an upper bound to the cardinality of at least one of them).69 In loose terms, GEM
operates as follows. It is assumed that one has available an additional observation

ω1,ω2, . . . ,ωn, those corresponding to shortfall cases. This is a sign of the fact that the conditions of
consistency in §34 do not enforce that the decision be appropriate for all the observations that have been
used to formulate the decision.

67The algorithm described here is a variation of the one proposed in [5].
68In our presentation, it is assumed that the instance is a vector that contains d real variables. More

generally, in GEM instances ui can be elements of a generic Hilbert space, see, e.g., [5].
69Choosing a larger value for k reduces the chance of abstention from classifying; when k > n, the

set of abstention becomes always empty.
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(ū, ȳ) (in addition to the training set S ) that acts as initial “center”. GEM con-
structs the largest possible hyper-sphere in Rd around ū under the condition that the
hyper-sphere does not include any ui with label yi different from ȳ. All points within
this hyper-sphere are assigned the label ȳ, and all examples (ui,yi) for which ui is
inside the hyper-sphere are removed from the training set. The example that lies on
the boundary of the hyper-sphere (and that has therefore prevented the hyper-sphere
from further enlarging) is then designated as the new center (in the event of ties, the
tie is broken by using an ordering on the points in Rd; for instance, the lexicographic
order favoring the ui that has smallest first coordinate, and, then, the smallest second
coordinate if a tie persists, and so forth through all coordinates), and the procedure is
repeated by constructing another hyper-sphere around the new center. This time, only
the region given by the difference between the newly constructed hyper-sphere and the
first hyper-sphere (which has been already classified) is assigned the label of the sec-
ond center. This iterative procedure continues until either the entire space is classified
or the total number of centers reaches k. In the latter case, the unclassified portion of
Rd is labeled as 0 (see Figure 5.4 for an example of classifier constructed with GEM
in R2).

(a) (b) (c)

Figure 5.4: A classifier constructed with GEM. The three figures (a), (b), and (c) show the progress of
the procedure in costructing the classifier.

This leads to the procedure formally described below.

STEP 0. SET q = 0, S = S , C = /0 (the empty set) and uC = ū, yC = ȳ;

STEP 1. SET q = q+1 and SOLVE problem

max
r≥0

r (5.7)

subject to: ∥ui −uC∥ ≥ r for all (ui,yi) ∈ S such that yi ̸= yC.

Let r∗ be the optimal solution (note that r∗ can possibly be +∞);

STEP 2. IF r∗ <+∞, THEN
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2.a SET C = C∪{(ui∗ ,yi∗)}, where (ui∗,yi∗) is an example in S such that: (i)
∥ui∗ −uC∥= r∗; (ii) yi∗ ̸= yC; (iii) ui∗ is smallest in a given ordering in Rd

among all the examples satisfying (i) and (ii);

2.b FORM the region Rq = {u ∈ Rd : ∥u − uC∥ < r∗ or ∥u − uC∥ =
r∗ and u comes before ui∗ in the ordering in Rd}70 and LET ℓq = yC; UP-
DATE S by removing from it all the examples for which ui ∈ Rq;

2.c SET (uC,yC) = (ui∗,yi∗);

STEP 3. IF either |C|= k or S = /0 THEN STOP and RETURN R j, ℓ j, j = 1, . . . ,q;
ELSE, GO TO 1.

The GEM predictor is defined as

ŷ(u) =

{
0, if u /∈ R j for all j = 1, . . . ,q;
ℓ j∗, otherwise, with j∗ = min

{
j ∈ {1, . . . ,q} : u ∈ R j

}
.

As a useful exercise, the reader can verify the validity of (a)-(c) in §34 using the fact
that a new observation (un+i,yn+i) that is correctly classified (ŷ(un+i) = yn+i) or that is
not classified (ŷ(un+i) = 0) – in both these cases we say that the classifier is appropri-
ate for the observation – does not change the classifier, while one that is not correctly
classified (which corresponds to inappropriateness) does change the classifier. For
numerical results with GEM, refer to Example 22. ∗

Those presented in this point are just two examples to which the data-driven deci-
sion making scheme of §34 can be applied. Other examples are found in virtually any
domain in which inductive reasoning is applied, including control, power generation
and delivery, medical computer-aided diagnosis, regulation of biological systems, to
name but a few; the reader may be interested in consulting the position paper [8] that
contains an ample presentation of applications in diverse contexts.

70The reader may find this definition of Rq somehow byzantine. The reason why Rq is defined this
way is that it is the easiest to accommodate the conditions of consistency (b) and (c) in §34; see [5] for
alternatives.



Chapter 6

COMPLEXITY AND JUDGEMENTS

In Chapter 5, our focus has been on inductive procedures that exhibit a property called
“consistency”. The primary objective of this chapter is to present generalization re-
sults applicable across the wide framework of consistent reasoning. Our voyage will
lead us to explore deep-seated mechanisms that link complexity (as precisely defined
in the chapter) to judgments by which inductive reasoning finds a logical foundation.
Nonetheless, the process of learning from observations also encounters unchallenge-
able limits, which will also be examined in this chapter.

6.1 Agnostic upper bounds to the risk

§36 Complexity and risk. We introduce two fundamental concepts: complexity
and risk. It turns out that these two concepts are universally linked to each other in
inductive reasoning under consistency, as discussed in the next §37.

complexity] Referring to a consistent procedure P as per §34 (that is, a map from
sample of observations into a decision that satisfies (a)-(c)), consider a sample of ob-
servations S and recall that S ′ ⊆ S is a support sub-sample if P(S ′) = P(S ). As
previously observed, the support sub-sample need not be unique,71 and complexity
indicates the cardinality of the smallest support sub-sample among all. Complexity
reflects and quantifies the concept of dominance, as previously introduced in §34. In-
formally, low complexity means that S can be highly compressed while retaining all
necessary information to make the decision. As a case in point, in Example 8 in §33 a
support sub-sample is formed by the three individuals that are on the boundary of the
Chebyshev layer, while no sub-sample of two individuals returns the same layer, hence
the complexity is 3. Note also that, for a given procedure, the complexity depends on
the sample at hand (i.e., applying the same procedure to a sample or to another sample

71For example, S itself is a support sub-sample, and various sub-samples of reduced size may exist
returning the same decision.
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may result in different sizes for the smallest support sub-samples in the two cases).
For instance, in the rectangle construction of Example 1 in §1, the complexity will be
4 if four different individuals are the shortest, the highest, the lightest and the heaviest,
but it can drop to 3, or even to 2, when one single individual embodies two extreme
characteristics (e.g., being the shortest and the lightest at the same time). Since the
sample is random, it follows that also the complexity is a random variable.

risk] A model as in §32 is deemed reliable if a new, and yet unseen, observation
is contained in the model with high probability. More generally, within the decision
context of §34, reliability refers to the probability that a decision is appropriate for a
new case that will come downstream in the observational flow. This concept is captured
quantitatively by the definition of risk of a decision D: R(D) = P(ω : D /∈ Dω). The
interpretation of risk is quite diverse depending on the context, and it can be instructive
to refer to examples that we have previously encountered to familiarize with it: when
regressing the weight of Italians against their height, as is done in Example 8 in §33,
the risk is the probability of encountering an individual whose weight is mispredicted
by the model on the ground of the individual’s height; in the CVaR Example 10 in §35,
the risk refers to the probability of incurring a loss higher than the shortfall threshold;
and, in a classification problem as in Example 11 in §35, the risk is the probability
of misclassification, with manifold implications depending on the problem at hand
(e.g., declaring an individual healthy when he is sick, classifying a machine as well-
functioning when it is faulty, et cetera).72

§37 Assessing the risk by the complexity. In what follows, we indicate with D∗ =
P(S ) the decision made by procedure P with the sample of observations S and with
c∗ the corresponding complexity. The risk R(D∗) depends on the unknown probability
P by which observations are generated. Nevertheless, it has been proven in some
contributions (precisely referenced later in this chapter) that R(D∗) can be evaluated
from the complexity c∗ in a fully agnostic setup in which the underlying distribution
P remains unspecified. The importance of this discovery rests in the fact that c∗ can
be computed from the observations: in principle, one can test any subsample S ′ of
S and verify whether condition P(S ′) = P(S ) is satisfied; the cardinality of the
smallest subsample S ′ for which this happens is c∗.73 Conceptually, we can trace a
parallel between this result and the framework in §25 (see in particular equation (4.1)
where the observable p̂ is used to estimate p, similarly to using here the observable
c∗ to estimate R(D∗)) and the reader is invited to revise the discussion therein for an
interpretation of agnostic results, and the subsequent §26 for the consequences thereof.

To state the fundamental result that links complexity to risk, we need to prepare

72The risk is not required to be a very small quantity in all human endeavors. When referring to a
fundamental law of physics, it is certainly desirable that the probability with which the law may fail is
very small; on the other hand, there are entire fields in financial analytics, medicine, telecommunications
where relatively high values of the risk, ranging from a few percent to 10% or even more, are acceptable.

73See Section 1.2 in [13] for shortcuts to evaluate c∗ in the context of non-convex optimization and
Section 2 of [11] for convex optimization.
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Figure 6.1: Function rβ (c) for β = 10−6 and n = 1000. Proposition 12 states that the random pair
(c∗,R(D∗)) belongs to the blue area below function rβ (c) with at least probability 1−β = 99.9999%, a
result that holds for any probability P (agnostic result).

the terrain by introducing a suitable function rβ (c) that maps any possible value c ∈
{0,1, . . . ,n} of the complexity c∗74 to a real number in [0,1] that represents an upper
limit to the risk (see Figure 6.1 for a representation of rβ (c)). Function rβ (c) also
depends on a confidence parameter β ∈ (0,1) that the user can freely select (often, β

is selected to be a very small value). The interpretation of β is that it sets an upper
bound to the probability with which the claim on the risk may fail to be correct, and,
conceptually, its meaning is the same as that given to the right-hand side of equation
(4.1) in Example 5. To define rβ (c), fix a value of β ∈ (0,1) and a value of c in the
range {0,1, . . . ,n−1} (c = n is an exceptional value that needs be treated separately)
and consider the following function in the variable α ∈ [0,1]:

Ψ(α) =
β

n

n−1

∑
m=c

(m
c

)(n
c

) (1−α)−(n−m) ,

where n is, as usual, the size of the sample, and symbol
(a

b

)
indicates the binomial

coefficient.75 For any β and c, equation Ψ(α) = 176 has one and only one solution in
the interval (0,1) (see Figure 6.2).77 Define

74Hence, c∗ is the actual value of the complexity, while c is a variable that spans the values that c∗

can take.
75The binomial coefficient

(a
b

)
with integers a ≥ b ≥ 0 represents the number of distinct subsets

of cardinality b that can be constructed from a set of cardinality a. It turns out that
(a

b

)
= a!

(a−b)!b! .
For example, the number of distinct subsets of cardinality b = 2 that can be constructed from a set of
cardinality a = 3 is 3, and this value is given by

(a
b

)
= a!

(a−b)!b! =
3·2·1

(1)(2·1) = 3.
76While numerical evaluations are not the central focus of attention in this monograph, we never-

theless notice that a robust MATLAB procedure to solve this equation can be found in Appendix B.1 of
[12].
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Figure 6.2: Graph of function Ψ(α).

rβ (c) =

{
solution to Ψ(α) = 1, for c = 0,1, . . . ,n−1;
1 for c = n.

We now have the following proposition.

PROPOSITION 12 (upper bound to the risk) Consider any consistent proce-
dure P as per §34. Let S = (ω1,ω2, . . . ,ωn) be an i.i.d. (independent and identically
distributed) list of observations (see §10). Then, the random variable R(D∗) (the risk
R(D∗) is a random variable because it depends on the list of observations) satisfies the
relation:

Pn(R(D∗)≤ rβ (c
∗)
)
≥ 1−β , (6.1)

and this fact holds true independently of the probability P by which observations are
generated (agnostic setup). ∗

In Equation (6.1), the left-hand side is the probability Pn (see Footnote 17 for this
notation) of collecting a sample of observations S for which the risk R(D∗) does not
exceed the value given by rβ (c∗). This probability is lower bounded by quantity 1−β ,
a value known to the user, and this offers a way to keep control on the probability in
the left-hand side of (6.1) without actually knowing probability P.78 This suggests the
following practical method to bound the risk: one evaluates c∗ (which only depends on
the observations) and plug its value into function rβ (c); this provides an upper bound

77Indeed, Ψ(α) is strictly increasing, continuous, and takes value Ψ(α) ≤ β < 1 in α = 0 while it
grows to +∞ when α → 1.

78Conceptually, this is akin to not knowing Pp in Equation (4.1); however, in contrast to (4.1) the
present context covers a truly vast class of inductive methods. In particular, there are no limits to the
nature of observations.
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rβ (c∗) to the risk R(D∗) that holds with high probability 1−β . What is key is that this
method has a known (and high) probability of success with respect to a probability Pn

(which remains unspecified throughout the process) regardless of what this probabil-
ity is (agnostic result). Rephrasing this fact in looser, but perhaps more “humanized”,
terms, we can say that: if I use observations to make a decision and indeed I pose no
restrictions on how the observations are generated, so reflecting my substantial lack of
knowledge (read: P can be whatever), still I can formulate probabilistic statements on
how reliable my decision is (read: how large the risk of inappropriateness is). That
is, a mental stance that just admits the existence of a, otherwise undefined, probabilis-
tic mechanism for the generation of observations licenses the formulation of logically
supported statements on the reliability of the decision. This result applies to any mod-
eling problem as per §32 and, beyond that, to any decision-making problem in the
groove of §34.

PROOF OF PROPOSITION 12 [can be skipped without loss of continuity]
Although we have decided not to present proofs in this monograph, and to direct the
interested reader to the existing literature for the derivations, in the case at hand we
find it necessary to provide some details because this result cannot be found in the
literature in the exact form stated here. Nonetheless, it is a relatively brief journey to
trace the proof of Proposition 12 back to existing results, a task we undertake in the
following.

Theorem 4 in [5] provides a result that holds for the probability of change of com-
pression for compression schemes that have a preference property (Property 1 in [5]).
To align our setup of decision-making with the theory of [5], we first need to introduce
a compression function. This is obtained by compressing a sample (which we see –
after removing its ordering – as a multiset79) into a support sub-sample (again, seen
as a multiset – from now on, we do not explicitly remark that samples are identified
with multisets) of minimal cardinality. If there exists more than one such support sub-
samples of minimal cardinality, one is singled out by a rule of preference.80 Now, to
establish the validity of the preference Property 1 of [5], note that (we use the nota-
tions in [5]), if V = c(U,z) for some z (where c is the “compression function” of [5],
and z is an observation ω in our context), then all observations that are in (U,z) and
are not in its compression V must be appropriate for P(V ) for, otherwise, V could not
be a support sub-sample for (U,z) (so contradicting the fact that V = c(U,z)) owing
to property (c) of “responsiveness to contradiction”. Consequently, either z appears
in V as many times as it does in (U,z) (so that V ⊈ U) or V ⊆ U, in which case
P(U) = P(V ) (owing to property (b) of “stability in the case of confirmation”), so that

79A multiset is the same as a set except that it may contain repeats of the same element. For example,
{1,3,3} is a multiset. Similarly to a set, and differently from a sample, a multiset has no ordering, so
that the two multiset {1,3,3} and {3,3,1} are equal.

80A rule of preference just sets an ordering among multisets. A rule of preference has nothing to do
with the preference property in paper [5], and we apologize for having to use the same word with two
distinct meanings.
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V is also a support sub-sample for U. On the other hand, V = c(U,z) also implies that
V is minimal and preferred in the rule of preference over any other support sub-sample
of (U,z), and so it is a fortiori minimal and preferred among support sub-samples of
U, implying that c(U) = V . This proves the contrapositive of the condition stated in
the preference Property 1 of [5] and, hence, the preference Property 1 is established.
To close the rapprochement between our Proposition 12 and Theorem 4 in [5], observe
that if an observation is inappropriate for the decision obtained from a sample of ob-
servations, then that same observation is inappropriate for the decision obtained from
the compression of the sample of observations (because the compression generates the
same decision as the sample) and, hence, it gets the compression to change. Therefore,
the bound in Theorem 4 in [5] for the change of compression translates into an equal
bound for inappropriateness, yielding result (6.1). ∗

§38 More on probability P. We take a moment to offer a more practical interpreta-
tion of the fact that Proposition 12 holds irrespective of probability P. In the context of
Example 8, P relates to the distribution of heights and weights of the population under
consideration, and hence the result holds for any population. In the CVaR Example 10,
P describes how the vector of rate-of-returns distributes. In a “bear market”, this vector
tends to have lower values than in a “bull market”, and the correlation among various
components in the vector depends on the composition of the portfolio; for example,
assets of similar types (e.g., belonging to the automotive or to the banking sector) are
likely to have positive correlation (the so-called “tide effect”). Proposition 12 can be
applied independently of the composition of the portfolio and the nature of the market.
Finally, in classification problems, the user may want to include multiple attributes that
are deemed useful for the estimation of the label and, correspondingly, P is a probabil-
ity distribution that lives in a multidimensional, and possibly highly complex, domain.
Again, Proposition 12 applies regardless of this complexity.

On the other hand, the fact that Proposition 12 is valid for any P in no way implies
that having prior knowledge on P is useless. In modern decision-making problems
dealing with complex systems, besides observations, one does want to exploit domain
knowledge coming from various sources, often including some that, while not com-
pletely trustworthy, can still be of help to obtain a satisfactory solution. It is a fact that
all this prior knowledge – alongside with background preferences – can, and should,
be used at the time the decision problem is formulated. For example, in the context
of portfolio selection with CVaR, leveraging prior knowledge plays an important role
when deciding how many, and which, assets should be best included in the portfo-
lio; likewise, in a regression problem as in Example 8, prior knowledge is relevant to
decide whether a linear, as opposed, e.g., to a quadratic, center line is best adopted.
These choices have an impact on quantitative features of the decision (e.g., the value
of the threshold L̄∗ in CVaR optimization, or the width of the layer in a regression
problem) that the user can directly inspect. What is key is that the rigorous validity of
Proposition 12 (which refers to the risk, a quantity that cannot be directly evaluated
even after the decision is made) remains intact whether or not the prior that has been
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used in the problem formulation is accurate. Therefore, by a direct inspection of the
decision and the theoretical results, the user comes to “see” the two sides of the medal:
(i) features of interest of the decision (through a direct inspection of the decision); and
(ii) the risk associated with the decision (through application of the agnostic result in
Proposition 12, which holds true irrespective of the accuracy of any domain knowledge
the user may hold and use). For a more comprehensive exploration of this topic, the
reader may refer to the position paper [8].

§39 Examples. To gain insight, Proposition 12 is applied to a couple of examples.

EXAMPLE 13 (Charge of an electron) A sample of electrons is analyzed to as-
certain whether their electric charge is positive or negative. If all charges are nega-
tive, one makes the model that electrons have negative charge, while observing even
one single electron with positive charge, in addition to negative ones, results in an un-
informative model that electrons are either negative or positive. In case of all positive
charges, the model made is that electrons are positive. This is an instance of “enumer-
ative induction” as described in Example 7 in §33, where T are the electrons and A is
the property of having a negative charge.

Setting, e.g., β = 10−6 (such a small probabilistic value is often considered negligi-
ble in real applications), with a large set of observations comprising 400000 electrons,
the bound in (6.1) is r10−6(c∗) = 4.94 ·10−5 when c∗ = 1 (e.g., all electrons are tested
negative). ∗

EXAMPLE 14 (Coverage of a territory) Consider a facility, such as a gas sta-
tion or a laundry, intended to serve the population residing in a specific geographical
area. To determine a suitable location for this facility, the home locations of 500 mem-
bers of the population, drawn at random in an independent fashion, is recorded, and
their convex hull81 is used as a descriptor of the population’s residential distribution
(see Figure 6.3). What is our trust in that one more member of the population, again
drawn at random according to the same probability distribution as the other 500 mem-
bers, will indeed happen to live in the convex hull?

To answer, we observe that the convex hull is a model built according to the method
in §32 (which is a particular case of the procedure in §34). Precisely, it is obtained
from the procedure:

min
M∈convex sets in R2

Area(M) (6.2)

subject to: ωi ∈ M, i = 1, . . . ,500,

where ωi is a two-dimensional vector that contains the coordinates of the home loca-
tion of the i-th member in the sample. The risk is the probability that the model is not

81A convex set is a set where the line segment connecting any two points in the set is entirely
contained in the set. Thus, a square or a disk is convex, but a horseshoe-shaped set is not. The “convex
hull” of given points is the smallest convex set that contains all the points.
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Figure 6.3: Home locations of a sample from the population (blue dots) and the corresponding convex
hull (red polygon).

appropriate for a new member of the population, i.e., his home lies outside the convex
hull. To apply Proposition 12 to this problem, choose a value for β , for example 10−7.
Then, observing that a support sub-sample for this problem is given by the set of lo-
cations that are vertexes of the convex hull (indeed, running problem (6.2) with only
these locations yields the same convex hull as when all locations are used), one can
easily compute the complexity. In the case of Figure 6.3, one finds c∗ = 7, resulting in
r10−7(c∗) = 7.05%,82 which is interpreted that the proportion of the population resid-
ing outside the convex hull is no more than 7.05%. Importantly, to obtain this result
no information on the distribution of the population has been used.

We feel it advisable to remark that it is crucial not to run into the following concep-
tual error when interpreting the above result. Drawing a parallel with Example 5 in
§25, β here plays the same role as the right-hand side of Equation (4.1) there. Hence,
10−7 is an upper bound to the probability of the following event: a sample of 500 mem-
bers is drawn, the corresponding convex hull, along with its complexity, are computed,
and it happens that the risk associated with the convex hull (which is the probabilistic
portion of the population that resides outside the convex hull) exceeds r10−7(c∗). How-
ever, this does not have a direct implication on the risk associated to the result for the
sample at hand (which is a conditional result – in case of doubts, revise §28. For more
on a posteriori assessments in the context of inductive reasoning with consistent rules,
see Section 6.3). ∗

6.2 Assessments under non-degeneracy

§40 Lower and upper bounds to the risk. No meaningful lower bounds to the
82For computing r10−7(c∗), we used the code referenced in Footnote 76.
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risk can be established under the assumptions of Proposition 12. As a case in point,
refer to the convex hull in Example 14: if points ω are drawn from a given, finite, set
of locations, each with equal probability, then, after drawing 500 points, one may have
covered all locations with large enough probability resulting in a risk of zero that one
next point will fall outside the convex hull.

Lower bounds can be established under the additional property of non-
degeneracy.83 To define non-degeneracy, we need the following additional notion:
a support sub-sample is said to be irreducible if no observations can be further re-
moved from it without changing the decision (in other words, it is irreducible if does
not contain a smaller support sub-sample).

PROPERTY 15 (non-degeneracy) A learning problem is non-degenerate if, for
any n (recall that n is the sample size), there is with probability 1 only one irreducible
support sub-sample obtained by removing observations from the initial sample in only
one way.84 ∗

For instance, in the construction of a convex hull as in Example 14, Property 15
rules out the possibility of concentrated masses: if the same point at the vertex of
the convex hull is drawn twice, each of the two draws can be used in forming the
irreducible support sub-sample, thereby violating the uniqueness condition in Property
15.85 We also note that the exclusion of concentrated masses places some P outside the
domain of applicability of this study. Therefore, owing to non-degeneracy, the results
in this point are, strictly speaking, not fully agnostic.

To state the proposition that assigns lower and upper bounds to the risk, we need
to introduce two functions, rβ (c) and rβ (c), where c and β are interpreted similarly to
the parameters identified by the same symbols in the function rβ (c) of Proposition 12.
Fix a value of β ∈ (0,1). For c in the range {0,1, . . . ,n−1}, let

Ψ̃(α) =
β

2n

n−1

∑
m=c

(m
c

)(n
c

) (1−α)−(n−m)+
β

6n

4n

∑
m=n+1

(m
c

)(n
c

) (1−α)m−n,

while, for c = n, let

Ψ̃(α) =
β

6n

4n

∑
m=n+1

(
m
n

)
(1−α)m−n.

83The terminology “non-degeneracy” has been coined in [9] within the context of convex optimiza-
tion. In convex optimization, the property of non-degeneracy fails to be true only in situations in which
the constraints accumulate in an anomalous way, arguably a “degenerate” condition. However, in other
contexts, the term “non-degeneracy” may be somehow inappropriate. We here conform to this termi-
nology to avoid losing an easy link with the relevant literature.

84The specification in the final part of Property 15 may seem superfluous; however, it is not: indeed,
consider the situation where the initial sample is (a,b,b) and (a,b) is the irreducible support sub-sample.
Since (a,b) can be obtained from the initial sample in two different ways (by removing the second or
the third element in the sample), this situation violates the property of non-degeneracy.

85One can verify that, in this example, non-degeneracy is indeed equivalent to the assumption of
non-concentrated mass, that is, all locations have zero probability of being selected.
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For any β and c= 0,1, . . . ,n−1, equation Ψ̃(α) = 1 admits two and only two solutions
in (−∞,1), say αc and αc with αc <

c
n < αc

86 (see Figure 6.4). Instead, for c = n

0 0.5 1
0

1

2

3

4

5

Figure 6.4: (a) Structure of function Ψ̃(α) for c = 0,1, . . . ,n−1: it tends to +∞ as α → 1 and α →−∞

and takes a value below 1 in a point in (−∞,1); equation Ψ̃(α) = 1 admits two and only two solutions
in (−∞,1).

equation Ψ̃(α) = 1 admits only one solution in (−∞,1), which is denoted by αn (this
is easy to verify because Ψ̃(α) is strictly decreasing and takes value 0 for α = 1 and
grows to +∞ as α →−∞). Define

rβ (c) = max{0,αc}, c = 0,1, . . . ,n, (6.3)

and

rβ (c) =

{
αc, c = 0,1, . . . ,n−1;
1, c = n.

(6.4)

PROPOSITION 16 (upper and lower bounds to the risk) Consider any con-
sistent procedure P as per §34. Let S = (ω1,ω2, . . . ,ωn) be an i.i.d. list of obser-
vations. If the non-degeneracy Property 15 holds, then

Pn(rβ (c
∗)≤ R(D∗)≤ rβ (c

∗)
)
≥ 1−β . (6.5)

∗
86For a proof of this fact, see Appendix A in [5].
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The proof of Proposition 6.5 can be found in [29], where it appears as proof of The-
orem 2.87 Figure 6.5 illustrates the result: under the assumptions of Proposition 16,
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Figure 6.5: Functions rβ (c) and rβ (c) for β = 10−6 and n = 1000. In the light of Proposition 16, the
random couple (c∗,R(D∗)) lies in the blue elongated area with at least probability 1−β = 99.9999%.

the risk is in sandwich between two bounds given by functions rβ (c) and rβ (c). Prov-
ably88, these two functions squeeze one on top of the other uniformly in c as the sam-
ple size n grows unbounded (n → ∞). In words, this fact is expressed by saying that
“the evaluation of the risk is consistent”. Moreover, the bounds remain informative
and practically useful for any finite n. This last point is further discussed in the next
example.

EXAMPLE 17 (convex hull in 3 dimensions) A sample of 1000 points is drawn
in an independent fashion in R3, and its convex hull is constructed (see Figure 6.6).
This problem is non-degenerate provided that points are drawn from a distribution
with non-concentrated mass.

Panels (a) and (b) in Figure 6.6 depict the region delimited by rβ (c) and rβ (c) for
n= 1000 and β = 10−3. The green dots have coordinates equal to the complexity (hor-
izontal axis) and the risk (vertical axis) in a Monte-Carlo testing in which 1000 points
in R3 have been generated several times using the MATLAB procedure for Gaussian
distributions in panel (a) (this is similar to RandN in Example 4 in §23 but in 3 dimen-
sions) and with the MATLAB procedure for uniform distributions in a hyper-cube in
panel (b). One sees that the two clouds of green dots in (a) and in (b) are quite differ-
ent, while, in both cases, they belong to the region. Moreover, the two clouds somehow

87Assumption 4 in [29] states the non-degeneracy condition in a form that is different, but provably
equivalent to, the one in Property 15. Proving this fact (note that this requires explicit consideration of
the consistency properties) is an interesting, albeit non-trivial, exercise.

88See Section 2.1 in [5].
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Figure 6.6: Left: convex hull of points in R3. Right: region delimited by rβ (c) and rβ (c) for n = 1000
and β = 10−3. The green dots are generated by a Monte-Carlo testing with the use of the MATLAB
procedures for (a) Gaussian distributions and (b) uniform distributions.

cover the gap between the lower and the upper bound, which may be interpreted that
the bounds are informative. See also §48 for an interpretation of testing using data
points. ∗

§41 An additional bound valid when the complexity is restricted from above.
Proposition 16 can be applied without any restriction on the complexity, whose value
ranges from 0 to n. When, on the other hand, the complexity admits an upper limit, an
additional result on the risk holds. To present this finding, we shall refer to the distribu-
tion of the risk alone, instead of jointly considering the risk and the complexity as we
did in the previous point. While its practical impact is minor, nonetheless the result of
this point holds important epistemological implications, which we shall discuss after
the formal statement of Proposition 19.

Proposition 16 can be applied without any restriction on the complexity, which
ranges from 0 to n. However, when the complexity has an upper limit, an additional
result on the risk emerges. In presenting this finding, we focus solely on the distribu-
tion of the risk, diverging from our earlier approach of jointly considering the risk and
complexity. While its practical impact is minor, this point holds important epistemo-
logical implications, which we will discuss after presenting Proposition 19.

PROPERTY 18 (limited complexity and problems of complexity d) A learn-
ing problem89 has limited complexity if there is an integer d such that the complexity
c∗ is no more than d with probability 1. The problem has complexity d if, for any
n ≥ d, the complexity is equal to d with probability 1.90 ∗

89In formal terms, a “learning problem” is defined by a procedure P and a probability P by which
observations are generated.

90The notion of problem with complexity d has been introduced in [9] in the context of convex
optimization. In a convex optimization problem in dimension d, complexity never exceeds d (this
interesting fact has been proven by Vladimir L. Levin in [49] and it is stated in [4] as Theorem 2)
and, hence, a problem that has complexity d hits with probability 1 the maximum possible complexity
whenever n ≥ d. For this reason, in paper [9] a convex optimization problem in dimension d that has
complexity d has been named “fully-supported”.
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Under the non-degeneracy Property 15, all learning problems of complexity d have
a universal distribution of the risk (a Beta distribution); in other words, the risk has
always the same distribution irrespective of the probability distribution of the observa-
tions.91 Furthermore, problems of complexity d are “worst-case” relative to all prob-
lems whose complexity is limited by d. This means that the upper bound on the risk
applicable to problems of complexity d also extends to problems with lesser complex-
ity. We first make these results precise, followed by a discussion on their interpretation
and significance.

PROPOSITION 19 Consider any consistent procedure P as per §34. Let S =
(ω1,ω2, . . . ,ωn) be an i.i.d. list of observations. Suppose that the non-degeneracy
Property 15 holds and that the problem has limited complexity d. Then, for any n ≥ d
and r ∈ [0,1] it holds that

Pn(R(D∗)≤ r
)
≥ 1−

d−1

∑
i=0

(
n
i

)
ri(1− r)n−i; (6.6)

moreover, the bound is tight for all problems of complexity d, that is,

Pn(R(D∗)≤ r
)
= 1−

d−1

∑
i=0

(
n
i

)
ri(1− r)n−i. (6.7)

∗

The expression on the right-hand side of (6.6) and (6.7) is a Beta cumulative distribu-
tion function with (d,n− d + 1) degrees of freedom92 (see Figure 6.7 for a graphical
representation of the density of a Beta distribution). Hence, Proposition 19 can be
read that the Beta distribution “dominates" the distribution of the risk for problems of
limited complexity d (equation (6.6)), while it exactly describes the distribution of the
risk for problems of complexity d (equation (6.7)).

PROOF OF PROPOSITION 19 [can be skipped without loss of continuity]
The proof of Proposition 19 is available in the literature for the specific context of
convex optimization. Here, we indicate how the existing proof in convex optimization
can be generalized to encompass the whole framework of our Proposition 19.

Result (6.6) is proven for convex optimization as Corollary 1 in [11]. There, our de-
cision D∗ becomes the solution x∗N and the risk R(D∗) is called the “violation” V (x∗N).

91For example, the linear regression problem (5.1) of Example 8 in §33 is a non-degenerate problem
of complexity 3 whenever the distribution of the observations has a density (a density is a function
whose integral over a given region gives the probability of that region, see any textbook on probability
theory for a formal definition). Therefore, somehow surprisingly, the distribution of the risk does not
depend on the distribution of the observations, provided the latter has a density. Paper [30] contains a
complete account of this result.

92For any real r, the “cumulative distribution function” of a random variable gives the probability
with which the random variable assumes a value less than or equal to r.
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Figure 6.7: Density of a Beta distribution for various values of n and d. One can see that, for n = 200,
reducing the value of the complexity from d = 50 to d = 30 gets the density to move to the left (hence,
the risk tends to be smaller with lower complexity); a similar effect is obtained by keeping d fixed to
the value 50 while increasing the sample size from n = 200 to n = 400. In the latter case, we also note
that the density shrinks, signifying that the probabilistic dispersion of the risk gets less pronounced.

An inspection of [11] reveals that the only properties used to prove Corollary 1 are: (i)
the maximum complexity is d. While this assumption is not explicitly stated in [11], it
comes for granted in the context of convex optimization in dimension d (see Footnote
90). In contrast, in the context of our Proposition 19, the bound d to the complexity
has been enforced as an assumption; (ii) the existence and uniqueness of the solution.
The existence and uniqueness of the solution to a convex optimization problem is not
always guaranteed; hence, in [11] they are assumed explicitly. In our present context,
instead, we consider procedures P that, by definition, return one and only one decision
D∗, so that no assumption of existence and uniqueness is needed; (iii) properties (a)-(c)
in §34. While utilized in the proof of [11], these properties are not stated explicitly as
an assumption in paper [11], as they hold automatically in the context of convex opti-
mization (as it can be readily verified); (iv) the non-degeneracy Property 15. Although
expressed differently, the Assumption 2 in [11] can be proven to be equivalent to the
non-degeneracy Property 15. With the above notices, the proof of Corollary 1 in [11]
can be applied mutatis mutandis to establish (6.6) in Proposition 19.

As for result (6.7), its proof is obtained, again mutatis mutandis, from the proof of
equation (7) of Theorem 1 in [9], which pertains to convex optimization. ∗

Comparing Propositions 19 and 12, as we do next, allows us to highlight some facts
that have an interesting interpretation. The right-hand side of (6.7) becomes equal to
the right-hand side of (6.1) when ∑

d−1
i=0

(n
i

)
ri(1− r)n−i = β . Solving this equation for r

yields a value that depends on β , d and n, which we write r̃β (d) (the dependence on n is
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not emphasized because n remains fixed throughout our discussion). Certainly, rβ (d)
in Proposition 12 (i.e., rβ (c∗) for c∗ = d) cannot be smaller that r̃β (d) for, otherwise,
applying (6.1) to a problem of complexity d would give

Pn(R(D∗)≤ rβ (d)< r̃β (d)
)
≥ 1−β ,

which contradicts (6.7). It is a fact that, computing rβ (d) and r̃β (d), the former can
be shown to be strictly bigger than the latter. This disparity is not a result of loose
evaluations; on the contrary, it has profound motivations. To comprehend this, consider
equation (6.1) in Proposition 12 and, for the sake of the argument (as we shall see, this
operation leads to an incorrect result), substitute in it rβ (c) with 1 for any c ̸= d (so
that, when c∗ ̸= d, the proposition gives the void statement R(D∗)≤ 1, abstention from
providing any bound to the risk) and rβ (d) with r̃β (d) (so that the risk is claimed to be
below r̃β (d) when c∗ = d). Then, the left-hand side of (6.1) would become

Pn(R(D∗)≤ 1 and c∗ ̸= d
)
+Pn(R(D∗)≤ r̃β (d) and c∗ = d

)
= Pn(c∗ ̸= d

)
+Pn(R(D∗)≤ r̃β (d) and c∗ = d

)
≥ 1−β . (6.8)

However, a counterexample presented in Appendix 1 of [11] shows that this mathemat-
ical claim is false for non-degenerate problems that do not have a bounded complexity
d. If we now substitute in (6.8) the bound R(D∗)≤ 1 for c∗ ̸= d with R(D∗)≤ rβ (c∗)
(as it is in (6.1)), then (6.8) becomes

Pn(R(D∗)≤ rβ (c
∗) and c∗ ̸= d

)
+Pn(R(D∗)≤ r̃β (d) and c∗ = d

)
≥ 1−β ,

which – owing to the fact that in this equation we have shrunk the event in the first
term on the left-hand side – is even more false than (6.8). Comparing now the last
(false) equation with (6.1), we see that, to obtain a mathematically valid result, one has
necessarily to lift r̃β (d) to a higher level, and rβ (d) is an appropriate choice, as shown
by Proposition 12. The necessity to lift r̃β (d) carries an interesting interpretation:
when posing a complex question (one that allows for answers whose complexity can
exceed d), a posteriori observing that the answer happens to have complexity d does
not allow us to draw conclusions on the risk as strong as when the question we ask is
itself simple (i.e., the question admits an answer whose complexity is always no more
than d). Or, in more concise form: answers to simple questions are more guaranteed
than simple answers to complex questions.

Our last result in this point concerns the expected value of R(D∗) (see Footnote 43
for the notion of expected value in the case of elementary probabilities; in the general
case, the definition demands some extra mathematical care while retaining the same
interpretation as for the elementary case). For problems of complexity d, equation
(6.7) says that R(D∗) has a Beta distribution with (d,n− d + 1) degrees of freedom.
Its expected value is known to be d

n+1 (see any textbook in statistics). Instead, the
inequality in (6.7) valid for problems with bounded complexity d easily translates into
that the expected value of R(D∗) is no more than d

n+1 . This gives the following result.
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PROPOSITION 20 Under the conditions of Proposition 19,93 if the problem has
bounded complexity d, then it holds that

E
[
R(D∗)

]
≤ d

n+1
, (6.9)

while equality holds for problems of complexity d, that is,

E
[
R(D∗)

]
=

d
n+1

. (6.10)

∗

Why are we interested in the expected value? The reason is that the expected value
has a useful interpretation: consider a list (ω1, . . . ,ωn,ωn+1) of n+1 i.i.d. elements;
the expected value is the probability that the first n elements in the list ω1,ω2, . . . ,ωn
generate a decision that is inappropriate for the last element ωn+1:

E[R(D∗)] = Pn+1((ω1, . . . ,ωn,ωn+1) : D∗(ω1, . . . ,ωn) /∈ Dωn+1

)
. (6.11)

While the proof of this fact can be found, e.g., in Section 3.2.2 of [10], we demonstrate
here its validity for the case of elementary probability.

Start by noting that the probability of an event E can be equivalently expressed in
one of the following forms: P(E) = ∑ω∈E P(ω) = ∑ω 1(ω ∈ E) ·P(ω), where in the
last form the summation has been extended to all ω’s and 1(·) is “indicator function”,
which equals 1 when the clause in parenthesis is true and it is zero otherwise. We then
have

E[R(D∗)] = ∑
(ω1,...,ωn)

R
(
D∗(ω1, . . . ,ωn)

)
Pn(ω1, . . . ,ωn)

= ∑
(ω1,...,ωn)

P
(
ωn+1 : D∗(ω1, . . . ,ωn) /∈ Dωn+1)P

n(ω1, . . . ,ωn)

[where we have used the definition of risk in §36]
= ∑

(ω1,...,ωn)

[
∑

ωn+1

1
(
D∗(ω1, . . . ,ωn) /∈ Dωn+1

)
·P(ωn+1)

]
Pn(ω1, . . . ,ωn)

= ∑
(ω1,...,ωn,ωn+1)

1
(
D∗(ω1, . . . ,ωn) /∈ Dωn+1

)
Pn+1(ω1, . . . ,ωn,ωn+1)

= Pn+1((ω1, . . . ,ωn,ωn+1) : D∗(ω1, . . . ,ωn) /∈ Dωn+1

)
, (6.12)

93Since we have presented this result as a consequence of Proposition 19, we require that the as-
sumptions in Proposition 19 hold in the context of the current proposition. However, we feel advisable
to notice that the bounded complexity condition is indeed essential for the validity of Proposition 20,
while the assumption of non-degeneracy can be omitted without affecting the validity of the results in
Proposition 20. To prove this fact, one must follow a demonstrative route that does not make use of
Proposition 19 (whose results strictly requires non-degeneracy), and the interested reader can consult
[4] for a derivation. An additional reference of interest is the paper [7], which presents this same result
in the context of a finite population and exhibits a complete combinatorics-based proof of it.
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where the last expression coincides with the right-hand side of (6.11).

§42 Two examples. Proposition 20 is illustrated on two examples.

EXAMPLE 21 (average number of shortfalls in CVaR) We consider the 5001
daily closing prices, spanning from November 11, 1995 to October 1, 2015, of q = 10
companies in the S&P500 index.94 We hold in our mind that the vectors of rates-of-
return form an independent sequence95 and that their distribution does not change
over the time horizon of interest.96 Conditional Value at Risk – CVaR – is applied
in a sliding window fashion (revise Example 10 in §35 for the notion of Conditional
Value at Risk). Precisely, we consider n = 1000 consecutive trading days and solve the
corresponding CVaR problem, then the window is moved forward by one trading day
and CVaR is solved again. At the end, CVaR has been solved 4000 times, which we
index by j = 1, . . . ,4000. We hold that the vectors of rates-of-return are sampled from
a density in Rq,97 which implies non-degeneracy of the problem.98 In CVaR, k is set to
the value 50, and, in the non-degenerate case, one can see that the CVaR problem has
complexity k+q−1 = 59.99 All this shows that we are in a position to apply equation
(6.10) in Proposition 20 and conclude that, for each of the 4000 CVaR problems, it
holds that E

[
R(D∗)

]
= k+q−1

n+1 = 59
1001 ∼ 5.894%. Moreover, in light of (6.11), this

is the probability that the portfolio selected by CVaR incurs the day after a loss that
exceeds the shortfall threshold (inappropriateness).

Now, should the above procedure be applied “with jumps” over non-overlapping
intervals of length 1001 (each interval provides the rates-of-return to construct the
CVaR plus one more day for verifying whether the incurred loss exceeds the shortfall
threshold) instead of utilizing a sliding window approach, then each interval would
only contain variables independent of the variables in other intervals, and the empir-
ical frequency with which the loss exceeds the shortfall threshold would concentrate
around value 5.894% in the long run (see §19). Although this non-overlap condition
is not satisfied in our example due to the one-day shift, still one can argue that the con-
centration result maintains its validity.100 Figure 6.8 depicts the result for the data set

94These companies are those having top market capitalization in the S&P500 at the beginning of
2015, namely, AAPL, XOM, MSFT, JNJ, WMT, WFC, GE, PG, JPM, CVX.

95Independence of rates-of-return over disjoint periods (e.g., trading days) is a consequence of the
Black & Scholes model, which is often adopted in the economics literature. See for example John C.
Hull, [39].

96Someone might point out that this assumption over a 20 years time frame can be a bit of a stretch,
see also §18.

97While we hold this assumption as a valid approximation, one might argue that the quantization in
prices disrupts it at a fine-grained level.

98This fact can be easily proven by considering an irreducible support sub-sample and then observing
that one more function L(θ ,ω) goes through (θ ∗

CVaR, L̄
∗) with probability zero.

99Referring to Figure 5.3 where k = 2 and θ has two components, one sees that, maintaining only
the k+q−1 = 2+2−1 = 3 highest functions corresponding to θ ∗

CVaR, the decision (θ ∗
CVaR,L

∗
CVaR, L̄

∗)
does not change; this result is easily extended to generic k and q.

100Even a law of large numbers applies with a one-day shift, and the average of cases in which the
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Figure 6.8: Solid blue line (−): for each value of the abscissa, the curve gives the average number of
times in which L(θ ∗

CVaR, j,ω j+n) exceeds value L∗
j (notice that for, say, j = 1 CVaR uses ω1, . . . ,ω1000,

so that the next, test, value is ω1001, which, for generic j, becomes ω j+n; dashed-dotted red line (−·):
value 5.894%, obtained from the theory.

at hand: corresponding to each point j in the abscissa, the blue line gives the average
number of times in which condition L(θ ∗

CVaR, j,ω j+n) > L̄∗
j is verified on the interval

[1, j]. The dashed-dotted line is at value 5.894%. ∗

EXAMPLE 22 (breast tumor diagnosis using GEM) Refer to Example 11 in
§35 for an introduction to the Guaranteed Error Machine – GEM.

Traditionally, the diagnosis of breast tumors has relied on a full biopsy, an inva-
sive surgical procedure. To mitigate the disruption caused by the biopsy, a technique
called fine needle aspiration (FNA) has been introduced over the past forty years: a
small amount of tissue is aspirated from the tumor, analyzed under a microscope and
digitized to finally extract various features of the tumor cells, such as nuclear size,
shape and texture. These features serve as inputs to a classifier, which is employed to
determine whether the tumor is benign or malignant. Reportedly, however, diagnoses
based on FNA are not certain, and FNA is only used as a supplementary tool for the
diagnosis, while in doubtful cases a full biopsy remains a necessity, [28, 33].

To construct a classifier for breast tumors, various machine learning algorithms
have been proposed, see e.g. [64]. First, a sample of women is tested both with a
FNA and a full biopsy so that each woman is described by a set of tumor features and

loss exceeds the shortfall threshold converges to 5.894%. To show this, it is sufficient to construct
many sequences with jumps so as to avoid overlaps (as many sequences as it need be to cover all
cases, which is 1001 sequences: the first sequence contains the intervals [1,1001], [1002,2003], . . .;
the second sequence the intervals [2,1002], [1003,2004], . . .; · · · ; the last sequence the intervals
[1001,2002], [2003,3004], . . .) and then observe that the average used to obtain the empirical frequency
can be broken up as the average of the averages over the non-overlapping sequences. Since the aver-
age over each non-overlapping sequence obeys the law of large numbers, so does the average of the
averages.
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a label, benign or malignant, obtained from the biopsy. This forms the training set,
which is used by the algorithm to build a classifier. In a future clinical case, a woman
undergoes FNA, and the woman’s tumor features are introduced in the classifier to
assess the nature of the tumor. Conceptually, this is the same setup as when the weight
is estimated from the height with the Chebyshev layer of Example 8 in §33.

We here apply GEM101 to a training set of 683 cases (444 benign and 239 malig-
nant) taken from the UCI Machine Learning Repository, [2], with 9 tumor features,
namely, clump thickness, uniformity of cell size, uniformity of cell shape, marginal
adhesion, single epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, mi-
toses. Table 6.1 gives the empirical results. The row with symbol k displays various

k 5 10 15 20 25 30 35
#(error) 5 12 20 25 26 29 31

(0.74%) (1.74%) (2.94%) (3.68%) (3.82%) (4.26%) (4.66%)
#(abstension) 378 347 148 106 49 16 0

#(correct) 297 321 512 549 605 635 649
k/(n+1) 0.81% 1.62% 2.44% 3.25% 4.06% 4.87% 5.68%

Table 6.1: Empirical results for the classification of breast tumors.

selections for the complexity parameter of GEM (refer to Example 11 for the definition
of “complexity parameter”); #(error) is the total number of errors in a 10-fold cross
validation. Precisely, a window containing the first 68 observations (this is the integer
part of the total number of observations divided by 10) is left out during the training
phase, and the examples in this window are used as tests; the window is then shifted
and an adjacent window is used as a test window, and so on ten times until all obser-
vations except the last three (that is, 68×10 = 680 observations) have played the role
of tests. In parentheses, the value #(error)

#(test cases) =
#(error)

680 is shown, this is an estimate of
the expected value of the risk of the procedure. In the next two rows, #(abstension)
and #(correct) are obtained similarly to #(error) summing up the number of classi-
fication abstentions and correctly classified cases in the 10-fold cross validation; the
last row gives the bound k

n+1 for the expected value of the risk as given by equation
(6.9) in Proposition 20 (recall that, in GEM, k is the largest possible complexity of the
classifier; hence, we take d = k in Proposition 20), where n = 615 is the number of
training cases (total number of cases, 683, minus the observations in the test set, 68).

§43 A digression on exchangeable observations.

We advise the reader that this point is a digression and can be skipped without
any loss of continuity. So far, lists (ω1,ω2, . . . ,ωn) have been assumed to be i.i.d.
(independent and identically distributed). Interestingly, when (ω1,ω2, . . . ,ωn) is just
exchangeable as it was, e.g., in Example 3 in §11, the list can be viewed (with some

101The numerical results refer to an application of the original GEM algorithm as described in [6].
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caveats) as a “mixture of independent and identically distributed lists” (this is known
as the “representation theorem”). This fact allows the application of Proposition 20 in
the context of exchangeable observations as well, a fact that we briefly discuss in the
following.

The representation theorem was originally proven by Bruno de Finetti, [20], in the
context of lists that take only two possible values (as is for the Pólya’s urn of Exam-
ple 3) under the condition that the list of observations (ω1,ω2, . . . ,ωn) can be extended
to become arbitrarily long without losing the property of exchangeability (this is called
“infinite exchangeability”).102 In this context, the interpretation of de Finetti’s result
is that exchangeable two-valued lists of observations can be viewed as generated by a
two-stage process: first, a value p is sampled from [0,1] according to some probability
distribution µ and, then, observations are generated i.i.d. with a probability p of draw-
ing one value and (1− p) of drawing the other. Later, this result has been generalized
to infinitely exchangeable lists that take value in quite generic domains Ω.103 When
the representation theorem holds, one can “disaggregate” the exchangeable list into
its i.i.d. components and apply Proposition 20 to each component. By a process of
re-aggregation, it can then be shown that Proposition 20 maintains its validity for the
exchangeable list.

As it may have appeared, the presentation in this point was somehow sketchy and
served only the purpose of providing a general idea. Then again, we cannot offer
a better reading because, at the time of writing this monograph, no technical papers
have been yet published on this subject matter.

§44 Popper’s theory of conjectures and refutations.

Karl Popper contends that scientific knowledge evolves through conjectures and
refutations: conjectures are formulated by any means and then tested against various
observations in an attempt to falsify them. The longer a conjecture survives these
attempts of refutation the more corroborated it becomes, and it is therefore expected

102While this specification may sound bizarre, it is a fact that there are exchangeable lists that do not
admit extensions. To illustrate this fact, start by observing that the process employed in the Pólya’s urn
can continue for an arbitrary number of draws, hence arbitrary extension is possible in this case. On the
other hand, the same does not hold for a similar example in which one starts from an urn containing,
say, 100 balls, 50 of which are red and 50 white, and the balls are drawn without replacement. In this
latter example, it is easy to show that observations are exchangeable for any n ≤ 100. However, there
is no way to make an exchangeable extension to lists of n > 100 observations. To see that this is the
case, given any list of length 100 that has 50 reds and 50 whites, extend this list by adding a color, red
or white, in such a way that the total list of 101 observations has non-zero probability (note that at least
one of the two extensions, with a red or a white in position 101, must have a non-zero probability).
Now, if we swap the last observation, say that it is a red, with a position where there is a white, then
we unbalance the number of reds in the first 100 draws (that is, in the first 100 draws there are now 51
reds), which corresponds to a list of probability zero since in the first 100 draws there must be exactly
50 reds and 50 whites. This rules out exchangeability.

103Still, it is worth noting that the representation theorem has been shown to fail on certain domains
Ω that are obtained by rather complex constructions, see e.g. [25].
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to survive new falsification tests as they come along down the stream of observations,
[53].

For independent observations, Popper’s theory can be put on quantitative grounds
by means of Proposition 20. To this end, the first step is to frame the problem within the
setup of §32: let us consider a class M of models that contains only two elements, the
conjecture C and a model U , called “universe”, that contains all possible observations
ω (U corresponds to the void statement that “everything is possible”). C is assigned the
smallest value in the “quality criterion" of Procedure P in §32, so that C is selected if
all observations ωi, i = 1, . . . ,n, are contained in C (that is, observations do not falsify
C). In the opposite, C is discarded (refuted) in favor of U .

In this context, E[R(D∗)] in (6.11) can be re-written as follows. If D∗ = C, then
relation D∗(ω1, . . . ,ωn) /∈ Dωn+1 becomes ωn+1 /∈ C, which means that ωn+1 falsi-
fies C; otherwise, when D∗ = U , condition D∗(ω1, . . . ,ωn) /∈ Dωn+1 is never sat-
isfied because U contains all ω’s. Therefore, using result (6.11) we obtain that
E[R(D∗)] = Pn+1(ωn+1 falsifies C = D∗(ω1, . . . ,ωn)

)
. To bound this quantity, we re-

sort to Proposition 20. Noticing that the complexity is zero when C is selected (indeed,
when no observations are available, one selects C because it meets the smallest possi-
ble value of the “quality criterion”), while it is 1 when C is refuted (in fact, it is enough
to keep one single observation outside C to falsify it and generate U), one sees that
this problem has bounded complexity equal to 1. Therefore, Proposition 20 gives:104

Pn+1(ωn+1 falsifies C = D∗(ω1, . . . ,ωn)
)
≤ 1

n+1 , which shows that the probability of
falsifying a conjecture after n confirming tests decreases at a rate (corroboration rate)
that is inversely proportional to n.105

Interestingly, Proposition 12 permits one to compute the level of corroboration
for procedures that allow on-line updating of the model as new observations come
along, so that Popper’s conjectures and refutations paradigm becomes a special case
of a broader framework.106 To understand this, suppose that we collect observations
in succession and update our model by using a procedure P as per point §32 so ob-
taining a sequence of models M∗

0 ,M
∗
1 ,M

∗
2 , . . . generated after obtaining n = 0,1,2, . . .

observations. If the problem happens to have limited complexity d, then to all these
models we can apply Proposition 20 similarly to the theory of conjectures and refuta-

104In fact, the extension of Proposition 20 to degenerate problems, as discussed in Footnote 93.
Indeed, this simple reasoning shows that this problem is degenerate: if there are two observations that
are not in C, then each of them can serve as an irreducible support list.

105It is easy to see that this corroboration rate is tight (not improvable), while the constant 1 can
instead be made smaller. Minimizing this constant, however, is not a matter of interest for the purposes
of our discussion.

106Popper explicitly condemns the practice of adapting theories to observations. Speaking of the
Marxist theory of history, in [53] he writes that its followers “re-interpreted both the theory and the
evidence in order to make them agree. [...] They thus gave a ‘conventionalist twist’ to the theory; and
by this stratagem they destroyed its much advertised claim of scientific status”. We hold, as firmly
as mathematics suggests, that adapting theories to observations is possible and scientifically correct
provided this process has an impartial judge (the complexity).
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tions. In fact, letting D∗(ω1, . . . ,ωn) = M∗
n , the right-had side of (6.11) can be written

as Pn+1(ωn+1 falsifies M∗
n
)
, and Proposition 20 bounds this quantity for us with d

n+1 ,
again a quantity that decays at a rate inversely proportional to n, as in the conjectures
and refutations theory, although with a bigger constant d. When instead there are no
upper limits to the complexity, one can conceive the following modus operandi: the
complexity of the model at hand is measured and elevated to the role of a referee to
judge whether the model is too risky to use (in other words, a model is accepted and
used only when its complexity does not exceed a barrier, say d, chosen by the user).
Studying the risk associated to this setup requires some additional effort, as discussed
in the following.

Start by considering the random variable 1(c∗ ≤ d) · R(D∗) (1(c∗ ≤ d) equals
1 when c∗ ≤ d and zero otherwise). It turns out that E[1(c∗ ≤ d) · R(D∗)] =
Pn+1((ω1, . . . ,ωn,ωn+1) : c∗(ω1, . . . ,ωn) ≤ d and D∗(ω1, . . . ,ωn) /∈ Dωn+1

)
,107 which

we re-write for short as Pn+1(c∗ ≤ d and ωn+1 falsifies M∗
n
)
, the probability of mea-

suring a complexity less than or equal to d and, then, the next observation ωn+1
is outside M∗

n and thereby falsifies it. To bound E[1(c∗ ≤ d) · R(D∗)], we re-
sort to Proposition 12.108 This proposition asserts that the lists of observations
(ω1, . . . ,ωn) for which R(D∗) ≤ rβ (c∗) have probability at least 1 − β ; consid-
ering that the indicator function annihilates the product 1(c∗ ≤ d) · R(D∗) when-
ever c∗ > d and that rβ (c) is an increasing function of c, we then conclude that
1(c∗ ≤ d) ·R(D∗) ≤ rβ (d) holds at least with probability 1− β . For all other lists
of observations (whose probability is no more than β ), we use the trivial bound
R(D∗) ≤ 1. Hence, we obtain: E[1(c∗ ≤ d) · R(D∗)] ≤ rβ (d) · (1 − β ) + β , a re-
lation that holds for any β ∈ (0,1). Next, we need to bound rβ (d). Proposi-

tion 8 in [5] does this for us: rβ (d) ≤ d
n + 2

√
d+1
n

(√
ln(d +1)+4

)
+ 2

√
d+1

√
ln 1

β

n +

ln 1
β

n , which, substituted in the previous inequality, gives: E[1(c∗ ≤ d) · R(D∗)] ≤[
d
n +2

√
d+1
n

(√
ln(d +1)+4

)
+2

√
d+1

√
ln 1

β

n +
ln 1

β

n

]
· (1− β )+ β . Selecting β = 1

n

and recalling that E[1(c∗ ≤ d) · R(D∗)] = Pn+1(c∗ ≤ d and ωn+1 falsifies M∗
n
)
, we

finally come to the following conclusion: Pn+1(c∗ ≤ d and ωn+1 falsifies M∗
n
)
≤[

d
n +2

√
d+1
n

(√
ln(d +1)+4

)
+2

√
d+1

√
ln(n)

n + ln(n)
n

]
n−1

n + 1
n , a quantity that goes to

zero at the rate ln(n)/n, not much different from the rate 1/n that we found in the
case of limited complexity. This result provides a rational justification to the practice
of adjusting, even continuously, a model to new empirical evidence provided that the
complexity is used to ward off the risk of over-adapting the model to the observational
data set.

107In the case of elementary probability, this relation can be proven by a computation similar to (6.12).
108While the following argument applies with no restrictions, we invite the reader to concentrate on

the elementary case for a more direct interpretation.
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6.3 A posteriori assessments

§45 The impossibility of conditional assessments. Our discussion here follows
that in Section 4.2, points §27 - §29, hence we shall be concise.

Suppose that the charge of 400 000 electrons has been tested negative, while no
electrons have been tested positive (refer to Example 13 in §39). What can we conclude
about the probability p that one next electron will be positive conditional on these
observations?109 Suppose first that I hold, prior to seen the 400 000 observations,
that p is a low number, say p = 10−6. Then, I conclude that the observations are in
agreement with my holding that p has such a low value. On the other hand, If I deem to
know that the risk is high, say p= 0.1, then I conclude that my seeing 400000 negative
electrons corresponds to a rare event. The very point is that the 400 000 observations
alone are not capable of logically excluding one of these two possibilities, both are
compatible with the observations and, hence, no agnostic conclusion can be drawn
because in an agnostic mind abide simultaneously the two stances that p is as low as
10−6 and that p = 0.1.

The same conclusion applies similarly to the entire apparatus of inductive rea-
soning developed in previous sections. Referring, e.g., to Figure 6.1, we know that,
distribution-free, the probabilistic mass above the blue area is no more than 10−6.
Moreover, picking a value of the complexity c, say c = c̄, corresponds to focusing on
a vertical line corresponding to that value and, since the whole white region has prob-
ability no more than 10−6, then the sole portion of the white region corresponding to
c̄ must also have probability no more than 10−6. This, however, does not exclude the
possibility that the blue region corresponding to c̄ also has low probability, so much so
that the white portion for c = c̄ has probabilistic mass comparable to that of the blue
mass, leading to a high conditional probability. Interestingly, if this is the case, we
must also conclude that seeing c = c̄ corresponds to a rare event.

The interested reader is invited to consult the article [32] for a broad discussion on
the impossibility of conditional statements in the context of consistent procedures, as
well as the presentation of a Bayesian perspective similar to that we have encountered
in §30.

6.4 Drawing the conclusions: justifications and bound-
aries in the process of learning

§46 Agnostic results. The process of learning from observations, as discussed in
previous sections, comprises two foundational components: a procedure P that gen-
erates decisions based on a list of observations, and the concept of appropriateness,

109This is the risk associated with making the model that electrons are negative.
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which we use to express that one next observation is “in accord” with the decision
(e.g., the observation is contained in the model, or the investment does not incur a loss
that exceeds the shortfall threshold). Both these components are within our control:
we construct the procedure and also define a suitable concept of appropriateness. They
formalize the problem of interest as it exists in our mind. In this context, for indepen-
dent and identically distributed observations, Proposition 12 delivers a distribution-free
result, which is a full-fledged demonstration that agnostic evaluations of the risk of
inappropriateness are possible. To pinpoint this achievement – perhaps on pain of em-
bracing the somehow vacuous attitude of using catch phrases – we write: judgments
of reliability for inductive procedures are possible in an agnostic setup. Therefore,
knowledge can be created out of lack of knowledge in the light of observations.110

In this monograph, an agnostic result was first encountered in §25. Upon critically
revising the content of §25, we see that its focus can be sided with Proposition 12: the
probability p that the next ball is red can be viewed as the risk associated to the model
that claims that the next ball is white. The estimate of this risk is p̂. Interestingly,
while the result in §25 was simply based on the process of directly estimating p by re-
peated experiments, Proposition 12 rests on bringing to light a deep-seated connection
between two concepts, those of complexity and risk.

§47 Assessment after seeing the observations. After seeing, say, 400 000 neg-
ative electrons without ever observing one single electron with a positive charge, one
would be tempted to conclude that, with high probability, one next electron will also
be negative. While we have already seen in §45 that conditional assessments (after
having seen the observations) are not possible in an agnostic setup, nonetheless we
can explore whether conditional conclusions can be justified in some alternative the-
oretical frameworks. This investigation is certainly worth a bit of our time because it
can give us a hand towards a more conscious understanding of important mechanisms
that are present in inductive reasoning.

One first attempt of justification is to say that, prior to seeing any of the 400 000
observations, I held that any value of the probability p of coming across of a positive
electron is possible and indeed equally likely (this is just an example, and unbalanced
judgments are also valid priors). In other words, I held a probabilistic prior that p is
uniformly distributed in [0,1] – conceptually, this brings us into a Bayesian framework
as in §30. Then, by a computation similar to that used for the conditional probability
in the second paragraph of §30, I can compute my conditional belief in that p is, for

110One might argue that a distribution-free result refers to considering any probability distribution on
a given support, but the choice of the support is itself an assumption that restricts the way observations
are generated. For example, when tossing a coin one can assume that the probability of a head is any
number p in the interval [0,1] and that of a tail is 1− p, thereby excluding that the coin can land in
vertical position, which does not correspond to either head or tail. However, in inductive reasoning one
is not compelled to consider all available observations, one focuses on observations he is interested in.
Hence, outcomes in the vertical position can simply be disregarded and restricting attention to heads and
tails is therefore an operative decision, not a restrictive assumption on how observations are generated.
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example, less than 10−4 (in other words, while I do not exclude that there exist around
positive electrons, still the probability of encountering one is pretty low, no more than
10−4). This gives

P
(

p ∈ [0,10−4] | n negative electrons have been observed
)

=

∫ 10−4

0 (1− p)n dp∫ 1
0 (1− p)n dp

[where (1− p)n is the probability of observing n negative electrons]
= 1− (1−10−4)n+1

= ≃ 1−4.24 ·10−18

[after substituting n = 400 000].

This is an extremely strong belief. Interestingly, an individual who holds a completely
different prior and assigns a probability as small as 10−9 to that p is within the in-
terval [0,10−4], after seeing 400 000 negative electrons, changes completely his mind
and comes to a substantial agreement with the first individual that holds a uniform
prior. For example, assuming that the prior of the second individual has uniform
density in the interval [0,10−4] with very small value 10−5 (so that the probability
that p is in the interval [0,10−4] is 10−5 · 10−4 = 10−9) and that the prior also has
uniform density in the interval (10−4,1] with value (1 − 10−9)/(1 − 10−4), which
is close to 1, a computation similar to that made for a uniform prior in [0,1] gives
P
(

p ∈ [0,10−4] | n negative electrons observed
)
≃ 1−4.24 ·10−13.111

What lesson can we learn from this? Certainly that holding a probabilistic prior
on p justifies the formulation of conditional assessments. On the other hand, while
holding a prior is certainly not offensive, one can legitimately investigate more closely
where such a prior comes from. One possible answer is that it has nothing to do
with experience, it is just an arbitrary act, perhaps dictated by a superior authority
one believes in.112 This is clearly acceptable as it describes one’s beliefs. However,
we – as people interested in inductive reasoning – have to make clear that here our
judgements have been licensed by an extra element, besides observations, that have
played a crucial role in the formulation of our final conclusion.113 On the other hand,
an alternative answer – indeed often advocated by many – is that the prior encapsulates,
and summarizes, previous experience. This standpoint, however, must be carefully
analyzed to avoid misconceptions. Previous experience may perhaps refer to a “super-
experiment": at some point in time, I have had at my disposal a machinery able to

111We interpret this result that being exposed to a common empirical evidence has a strong effect on
narrowing the initial distance among people’s opinions.

112Religions, for example, provide prior beliefs.
113It is worth noting that if my prior on p assigns zero probability to the interval [0,10−4], then the

conditional probability of [0,10−4] after seeing 400 000 negative electrons remains zero, in complete
disagreement with the two individuals whose opinion has been discussed before. Hence, what we have
called the “extra element” is able to steer our judgments from one extreme to the other.
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scrutinize all electrons in the universe, and it turned out that the charge of them all was
negative. From this knowledge, I can certainly form my prior that p= 0 has probability
1. If instead previous experience merely refers to the assessment of the electron charge
in multiple experiments that have preceded our 400000 observations, we should refrain
from drawing a prior simply because this prior would be a conditional probability
based on partial experience acquired in the past, which leads to a conundrum as we
know this is not possible without a prior.

To get around of the above difficulty, one suggestion that has been made is that,
after removing all experience (the 400 000 observations and all experience that has
preceded these observations) one gives a uniform prior on p according to the “principle
of indifference” (see §15).114 While I might agree that this is reasonable, someone
else (perhaps myself in another state of mind) can be against it. Hence, again, we
have to register that an extra element, besides observations, plays a central role in the
formulation of a judgment grounded on the principle of indifference. Said differently,
the principle of indifference is nothing but one more way to instate a prior that is not
dictated by observations.

Summarizing, we come to the following unassailable conclusion: if a super-
experiment is not available, no conditional beliefs can be formed only based on obser-
vations; any conditional belief has necessarily to be supported by additional elements
beyond the observational wealth. This is what we call the “inescapable relativism of
conditional beliefs”.

§48 Test of hypothesis. Suppose that we hypothesize a probabilistic model, and
that this model logically implies that the observations have a given behavior B with
known, high, probability 1− γ . We also decide that, upon collecting the observations,
we shall accept the model if indeed the observations will exhibit the behavior B. This
is called a test of hypothesis. Clearly, the probability of rejecting the model when it is
correct has probability 1− γ .115 On the other hand, in line with the discussion in §47,

114When p is assigned a uniform prior, the conditional probability of any interval [p, p] of

length ∆ is given by P
(
{p ∈ [p, p]} | {empirical evidence}

)
=

P({p∈[p,p]} ∩ {empirical evidence})
P{empirical evidence} =

P
(
{empirical evidence} | {p ∈ [p, p]}

)
· P(p∈[p,p])
P{empirical evidence} = P

(
{empirical evidence} | {p ∈

[p, p]}
)
· ∆

P{empirical evidence} . Function P
(
{empirical evidence} | {p ∈ [p, p]}

)
is called the “like-

lihood” of the the empirical evidence when p falls within the interval [p, p], and we see from the last
formula that the conditional probability of any interval [p, p] of length ∆ given the empirical evidence is
proportional to the likelihood of the empirical evidence when p is in the considered interval (this is be-
cause ∆ and P{empirical evidence} are constants). This observation relates to common judgments of the
type: “I don’t believe that p is in the interval [p, p] because this would make the {empirical evidence}
I have had quite unlikely.” This sentence refers to the probability of {empirical evidence} given [p, p]
(which is the likelihood) and not to the probability of [p, p] given {empirical evidence} (which is what
we are interested in). Even though this is often not consciously observed, the link between the two
passes through the use of a prior (which, in our case, is expressed by setting P({p ∈ [p, p]) = ∆, a
uniform prior).

115Instead, it is impossible to quantify the probability of accepting the model when it is incorrect, this
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conditional conclusions after having actually seen the observations are not possible
under general circumstances and, hence, the above probabilistic guarantee refers to
the method, not to the specific conclusion that is obtained in a single application of it.
It has to be further noticed that, in practical usage, this procedure is often applied in a
“soft manner” in which the implications of the assumed model are not fully specified at
the time the method is applied. This is the perspective in which the empirical testings
with real data provided in various parts of this monograph should be interpreted.

would require a description of all the alternatives.
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