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Abstract

The recently emerging field of learning theory, pio-
neered by Vapnik and Chervonenkis [1, 2], hss by and
large been focused on the problem of learning static re-
lations. As an initial attempt to extend this approach
to system identification, we examine the problem of
learning input-output relations in a stationary envi-
ronment.

1 Introduction

The recently emerging field of learning theory [1, 2,
3, 4, 5, 6, 7, 8, 9], pioneered by Vapnik and Chervo-
nenkis, has by and large been focused on the problem
of learning static relations. For example in the work of
Valiant [3], the goal is to learn a binary valued function
c(z) defined on an arbitrary set X, based on labeled
sample points (zt, c(q)), where the zt’s are drawn in-
dependently and identically according to an unknown
probability distribution P on X. This treatment haa
been extended (see Haussler [4]) to situations involving
noisy observations.

However, in these treatments, the data points xt are aa-
sumed to be independent, thus disallowing any memory
and hence dynamics in the evolution of the xt-proceaa.
Thus the theory haa by and large not been applicable
to the problem of system identification.

In this paper, we study the problem of learning dy-

namical systems by casting them in a stationary rather
than an i.i.d. framework. We also capitalize on some
recent results of Buescher and Kumar [8, 9] which allow
the use of a new canonical estimator rather than just
the empirical estimator.
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2 Problem Description

We consider a single input, single output (S1S0) system
with input ut E U and output yt E Y, where U and Y
are totally bounded subsets of R. We assume that:
(i) yt isconditionally independent of u~l, y~-~ and

Y%l given u~m (throughout U; := (ur )W+Ii”.” ! US)).
This ensurea not only that the system is causal, but alm
that all the correlation in the ~ process is generated by
the input process u.
(ii) The system is in a stationary environment, i.e, the
joint process (u~, ~~) is strict-sense stationary.
(iii) For convenience, we also assume that it is ergodic
(i.e. its invariant u-algebra is trivial).

Under these conditions, the dependence of y on u
is captured by the (unknown) time-invariant condi-
tional distribution PV/U of yt given u~m. Along
with the specification of the probability distribution of
{ut}~=-.m, Pv/U completely definea a probability mea-
sure P in the space Um x Ym of doubly infinite se-
quences (u~~, y~~).

We assume that P is unknown but it belongs to some
prespecified set P.

For an alternative viewpoint, define the conditional
mean s(u~m ) := fY YPVIU(dy, u~~ ), Then the SYS-
tem can be written as yt = s(u~m ) + dt, where dt :=
~t – s(u~~ ), the additive noise, is conditionally white
given the psst.

We consider the learning problem of determining an g-
dimensional approximation of the function s, where q

is a fixed integer. The approximation function h is to
be selected from a hypothesis set X of functions from
Uq to y.

The accuracy of such an estimate will be measured by



the error criterion given below:

Definition 1 (Error between P and h)

t+ca ~ - ;+ ~ i b - w-,+,))’err(P, h) := lim
i=a

= % [(w- W:-,+,))’]. ‘ ❑

Clearly, err(P, h), also called the generd:zation error
is the expected error one makes by using h to predict
W.

Definition 2 (Optimal error)

The optimal error is the minimum error ouer h c %:
opt(P, w) := ~~ err(P, h). IJ

Once the data (u1, VI), . . . . (ut, yt) have been collected,
one uses an algorithm, which is an indexed family of
maps at : (U x Y)t j ‘H to construct an estimate h.

Definition 3 (Nonuniformly learning algorithm)
We say that an algorithm at learns (possibly) nonuni-
formly over (P, ‘H) if:

Ve>O,J~~P {err(P, at(u~, y~)) – oPt(P, W > ~} = 0,

VP E 7. •1

The reason for the usage of the qualifier “nonuniform”
is that in contrast to a more stringent notion of learn-
ability, the convergence is not required to take place
uniformly in P c P.

Our goal is to construct such an algorithm.

If such an algorithm exists (it may not), we say that
(P, %) is (nonuniformly) learnable.

Remark 1

In the definition of err(P, h), the second equality fol-
lows from the assumption that process (ut, yt) is er-
godic. In the nonergodic case, we would instead have

t+m t- ~+ I i (vi- ~(d-q+Ierr(P, h) := lim
i=q

= EP [(w - W;-q+J)2 /Y]-
where Y is the invariant u-algebra of process (ut, yt ).
As a consequence, err(P, h) is itself a random variable.

The optimal error obtained by allowing h also to be
a Y-measurable random variable is in general strictly
lower than minimizing over deterministic hypotheses.

❑
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Central to the design of a successful learning algo-
rithm is the need to estimate certain expected values
from data sequences. In the stationary environment
assumed here, this can be met by appropriate mixing
condition of the following sort:

Assumption 1
For any positive bounded function ( : W x Y + R, it

holds that

}<>E/U:m, YEm _((E, t– n), VPCP (1)

where ~(s, t–n)+O, as (t-n) ~co.

Remark 2

Some such condition on the tail of the probability dia-
) is needed to copetribution of process C (u~_q+l, IA

with large deviation problems. Though the assump
tion that < is determiniatically bounded is particularly
strong, it is met in our context. Note also that, even
though not explicitly indicated, the function ( will de
penal on the bound on the function [.

Remark 3

Suitable expressions for ((e, t– n) in Assumption 1 can
be derived under standard ~-mixing conditions (see e.g.
[10]). •1

3 Learning by simultaneous estimation

A common way of learning a hypothesis is to first esti-
mate the error associated with each hypothesis h in %,
Subsequently, one then chooses a hypothesis with the
minimal estimated error. For the first step, a widely
used error estimate is the empirical error estimate is
given by

(see e.g. [4]). If the empirical error estimate gets close
to err(P, h) simultaneously over ‘?i (that is uniformly
over all h in W) as t ~ co, then the procedure leads to
selecting a hypothesis whose generalizationerror is in
fact small. This approach has stimulateda vsst litera-

ture on the uniformconvergenceof empiricalestimates
of the error (e.g. [4, 12, 13, 14]), whoseoriginsarein the
pioneeringwork of Vapnik and Chervonenkis([1, 2]).

In this paper, following Bueacher and Kumar [8, 9], we
generalize the above procedure in two respects.

____ .——.



Fix three sequences of real numbers r. .10, p. 10, %$0.
i) We allow any smooth simultaneous estimator for the
ertvr, rather than insisting on using just the empir-
ical error estimate.

Roughly, a simultaneous error extimator is smooth
if it provides similar error estimates for hypotheses
which almost agree on the sample input at hand

(h (Lq+l) =h’(ui_q+l), ~=q, q+l,...,t) (-be-

low). Such a smoothness condition is natural and only
rul~ out pathological situations. It turns out that the
empiricalerror estimatoris in fact smooth (and, there-
fore, our methodology coversit aswell). However,there
are many csses in which a smooth simultaneouserror
estimator exists and yet the empirical estimator fails
to simultaneouslyestimate.

Our procedure is as follows. First, a suit-
able finite empirt”cal cover for N, i.e. a cover
based on the empirical distance p.; (h, h’) :=

‘ ~lh (ul_q+l) - h’ (U~-,+l)l is constructed.t–q+l i=q
Its main feature is that its size (i.e., the number of ele-
ments in the cover) is tailored to the characteristics of
the involved processes and to the number of available
data points so that a simultaneously accurate estimate
of the generalization error of all the cover elements is
possible.

ii) Learning is performed over a nested family of hy-
pothesis classes.

We suppose that ?i has the substructure 3 =
Uk Wk, ?ik ~ lik+’, and we try to learn over X by
learning as time goes on over progressively increasing
classes ?ik. Using such nested classes helps avoid over-
fitting problems by preventing the selection of hypothe-
w that agree too well with the noisy data. A crucial
technical point is that the empirical cover for% is con-
structed in such a way that it always contains empirical
covers for ‘Hk, Vk, formed solely by elements of ?ik. In
this way, the true generalization error of each hypoth-
esis in %k is close to the empirical error of an element
of the cover if each pair (7, ?tk ) is smoothly simulta-
neously estimable.

We now define precisely the above notions.

Definition 4 (Simultaneous nonuniform error es-
timability)
(?, W) is simultaneously (nonuniformly) error es-
timable if there exists an error estimator {et} (i.e. an
indexed family of maps from (U x Y)t x X to R) such
VP E P.

Definition 5 (Smooth estimators)

•1
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The error estimator et is smooth if Vd >0, 3u~(t9) >0
such that

Iim P{
t+m h,he%..t.:jh,h,<~,,d,le’ ‘Uiyi;h)

–et(u~, y~; h’)l>d}=O,

VP c P. •1

Our goal now is to construct an algorithm able to learn
(P, M) whenever a smooth simultaneous error eatimw
tor exists for each pair (P,7f~), k = 1,2, . . ..

Towards this end, we introduce the notion of an
empirical cover.

Given an input sample u?, the associated empirical dis-
tance pur is a pseud~metric on ?f. A set %n,u C ?i
is an empirical &-cover based on u? if, for each h E M,
there exists h E Wn,. such that pu~ (h, ~) < ~. As-
sociated with an empirical e-cover, there is a mapping
m.,. : x + ?i.,u such that P.? (h, ~n,.(h)) <C, Vh E

%. Consider now the situation in which N is given ss
the union of nested classes: X = uk ?ik, %k G Xk+l.
In this case, one wishes to choose a simple empirical
e-cover: an empirical E-cover is simple if the ssaoci-
ated mapping mn,u is such that mn,u (h) c Wk, for any
h E ‘Hk, Vk. Roughly, “simple” in this context means
that m.,. (h) is not allowed to be too complex with re-
spect to h.

It can be shown, through the constructive proce-
dure below (borrowed from [9]), that a simple em-
pirical c-cover for M of finite cardinality always ex-
ists. Since Y C R is totally bounded, for each e > 0
there exists an c/2-cover Ye12 of Y of finite cardinal-
ity ZV(e/2). There are N(.s/2)n-’J+l possible map
pingS ~k from i ● {q, q + 1,. ... n} to cover elements
(~k(i) E ~1,, i = q,q+ 1,.. .,n). The simple empir-
ical e-cover for ‘H is recursively constructed as follows.
Initially, let CO= O. For k = 1 to iV(6/2)n-q+l, check
whether there exist hypotheses h E ‘H such that

[h (u!-q+~) - ~k(i)l K ~/z, ~ E {q,q+ l,.. .,n}. (2)

If any, pick an hypothesis hb satisfying (2) which is
as simple as possible (hk E ?ik and there exists no
h E ?i~, j < k, such that (2) is satisfied) and set
ck = Ck-1 U {hb}. It is essy to verify that, for each
h E ‘Hk, there exists an element h’ E CN(C/2)..,+1 fl ‘Hk
such that p“. (h, h’) < c. Set ‘?f~)a := CN(t/2).-q+l md
mn,u(h) = h}.

Now we specify our learning algorithm:
The learning algorithm
At time t do the following:
Let n be the largest integer such that

( )

n-q+l
r~

N 2(n–q+l)
((pn, t–n)<%l.

0
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in Lecture Notes in Mathematics, vol. 1097, Springer
Verlag, 1984.
[14] B.K. Natarajan, “Probably approximate learning
over classes of distributions”, SIAM Journal on COm-
puting, VO1.21,1992, pp. 438-449.
()Construct a simple empirical ~~;+l -cover ?in,u

based on the pseudo-metric p.; with cardinality less
than or equal to N(~)”-’J+l and denote by inn,.
the corresponding mapping from % to W. ,U.

Select @ (~~,U;) = ar9 pwi;u eemp(~i+l, k+l; ~). n

Our main result is the following Theorem on the effi-
cacy of this algorithm:

Theorem 1
If (’P, ?l~ ) is smoothly simultaneously nonuniformly er-
ror estimable for every k, then (P, X) is nonuniformly
learnable through algorithm @ .

Remark 4

Theorem 1 only guarantees that algorithm iit nommi-
fern-dy learns (P, M). On the other hand, the assump
tion that pairs (P, ?f~) are smoothly simultaneously er-
ror estimable is very mild indeed. As a matter of fact,
it is not hard to find examples in which ‘H is a com-
plex class (even with infinite VC-dimension) and yet a
nested family %k exists such that (P, %k ) are smoothly
simultaneously nonuniformly error estimable.

We also note that, it is possible to show that uniform
(i.e. convergence takes place uniformly in P) learn-
ability holds for (P, X) provided that (P, ‘H) is itself
smooth] y simultaneously uniformly error estimable. ❑

4 Concluding remarks

The reason that the fields of system identification and
learning theory have had only sporadic contacts be-
tween them is probably that the two fields have adopted
different sets of technical assumptions .

Here we have proposed a method to learn dynamical
relations in a stationary framework. This study is a
first attempt to bridge the existing gap between learn-
ing theory and system identification.

We should note that we have completely neglected the
issue of computational effort required by the learning
techniques.
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