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Abstract—In this paper, a new notion of learnability is intro-
duced, referred to as learnability with prior information (w.p.i.).
This notion is weaker than the standard notion of probably approx-
imately correct (PAC) learnability which has been much studied
during recent years. A property called “dispersability” is intro-
duced, and it is shown that dispersability plays a key role in the
study of learnability w.p.i. Specifically, dispersability of a function
class is always a sufficient condition for the function class to be
learnable; moreover, in the case of concept classes, dispersability is
also a necessary condition for learnability w.p.i. Thus in the case of
learnability w.p.i., the dispersability property plays a role similar
to the finite metric entropy condition in the case of PAC learnability
with a fixed distribution. Next, the notion of learnability w.p.i. is ex-
tended to the distribution-free (d.f.) situation, and it is shown that
a property called d.f. dispersability (introduced here) is always a
sufficient condition for d.f. learnability w.p.i., and is also a neces-
sary condition for d.f. learnability in the case of concept classes.
The approach to learning introduced in the present paper is be-
lieved to be significant in all problems where a nonlinear system
has to be designed based on data. This includes direct inverse con-
trol and system identification.

Index Terms—Bayesian learning, dispersability, learning theory,
system identification.

I. INTRODUCTION AND PROBLEM DEFINITION

A. A Well-Studied Problem: Probably Approximately Correct
(PAC) Learnability

CONSIDER a measurable space and a probability
measure on . Further, let be a set of measurable

functions mapping into . Given two functions ,
we can define the distance between them as

It is easily seen that is in fact a pseudometric on. The
quantity can be given a very meaningful interpretation.
Suppose that a sample point is selected at random in
accordance with the probability . Suppose also that is the
“true” function—so that is the “true” outcome—and that

is an approximation to it. Then, is the average error
we make by using as an approximation to the true outcome

.
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A learning problemtakes place when there is a fixed but un-
known function (usually referred to as thetarget function) and
the problem at hand is one of constructing a suitable approxima-
tion to based on observations. In a classical learning setting
[26], the observations are collected according to the following
scheme: At each instant of time, an element is drawn at
random from according to . Moreover, the th sample is in-
dependent of the previous ones. After each sample, an “oracle”
returns the value of the unknown target functionevalu-
ated at the randomly generated sample. Thus, at time , the
information available to the learner consists of thelabeled mul-
tisample

where is an i.i.d. sequence distributed according to
the probability . Based on these data, the learner is asked to
construct an approximation to the function. Specifically, he
has to choose a function (called thehypothesis) with the
objective of minimizing the distance . The quantity

is calledgeneralization error, since it can be inter-
preted as the expected error we make by using the hypothesis

to predict the value of thenextoutcome of the value
of at a randomly generated element .

The procedure through which the hypothesess are gen-
erated is called analgorithm. Precisely, an algorithm is an
indexed family of maps , .
Once is fixed, the hypothesis at time is obtained
simply by applying the algorithm to the available data:

.
As time increases, the hypothesisis based on an increasing

number of data, and is therefore expected to become a progres-
sively better approximation of the target function. A natural
question to ask in connection with the asymptotic behavior of
the algorithm is whether tends to as tends to infinity. A
precise definition of this idea, however, calls for some care as
the function is in fact a random element being determined on
the basis of the random data . The
following definition has by now become standard in learning
theory.

Definition 1 (PAC Learnability, [3]): An algorithm is
probably approximately correct (PAC) to accuracyif

(1)

The algorithm is PAC if it is PAC to accuracy , for every
. The function class is PAC learnableif there exists an

algorithm that is PAC.
It should be noted that in Definition 1 probability is fixed

and that algorithm is required to PAC-learn only for that
specific probability. Under the assumption that a function class
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is PAC learnable, an algorithm exists that PAC-learns. The
actual selection of such an algorithm usually requires the ex-
plicit knowledge of . Later on in this section, we will intro-
duce a stronger definition of learnability called distribution-free
PAC learnability. There, it is required that a single algorithm is
able to learn for all possible probabilities.

Let us define the quantity

Thus PAC learnability to accuracycorresponds to the condi-
tion that approaches zero as . Suppose now
that an algorithm PAC learns a given function class. Sup-
pose an “accuracy parameter”and a “confidence parameter”

are specified, and that we are able to determine an integer
with the property that

Then it can be asserted with confidence that, after sam-
ples have been drawn, the generalization error is no larger than
, no matter what the taget functionis. The function

is referred to as thesample complexity function.
A specific, yet significant, instance of learning problem is

one in which is a set of indicator functions on ; that is,
. The collection of sets is called

a concept classand the problem of estimating is termed a
concept learning problem.

In Definition 1, a subtle measurability issue arises regarding
the definition of the probability . Since
belongs to , the function is measurable and
is always well-defined. However, without any extra assumptions
on , there is no guarantee that the set
is measurable, so that may not be well-
defined. Such an issue is discussed in [6]. In the present paper,
here and elsewhere, we gloss over these measurability issues.

Definition 1 can be extended to the case where the probability
is unknown but belongs to some known family of probabil-

ities . In particular, a case widely studied in the literature is
when , the set ofall probabilities on , which
is known as thedistribution-free learning problem. In this case,
the definition of PAC learnability is as follows.

Definition 2 (Distribution-Free PAC Learnability, [26]):An
algorithm is distribution-free probably approximately cor-
rect (d.f.-PAC) to accuracy if

where denotes the set of all probabilities on . The
algorithm is d.f.-PAC if it is d.f.-PAC to accuracy, for
every . The function class is d.f.-PAC learnable if there
exists an algorithm that is d.f.-PAC.

Obviously, distribution-free learning is in general a much
harder task than learning with a fixed distribution.

B. Summary of Known Results for PAC Learnability

The classical learning problems described above have been
deeply investigated both in the fixed distribution as well as in
the distribution-free settings. In particular, for the fixed distri-

bution case, Benedek and Itai [3] have shown that a so-called
finite metric entropy condition is both sufficient and necessary
for concept learning. Here, we present a general result (Lemma
1) which encompasses both the concept learning case as well as
the function learning case.

Given a function family and a pseudometric on , a
finite collection is said to be an-coverof
if, for every , there exists an indexsuch that
. The smallest integer such that there exists an-cover of

cardinality is called the -covering numberof with respect
to the pseudometric , and is denoted by . Now
the general result is as follows.

Lemma 1: Suppose is a given function class mapping
into , and is a given probability measure on. Then,
the function class is PAC learnable if ,
for each . In case consists only of binary-valued func-
tions (concept learning), the above condition is also necessary
for PAC learnability.

The condition for each is referred
to as thefinite metric entropy condition.

In the case of concept learning, the finite metric entropy con-
dition is both necessary and sufficient for PAC learnability. In
the case offunctionlearning, the finite metric entropy condition
is sufficient, but not necessary, for PAC learnability; see [30, Ex.
6.11].

The learnability of a concept class in a distribution-free
setting is closely related to the so-called uniform convergence
of empirical probabilities property [28], [29]. This connection
was first highlighted in [6] where it was shown that the distri-
bution-free PAC learnability of a concept class is equivalent to
the finiteness of its so-called Vapnik–Chervonenkis dimension
[27], [28].

Lemma 2 [6]: A concept class is PAC learnable in a distri-
bution-free setting if and only if it has finite VC-dimension.

Extensions of these results to function learning are mainly
due to Pollard and Haussler. In particular, in [16], by extending
previous results of Pollard, Haussler proves that the finiteness of
the Pollard-dimension [24] of a function classimplies that the
class is distribution-free PAC learnable. On the other hand, the
finiteness of the Pollard-dimension is not required in general for
distribution-free PAC learnability to hold. Subsequently, it was
shown by Bartlettet al. [2] that, in the case of trying to learn a
function class undernoisymeasurements, the finiteness of the
Pollard-dimension is still not necessary. However, the finiteness
of a smaller dimension (the fat-shattering dimension) is neces-
sary and sufficient in that case. We do not dwell on these results
here, as they would take us too far afield.

C. Learning With Prior Information

When the conditions that guarantee PAC learnability are not
met, a natural question to ask is whether learnability holds in
some weaker sense, or else if the class we are dealing with is
intrinsically unlearnable for any reasonable definition of learn-
ability. This observation motivates the introduction of other def-
initions of learnability as alternatives to the classical definition,
so that one can “rank” different learning problems in order of
difficulty. At present, the study of such alternative learning for-
mulations is still in its infancy.
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Benedek and Itai in [4] have proposed the notion of “nonuni-
form learnability” by simply dropping the uniformity require-
ment with respect to the target function in Definitions 1 and
2. They give conditions for this property to hold in different
situations. An apparent drawback of this approach is that the
sample complexity function then explicitly depends upon the
target function [i.e., is now replaced by ],
and consequently the learner does not know when to stop the
learning process. This drawback, however, is partially alleviated
by a procedure described in [4] based on an alternation of esti-
mation and testing phases. If the learner is content with learning
to a prespecified level of accuracy and confidence, this proce-
dure indicates when to stop collecting new data.

A second very interesting stream of literature is the one de-
voted to the so-called PAC-Bayesian learning, [20], [21], [25].
In PAC-Bayesian learning, the concept class has a prior prob-
ability associated with it. This probability is used in order to
incorporatea priori knowledge in the algorithm. However, dif-
ferently from the standard Bayesian approach, the results are
valid for each single target concept. The basic idea behind this
approach is worth mentioning. In standard PAC learning, the ac-
curacy level is fixed and one is asked to find a hypothesis that
meets the assigned level of accuracy with a certain confidence.
In this context, the accuracy level does not depend on the target
concept. In the PAC-Bayesian approach, one drops the unifor-
mity requirement with respect to the target concept and the ac-
curacy level is allowed to depend explicitly on the selected hy-
pothesis. This broadens the applicability of the theory with re-
spect to standard PAC learning. There is however a price one has
to pay for such a generality. In PAC-Bayesian, the accuracy is
no longer uniform with respect to the target and, therefore, it is
not possible to computea priori the size of the data sample that
permits one to obtain a specified generalization error. The above
mentioned approach has been studied in [20] in connection with
countable families of concepts first and then generalized in the
same paper to all subsets of arbitrary concept classes. The paper
[21] deals with a nontrivial extension of the results in [20] to dis-
tributions on arbitrary concept classes.

The present paper is devoted to the study of a new notion of
learnability, called here as learnability with prior information
(w.p.i.). Instead of insisting on considering each target function
as a separate entity, we view the set of target functions as a whole
and introduce a probability measure which quantifies the rela-
tive importance given to different targets. This formulation of
the learning problem is not new and it has been discussed, for
example, in [30, Ch. 9]. However, in that reference only the def-
inition of learnability w.p.i. is introduced, and it is shown that
any countablefunction class is learnable w.p.i.—a very weak
sufficient condition. In the present paper, we present a compre-
hensive treatment of learnability w.p.i. In particular, we estab-
lish necessary and sufficient conditions for learnability w.p.i. of
a conceptclass.

Previous work on learning theory in a Bayesian set-
ting—though with a focus completely different from the one in
the present paper—can be found in [17], [18]. In these papers,
the following problem is addressed: A learner is progressively
given the value of the target concept corresponding to randomly
extracted points and is asked to guess the next value. The

problem consists in quantifying the probability of error and, in
particular, in giving bounds for the cumulative error, i.e., the
number of mistakes made in the first guesses as a function
of . The interesting issue of bounding the probability of
error is somewhat complementary to the issue treated in this
paper, namely the characterization of function classes which
are learnable with prior information.

Before giving a precise definition of learning with prior in-
formation, we motivate this approach and highlight some ad-
vantages it may have over other learning formulations.

We start with a general observation applicable to any learning
problem. Suppose as usual that the problem at hand is one
of estimating a target function based on the observations

. Given an algorithm , the
accuracy of the estimate computed via , as measured by
the number , depends on the extracted multisample

as well as on the target function. Corre-
spondingly, may be higher or lower depending on the
target and the multisample. Both and can be regarded
as uncertain elements in our learning problem. Therefore, we
can claim that the “goodness” of the output of the algorithm is
uncertain and depends on two basic uncertain elements:
and .

In a classical PAC-learning framework, the two uncertain el-
ements and are treated in completely different ways. The
learning performance is required to beuniform with respect
to the one uncertain element , but is permitted to fail
with a probability with respect to the other uncertain element

. The requirement of uniformity with respect tomakes
the classical learning definition quite demanding, and, not sur-
prisingly, the corresponding learning conditions are not always
satisfied.

If one agrees to drop the uniformity requirement with respect
to , then a quite natural approach consists in treatingbothun-
certain elements and in the same way. This leads to a “fully
stochastic” approach which we calllearning with prior informa-
tion. This is achieved by equipping the set of target functions
with a probability measure of its own. This probability can de-
scribe either ana priori available information on the probability
of occurrence of the different functions or, more simply,
the relative importance given to different targets. Then all vari-
ables involved in the learning process can be viewed as func-
tions defined on the product probability space , and all
probabilities can be computed in this product probability space.

The approach to learning outlined above may be a meaningful
alternative to more standard learning settings in identification
and control problems. As an example, consider the problem of
estimating a function by means of a neural network (NN).
Typical applications are: direct inverse control problems where
the NN is used so as to obtain a dead-beat controller for non-
linear plants [22]; or, more simply, the modeling of a nonlinear
dynamical system.

It is well known, see e.g., [1], [7], and [10], that the best size
in terms of the number of neurons of the NN results from a
compromise between two contrasting needs. On the one hand,
the architecture of the NN should be rich enough to have good
approximation capabilities. On the other hand, if the size of the
NN is too large, it is difficult to train it accurately based on the
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available finite amount of data points, and this leads to a poor
generalization capability. While the first aspect can be captured
by a deterministic approximation analysis, the second is better
described in a stochastic setting, resulting in a probability, or
confidence, that the NN generalizes well.

Clearly, the best compromise between the two sources of er-
rors described above depends on the assumed complexity of the
target function : the more complex is, the larger the size of
the NN should be. A by now standard way of describing the
complexity of the target function is to consider its Fourier
transform and to bound its norm in some way. In Barron [1],
use of the following bound is proposed:

(2)

Once has been assigned, the size of the NN can be optimized
by minimizing the overall estimation error due to the approxi-
mation capability of the NN within the function class defined
by (2) and the generalization error due to the fact the NN has to
be trained based on a finite number of data points.

The above approach relies heavily on the choice of the con-
stant . If is chosen to be small, the condition (2) may be too
restrictive to include the actual target function. On the other
hand, selecting a large results in a NN that has many parame-
ters and therefore requires a large number of data points to train.
The philosophy of learning with prior information suggests a
way around this dilemma. Let denote an increasing func-
tion of , and suppose that the probability of the target functions
satisfying the condition of (2) is . In mathematical terms

(3)

Given a desired confidence level, one can use (3) to verify
whether a specified accuracy can be achieved. A simple way
to proceed is to assign a certain fraction of confidence—say

—to the probability that the target function
does not belong to [that is is
selected so that .] Then, the size of the NN is
chosen so as to optimize the generalization error for the class

with confidence .
The precise formulation of PAC learning with prior infor-

mation is now introduced. Let be a given -algebra on
such that the pseudometric is measurable with respect to

, and let denote a probability measure on the measurable
space . Throughout, by the symbol we indicate the
product probability on the product measurable space

.
Definition 3 (PAC Learnability With Prior Information):An

algorithm is probably approximately correct (PAC) with
prior information (w.p.i.) to accuracy if

(4)

The algorithm is PAC w.p.i. if it is PAC w.p.i. to accuracy
, for every .

The function class is PAC learnable w.p.i. if there exists an
algorithm that is PAC w.p.i.

Similarly to Definition 1, in Definition 3 algorithm is
required to learn only for a given fixed probability . A func-
tion class is PAC learnable w.p.i. if an algorithm exists able
to PAC learn w.p.i. for the given . It should be emphasized
that this algorithm may be specifically tuned to the given.
Therefore, selecting the algorithm requires in general explicit
knowledge of the probability and the distribution over .

The learnability condition (4) can be rephrased by saying that
PAC learnability w.p.i. holds if the confidence

approaches zero when . In this connection, it is important
to remember that is a probability in . Consequently,
under the condition , no specific statement can be made
for any singletarget function concerning the probability that
the generalization error is below the accuracy level. Rather,
is theaverageprobability of success over all the probabilistic
elements involved in the learning process.

The fully stochastic approach of Definition 3 offers an im-
portant advantage over the nonuniform learning formulation. In
the learning problem with prior information one cana priori
compute a sample complexity function such that for

learnability holds to accuracy and confidence
. This is very similar to the classical PAC learning approach.

In contrast, in the nonuniform learning formulation, the sample
complexity depends explicitly on the unknown target function,
which means that in principle the learner does not know when
to stop learning in a specific situation.

The paper is organized as follows. In Section II, we introduce
the so-called dispersability property, and present some simple
sufficient conditions for a class of functions to be dispersable.
Among other results, it is shown that if is a separable metric
space, theneveryfamily of measurable functions mapping
into is dispersable. In particular,all function and concept
classes over are dispersable. In Section III, some algorithms
for learning w.p.i. are presented. It turns out that the role of dis-
persability in PAC learnability w.p.i. is similar to that of finite
metric entropy in classical PAC learnability. Specifically, dis-
persability is asufficientcondition for learnability w.p.i. in the
case of function classes, and is anecessary and sufficientcon-
dition for learnability w.p.i. in the case of concept classes; all
these claims are established in Section III. Combining the re-
sults of Sections II and III shows thatall function and concept
classes over are learnable w.p.i., for every integer; this
result covers practically all examples in the learning literature.
Section IV is devoted to an analysis of the sample complexity of
the algorithms for learning w.p.i. introduced in Section III. The
problem of PAC learning w.p.i. in a distribution free setting is
dealt with in Section V; this problem formulation entails some
technicalities. Then, the conditions for learning in this context
are established. Finally, Section VI contains the concluding re-
marks.

II. DISPERSABLECLASSES OFFUNCTIONS

In the theory of learning with prior information, a function
class is PAC learnable if there exists an algorithm that is
able to return an accurate estimate formost, but not necessarily
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all, target functions. In fact, the algorithm is allowed to fail
for target functions whose probability of occurrence is suf-
ficiently small. In view of this observation, it is expected that a
well-posed condition for PAC learnability w.p.i. should simul-
taneously account for the richness of the function class as well
as the probability of occurrence of the different functions in the
class.

In this section, we introduce the notion ofdispersability
which is a very natural way of combining the two aspects
described above. It turns out that a function class satisfying the
finite metric entropy condition is always dispersable. On the
other hand, the dispersability condition is much milder than
the finite metric entropy condition and holds whenever the
“uncoverable” part of has a small enough probability.

The dispersability property applies in particular to concept
classes. In Section III, we show that dispersability is anecessary
and sufficientcondition for PAC learning w.p.i. in the case of
concept classes.

Consider a partition of the function class , i.e., a collec-
tion such that and ,

.
Definition 4 (Dispersion Under a Partition):Thedispersion

of the class under the partition is defined as

The expression is a measure of
the dispersion of the set (the th element of the partition )
where each function is given a weight according to
probability . Therefore, quantifies the dispersion of a
function class once it has been split into the subclasses forming
the partition.

Suppose now one is allowed to select a partitionof given
cardinality so as to minimize the dispersion. The resulting
dispersion is the so-called minimal dispersion:

Definition 5 (Minimal Dispersion):Theminimal dispersion
under a partition of cardinality is defined as

A partition is said to be “optimal” when its dispersion is
minimal, that is, . Note that an optimal dis-
persion need not exist in general. However, there will always
exist a partition of cardinality such that is arbi-
trarily close to . In the proofs of the various theorems
below, it is always assumed that an optimal partition exists.
This is purely to reduce notational clutter, and the proofs can
be readily amended to cater to the case where optimal partitions
do not exist.

Definition 6 (Dispersability): The function class is dis-
persableif

Thus a function class is dispersable if its dispersion can be
made arbitrarily small by considering partitions into more and
more subsets.

In the remainder of the section, several results concerning dis-
persability are proved. First, it is shown that finite metric entropy
implies dispersability, and then it is shown that the converse is
not true in general.

Lemma 3: Suppose a function class satisfies the finite
metric entropy condition with respect to , and let be an
arbitrary probability measure on. Then is dispersable.

Proof: Recall that a function class satisfies the finite
metric entropy condition if, for every, no matter how small,
the set can be covered by a finite number of (closed)
balls of radius . Let denote the minimum number
of balls of radius needed to cover . The proof consists
of showing that , , from which it
follows that , i.e., that is dispersable.
Consider a collection of closed balls centered at

, for , such that . Define
, . Then

(5)

On the other hand, dispersability is a milder property than the
finite metric entropy property, as shown next.

Lemma 4: Suppose is a separable metric space such
that , for every , and let denote the
corresponding Borel-algebra on . Suppose is a probability
measure on . Then is dispersable.

Proof: Given , select a countable set such
that, with equal to the closed ball of radius centered at ,
we have that . Such a countable set exists since
is separable. Set , and note that .
Choose such that . Define

. Then

Since is arbitrary, this implies that is dispersable.
In particular, Lemma 4 implies that every countable set is dis-

persable under every bounded metric, because a countable set
is always separable. On the other hand, it is easy to construct
examples of countable sets with a bounded metric that do not
satisfy the finite metric entropy condition, which shows that dis-
persability does not in general imply finite metric entropy.
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Example 1: Let , Borel -algebra on
and Lebesgue measure on. Consider the concept class

, where . Clearly,
, whenever . Thus, , ,

and so this concept class does not satisfy the finite metric en-
tropy condition. However, since it is countable, it follows from
Lemma 4 that is dispersable.

Next, the mildness of the dispersability condition is
highlighted by proving a very general result, namely, that dis-
persability holds whenever the underlying setis a separable
metric space. In particular, function and concept classes over

are dispersable for every integer. This result is therefore
applicable to practically all examples in the learning literature.

Theorem 1: Suppose that is a separable metric space and
let be the associated Borel-algebra. Let denote the family
of all measurable functions from to . Let be any prob-
ability measure on , and let denote the corresponding
pseudometric on . Finally, let be any probability measure on
the Borel -algebra of the metric space . Then, the func-
tion class is dispersable.

Proof: The theorem is proven by showing that is
a separable metric space. Once the separability of is
established, its dispersability follows from Lemma 4.

Note first that the Borel -algebra on a separable matric
space is countably generated (by all the balls with rational
radius centered on a dense countable subset of). Thus, is
countably generated. Next, apply [5, Th. 19.2], which states
that the space , , where is a set with

-finite measure is separable provided that the-algebra on
is countably generated. This leads to the conclusion that the
space of summable functions on is separable.
Finally, on observing that is included in , the
conclusion follows.

Even though the notion of dispersability is very general, it is
possible to find examples of function classes that are not dis-
persable.

Example 2: Let be the set of real functions de-
fined on the interval . The variable is inter-
preted as time and an element is a trajectory of a sto-
chastic process. We endowwith a -algebra and a probability
by means of the standard procedure based on Kolmogorov’s
existence theorem [5, Th. 36.1]. Specifically, given any finite
set of time instants , define the finite-di-
mensional distribution corresponding to as the uni-
form distribution in the hypercube . This completely de-
fines the probability of cylinder sets, that is sets of form

, where represents the value
of the trajectory in and is a Borel set in . Clearly, this
system of finite dimensional distributions is consistent, in the
sense precisely stated in [5, Sec. 36]. Then, by Kolmogorov’s
existence theorem, it follows that there exists a probability
defined over the -algebra generated by the cylinder sets whose
finite dimensional distributions coincide with the given uniform
distributions. This completely defines .

We are interested in concepts of the form
, where is some time in . Thus the

concept consists of all trajectories that take on value in
the interval at time . Denote by the corresponding

concept class, namely: . It is important
to observe that any two distinct concepts and in
are 0.5 apart of each other in the metric. In fact

and

and

Clearly, can be placed in one-to-one correspondence
with the interval by the relation . This permits
us to immediately introduce a-algebra and a probability
on by defining them as the images of the Borel-algebra
and the Lebesgue measure in through the one-to-one
correspondence. The claim is that the concept classis not
dispersable. This can be verified by noting that, for any partition

, we have

that is, under any partition , the dispersion is always equal to
0.5.

III. CONNECTIONSBETWEEN DISPERSABILITY AND

LEARNABILITY W.P.I.

A dispersable function class is PAC learnable w.p.i. using a
minimum empirical risk algorithm applied to a suitably selected
partition of the function class. This is shown in Theorem 3. An
analysis of the complexity of this algorithm in the present setting
is carried out in Section IV. It turns out that, in the case ofcon-
ceptclasses, the dispersability condition is alsonecessaryfor
PAC learnability w.p.i. Since this latter result has a very short
proof, it is proved first.

In the sequel, we will take the liberty of identifying a set of
concepts with the corresponding function class

. In particular, we shall say that “a concept classis learn-
able [dispersable]” if is learnable [dis-
persable].

Theorem 2: A concept class is PAC learnable w.p.i. only
if it is dispersable.

Proof: Consider an algorithm which PAC learnsw.p.i.
and denote by the corresponding random hypothesis
sequence. The probability space in which
resides can be embedded in the larger time-invariant probability
space . In this last probability space, the
PAC learnability w.p.i. assumption implies that the sequence

converges to zero in probability. Therefore,
from the sequence it is possible to extract a
subsequence that converges to zero
almost surely (see, e.g., [14]). This implies that ,

such that

1) ;
2) , .
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By virtue of Theorem 2 in [3], Condition 2 implies that
satisfies the finite metric entropy condition, and is therefore dis-
persable by Lemma 3. Now select a partitionof such
that the dispersion of is less than or equal to; then the
partition of has a dispersion not greater than

. Since is arbitrary, this proves that is dispersable.
The remainder of the section is devoted to showing that dis-

persability is asufficientcondition for PAC learnability w.p.i.
for a function class, by constructing a suitable learning algo-
rithm. We begin by considering a given fixed partition of the
function class and introduce a natural procedure for the selec-
tion of an element of the partition. Moreover, an estimate of the
probability that the corresponding generalization error exceeds
a given threshold is also computed.

Consider a partition . For the sake of clarity,
we assume throughout the sequel that there exist functions,

, minimizing the dispersion of each element
, i.e., .

Should this condition not be satisfied, suitable approximations
could be used in place of thes.

The following procedure is simply a minimal empirical error
algorithm for the selection of an in the set .

Procedure 1:

1) Determine functions such that
.

2) Compute the empirical error of each function:

3) Select to be the minimizer of the empirical distance
;thus

A natural question to ask in connection with Procedure 1 is:
what is the probability in the product probability space
that exceeds a given value . The question is
dealt with in the following lemma.

Lemma 5: With all notations as above, we have

(6)

Proof: Fix , and choose an such
that

Thus, while is the minimizer of theempirical distance be-
tween the target function and the ’s, is the minimizer of
thetruedistance betweenand the ’s. Note that by definition
of we have

(7)

We begin by computing the probability that
exceeds . Note that if

for (8)

and

(9)

then it follows that:

since ,

by the manner of choosing ,

Adding these three inequalities leads to

Hence, the probability that is at
most equal to the sum of the probabilities that one of the
inequalities in (8) or (9) is violated. By Hoeffding’s inequality
(see, e.g., [23]), the probability that any one of these inequalities
is violated does not exceed . Hence

(10)
Finally

where in the last inequality we have used (10) for bounding the
first term and equation (7) for the second one.

We are now in a position to present our learning algorithm,
which consists simply of partitioning the function class so as to
reduce the corresponding dispersion to a minimum, and then se-
lecting an hypothesis through Procedure 1. In Theorem 3 below
it is shown that this algorithm PAC learns w.p.i. when applied to
a dispersable class provided that the rate of growth of the parti-
tion size is subexponential.

Algorithm 1: Select an increasing integer-valued function
. At time , do the following:

1) determine an optimal partition of cardinality
[thus, ];

2) select by applying Procedure 1 to the partition.
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In Algorithm 1 it is assumed that an optimal partition exists;
if not, “nearly optimal” partitions can be used instead, and the
proof below can be modified appropriately.

Theorem 3: If is dispersable and , then
Algorithm 1 PAC learns class w.p.i.

Proof: The conclusion follows readily from Lemma 5,
which states that

(11)

Since , the right side of (11) tends to zero for every
. Hence, the algorithm PAC learns w.p.i.

The theorems proved thus far permit us to draw some very
general conclusions regarding learnability w.p.i.

Theorem 4: A concept class is PAC-learnable w.p.i. if and
only if it is dispersable.

Proof: The “only if” part is proven in Theorem 2. The “if”
part follows from Theorem 3 which proves the existence of an
algorithm that PAC learns classw.p.i.

Theorem 5: Let be a separable metric space, equipped
with the associated Borel-algebra. Let denote the set of all
measurable functions mapping into . Finally, let be
any probability measure on. Then is PAC learnable w.p.i.

The proof follows readily from Theorems 1 and 3.
Theorem 5 shows that in the most widely studied situation

where is a subset of some Euclidean space for some in-
teger , learnability w.p.i. is automatic.

It is interesting to note that in Algorithm 1, attention is first
restricted to a finite number of candidate hypotheses (functions

), and then this number is permitted to go to infinity (in
a controlled way) as the number of data points increases. The
reason for this is that if too many hypotheses are considered at
the same time, the probability that the generalization error for
all of them can be correctly estimated from data is very low.
Then, selecting a hypothesis which exhibits good adherence to
data gives no guarantee that this hypothesis generalizes well.

This idea of restricting attention to a subclass of hypotheses is
standard in the statistical literature and it has been used in many
different forms and contexts (see, e.g., [15], where the notion
of “sieve” is introduced in connection with the problem of es-
timating probability measures). The very interesting fact within
the framework of the present paper is that restricting attention to
a finite set of concepts as indicated in Algorithm 1 workswhen-
evera concept class is PAC learnable w.p.i.

We now present an alternative to Procedure 1. In the first step
of Procedure 1, one is obliged to determine functionss that
are at a minimal average distance from the functions in theth
element of the partition . However, determining these func-
tions may be very difficult. Instead, one possibility is to select
an at random for each, according to the probability .
This leads to the following alternative to Procedure 1.

Procedure 2:

1) For , select at random a function out of
according to probability restricted to set ;

2) and 3) as in Procedure 1.

It is natural to ask whether a result similar to Lemma 5 still
holds for Procedure 2. This is indeed the case, as shown next.
Note that there is now an extra element of randomness in Proce-
dure 2 since at the first step of this procedure functionss are
randomly selected. As a consequence, the hypothesisis now a
random element in the probability space .
Denoting by the probability restricted to (i.e.,

), the probability on is then
given by . The generalization
of Lemma 5 to Procedure 2 makes reference to this probability.

Lemma 6: With generated according to Procedure 2 we
have

By comparing Lemmas 5 and 6, we see that the upper bound
for the probability of error with the random Procedure 2 in-
creases by a factor less than 2 over the upper bound of the prob-
ability of error with Procedure 1.

Proof: The proof is analogous to that of Lemma 5 and
therefore omitted.

With Lemma 6 in place it is possible to prove a result analo-
gous to Theorem 3 for the following variant of Algorithm 1.

Algorithm 2: Select an increasing integer function .
At time , do the following:

1) determine an optimal partition
;

2) select by applying Procedure 2 to .
Theorem 6: If is dispersable and , then
computed through Algorithm 2 satisfies

where .

IV. SAMPLE COMPLEXITY EVALUATION

In this section, we examine the sample complexity of Algo-
rithm 1. The starting point is the bound (6) in Lemma 5, which
states that, given a partition of cardinality , the hypothesis

generated through Procedure 1 satisfies

Note that the above result holds true for every, , and .
When is an optimal partition (as is the case in Algorithm

1), we have and

is the so-calledconfidence function. This expression for
can be minimized with respect to the parameteras

a function of and . Letting denote the optimal value
for , the minimal confidence is defined as

(12)
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The function can be made explicit with respect to
(with a little caution due to the fact thatis an integer variable)
as follows:

the smallest integersuch that

In the sequel, is referred to as thesample complexity
function.

It is important to give a correct interpretation to the func-
tion . Given an accuracy and a confidence, the in-
teger is such that [see
(12)]. In other words, the confidence at time of the rela-
tion is at least provided that the partition

has cardinality . On the other hand, in Algo-
rithm 1 the integer function has to be chosen at the outset
and is not allowed to be a function ofat time . So:

in general.
Clearly, a sensible way to determine function in Algo-

rithm 1 is to choose first a function and then optimize by
selecting . If this is the case, the confidence
at time is in fact optimal for accuracy , i.e., ,
but it is in general suboptimal for .

In conclusion, the sample complexity function provides a the-
oretical lower bound which can only be partially achieved by a
given algorithm. Precisely, if for some pre-
specified function and, for some, we select and

, then we achieve accuracywith confidence
at time and is in fact optimal: .

In order to determine an explicit expression for the sample
complexity function, one has to introduce some specific form
for the minimal dispersion function . Here, as an ex-
ample, we examine the case in which

(13)

for some constant .
Example 3: Suppose that satisfies the finite metric entropy

condition and that , for some constant
. This is quite a common situation; see for instance several

examples reported in [19]. Then, by using (5), it is readily seen
that (13) holds in this case with .

Example 4: Consider again Example 1 in Section II and as-
sume that , for some . In this
case the finite metric entropy condition is violated. However, an
easy computation shows that equation (13) is still satisfied with

.
The first step in the determination of the sample complexity

function is the optimization of the confidence function

where is a suitable constant. Selecting

leads to

where is a suitable constant. This equation can be easily
made explicit with respect to, leading to the sample complexity
function

(14)

Other bounds where exhibits a dependence onof the form
can be achieved by tightening the bound in (6) by using

Bernstein’s inequality (see, e.g. [11, Ch. 8]).
Note that the sample complexity function (14) is similar to

the one derived in a classical concept learning context in [3].
The relation (14), however, has a different interpretation from
the results in [3] at least in two respects. First, the confidence

is computed here as a probability in the product probability
space rather than a probability in the sample space.
Secondly, results in [3] are worked out under the finite metric
entropy condition whereas the present results make use of the
milder dispersability condition.

V. DISTRIBUTION-FREELEARNING WITH PRIOR INFORMATION

A. Mathematical Setting and Definitions

This section is devoted to the problem of learning with prior
information in the case in which the probability is not fixed
and it can in fact beanyprobability on . Define to be the
set of all probabilities on .

Let denote a given -algebra on , and let denote a
probability measure on . The probability constitutes
thea priori probability that a function happens to be the target
function, or else the relative importance placed on different
target functions. The probability is known to the learner.
According to the philosophy of learning with an arbitrary
distribution, given a function , the probability
according to which the samples are collected is allowed to
be any probability in . Moreover, the probability may be
different for different functions . By the symbol we denote
a kernel of probabilities indexed by

that is, for a given , is a probability over and the prob-
ability of a set is -measurable. In the context
of distribution-free learning, plays a role similar to that of
in the fixed distribution setting. Throughout, it is assumed that

is not known and can be any kernel. The set of all kernels is
denoted by .

Given a kernel , the probability allows us to define a
corresponding probability in the product measurable space

as the unique probability measure which
extends the definition ,

, , to the -algebra .
Our first step in the development of a distribution-free

learning theory with prior information is the extension of the
definitions in Sections I and II to the present setting.

Definition 7 (Distribution-Free PAC Learnability With Prior
Information): An algorithm is d.f. PAC w.p.i. to accuracy

if

(15)
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The algorithm is d.f. PAC w.p.i. if it is d.f. PAC w.p.i.
to accuracy , for every . The function class is d.f.
PAC learnable w.p.i.if there exists an algorithm that is d.f. PAC
w.p.i.

The distinctive feature of Definition 7 as compared to Defini-
tion 3 is that in (15) convergence is required to hold uniformly
in ; that is, the probability is allowed to depend on
and this dependence can be arbitrary since can be any
kernel. Clearly, the convergence requirement in (15) is stronger
than the one in (4).

Next we wish to extend the notion of dispersability to the dis-
tribution-free setting. For this purpose some preliminary obser-
vations are in order.

In the fixed distribution setting, the dispersability condition
is equivalent to the following requirement: As the cardinality of
the partition approaches infinity, the sum over the elements

(forming the partition ) of the average (with respect to)
-distance between the functions in and some representa-

tive function depending on tends to zero. In mathematical
terms, this requirement can be recast in the following statement
equivalent to Definition 6. Denote by the set of all maps

such that is constant over .
Then the dispersability condition is equivalent to requiring that

tends to zero when the sizeof the partition
tends to infinity (compare with Definition 4). Ex-

tending this idea to a distribution-free setting requires some
care. A straightforward, but rather naive, extension would con-
sist in requiring that

(16)

tends to zero when the partition sizeincreases. However,
a little thought reveals that sending the quantity in (16) to
zero is in general an impossible task. Suppose for instance
that we are considering concept learning. Then, the integrand

can be always made equal to 1 by suitably
selecting the probability , whenever .

The trouble with the above attempt to extend the definition
of dispersability comes from the fact that one is asked to deter-
mine a partition able to reduce the dispersion, and yet, the metric

used to measure such a dispersion is unknown. Clearly
this is an unfair game. To make the problem formulation more
meaningful, the learner must be in a position to form some esti-
mate of before he is asked to determine the partition. This
leads to the notion ofdata dependentpartitions.

Consider a multisample . A partition of
cardinality based on the multisampleis simply a collection
of partitions indexed by :

Let be the set of maps such that for all
and , is constant over .

The dispersion of the class under partition is then defined
as

(17)

where, in analogy with previous notation, is defined as
the product measure . The interpretation of (17)
is as follows. Fix a map . Clearly
is a random variable that depends on the multisampleand
the target function and it is therefore defined on .
Such a random variable depends on the kernelthrough

. Next, the operator performs integration over
, thus returning the average distance of eachfrom

the corresponding . The average here is with respect
to the target function and the random multisample. So, all
in all, is a deterministic number that
measures the average dispersion offrom the corresponding

; it depends on the map and the kernel . Finally,
is defined as and,

therefore, it quantifies how small such an average dispersion
can be made in the worst case with respect toby suitably
selecting the map.

Analogously to (16), Definition (17) is worst case owing to
the presence of the quantifier . However, differently
from (16), in (17) the partition is allowed to depend on
and the dispersion is computed as an average over .
Such a dependence gives one the possibility of forming some
estimate of before is partitioned. Finally, theminimal
dispersion is defined as the infimum of when

ranges over the set of all partitions of cardinalitybased on
the multisample .

Here, once again, a measurability issue arises. As a matter of
fact, without any extra assumption on the map, one cannot be
sure that the function is measurable. Here and
elsewhere in this section, we take the liberty of glossing over
these measurability issues. This is a technical point certainly
worthy of further investigation.

We are now in a position to define the notion of distribu-
tion-free dispersability.

Definition 8 (Distribution-Free Dispersability):The func-
tion class is distribution-free (d.f.) dispersableif

Note that is a nonincreasing function of both
arguments and, therefore, the order in which the limit

is taken in Definition 8 is immaterial. The fact that
is nonincreasing can be seen as follows. The function

defined on can be embedded in the
larger invariant space . Then,
becomes , which exhibits no explicit
dependence on. Now, by increasing and/or , the set of maps

over which the infimum in (17) is taken becomes larger. It
follows that is a nonincreasing function ofand .

B. Conditions for D.F. PAC Learning W.P.I.

In this section, various connections between the d.f. dis-
persability condition and the notion of d.f. PAC learning w.p.i.
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are established. In the interest of clarity, the principal results
are summarized beforehand.

1) Under the d.f. dispersability condition, a function class
is d.f. PAC learnable w.p.i.

2) The d.f. dispersability condition is satisfied if the Pol-
lard-dimension of the function class (or the Vapnik
Chervonenkis-dimension in the case of a concept class

) is finite.
3) The d.f. dispersability condition is anecessary and suffi-

cient conditionfor a concept class to be d.f. PAC learnable
w.p.i.

Result 1 states that the d.f. dispersability condition is suffi-
cient for the d.f. PAC learnability property. The second result
brings out an interesting link between standard conditions for
learning in a classical setting and the d.f. dispersability condi-
tion. Finally, the third result states the very interesting fact that
the d.f. dispersability condition is a necessary and sufficient con-
dition for the d.f. PAC learnability w.p.i. of a concept class.
In the light of this result, we can think of the d.f. dispersability
condition as thenatural condition for d.f. PAC learning a con-
cept class w.p.i.

We begin by introducing an algorithm which generalizes Al-
gorithm 1 of Section III so as to tailor it to a distribution-free
framework.

Algorithm 3: Select two increasing integer-valued functions
and such that for all .

At time , do the following:

1) determine an optimal partition of cardinality
based on the multisample , i.e., a partition
such that ;

2) determine a map such that

3) compute the empirical error of each function ,
, associated with the map, where

is the first -dimensional portion
of the multisample

4) select

In Algorithm 3, the existence of an optimal partition and
of a suitable map is assumed. Should this be not the case, one
can resort to suitable approximations.

The following theorem, which states that a function class
is d.f. learnable w.p.i. provided that it is d.f. dispersable, is
somehow expected.

Theorem 7: Suppose that the function class is d.f. dis-
persable. If and , then Al-
gorithm 3 d.f. PAC learns class w.p.i.

Proof: The proof is an extension of those of Lemma 5 and
Theorem 3.

First, fix arbitrarily a , a probability , a
multisample , and set

Similarly to Lemma 5, one can prove that

(18)

Define

Then, for any kernel , we have

(19)

Similarly to the derivation of (6), (19) used in conjunction
with the estimate (18) gives

for any kernel .
From this, and also taking into account that and

, the conclusion is immediately drawn
that

that is, Algorithm 3 d.f. PAC learns w.p.i. the class.
Our next result, besides being instrumental to the proof of

Theorem 9 below, is of interest in its own right. It proves that
the finiteness of the Vapnik Chervonenkis dimension implies the
d.f. dispersability property.

Theorem 8: If VC-dimension , then the concept
class is d.f. dispersable.

Proof: We start by introducing a “natural” partition of
of size based on the multisample .

Given an integer , denote by the binary rep-
resentation of . Let be the collection of all
sets in such that the th element of the multisample
belongs to if and only if the th digit of is equal to 1. The
so-called “natural” partition of is then defined as
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Our goal consists in proving that

which in turn implies that

which is the desired conclusion.
For any given and let denote the ele-

ment of the family that contains . We
have

(20)

Next, it is shown that the integrand

can be bounded above using the finiteness of the VC-dimension
of . Define

It is shown in [30, Th. 4.3, p. 88] that

VC-dim VC-dim say

For any set and any multisample , define its
empirical probabilityas

Then it is known (see [30, Th. 7.2, p. 198]) that

say

In particular, recall that denotes the particular component
of the partition of that contains . Hence

Therefore

This implies that the integrand in (20) satisfies

Since approaches zero asapproaches infinity for each
fixed , it can be seen that this quantity can be made arbitrarily
small by choosing large enough. Hence , as

.
Using entirely analogous reasoning, Theorem 8 can be ex-

tended to function classes with finite Pollard-dimension. In par-
ticular, any function class with finite Pollard-dimension is d.f.
dispersable. Moreover, the so-called “natural partition” defined
above can be readily extended to a family of functions, and it
disperses the function family. As a consequence, it follows that
the procedure described in Algorithm 3 is PAC w.p.i. even for a
function family.

Together, Theorems 7 and 8 establish that finite VC- (or Pol-
lard-) dimension implies d.f. dispersability, which in turn im-
plies d.f. learnability w.p.i. This conclusion is not surprising,
since the finiteness of the VC- or Pollard-dimension in fact im-
plies the much stronger property of d.f. learnability (without
prior information).

The fact that must be -measurable for any
imposes a constraint on permissible kernels. In the next the-
orem, we show that, in the case of concept classes, if the set
of kernels is rich enough that any family of probabilities

is in fact a permissible kernel, then d.f. dis-
persability is anecessary and sufficientcondition for d.f. learn-
ability w.p.i. Thus, d.f. dispersability characterizes d.f. learn-
ability w.p.i., in the same way that finite VC-dimension charac-
terizes d.f. learnability (without prior information).

Theorem 9: If is the set of all families of probabilities
indexed by , then a function class is d.f. PAC

learnable w.p.i. if and only if it is d.f. dispersable.
Proof: The “if” part is a straightforward consequence of

Theorems 7 and 8. Therefore, we concentrate here on the “only
if” part.

Consider the product space and for a given kernel
, denote by the corresponding probability measure in

. In this framework, the fact that the algorithm
d.f. PAC learns w.p.i. the concept classtranslates into the
condition

(21)

Our intermediate goal consists in showing that (21) implies that
for all , there exists a set such that

1) ;
2)

, ;
where is a suitable sequence of time instants.

First, fix a sequence of real numbers . From (21) it is
easy to see that a sequence of time instants can be deter-
mined such that

This implies that
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from which it follows that:

—almost surely

that is, converges to zero al-
most surely as a function of. Now it is well known that if a
random variable converges almost surely to zero, then it con-
verges uniformly to zero on a subset whose probability is arbi-
trarily close to 1. Thus for all , there exists a set
such that

i) ;
ii)

.

Condition i) is the same as Condition 1), whereas Condition ii)
obviously implies Condition 2) since . Thus our interme-
diate goal is established.

Note now that Condition 2 corresponds to the requirement
that the algorithm d.f. PAC learns the concept class .
On the other hand, it is well known, [13], that this requirement
is equivalent to the finiteness of the VC-dimension of the class

. Thus it has been shown that for all there exists a
set such that

1) and
3) VC- .
The dispersability property of can now be easily proven

from Statements 1 and 3, using Theorem 8. Consider a sequence
of partitions of based on the multisample
of cardinality such that

(22)

Such a sequence exists in view of Theorem 8 and Statement 3.
Then partition as follows:

Then, we have

(using Statement 1)

as [using (22)]

Since is arbitrary, this implies that and the
theorem is proved.

The proof of Theorem 9 suggests that, forconceptclasses, a
variant of Algorithm 3 is possible.

Algorithm 4: Select an increasing integer function .
At time , do the following:

1) determine the natural partition , where
is the first -dimensional portion

of the multisample ;
2) for , extract at random a concept

out of according to probability restricted to
;

3) compute the empirical error of each concept :

4) select

It is important to note that therandomextraction of concepts
at the second step of Procedure 2 has a fundamental

beneficial effect which is missing if random extraction is re-
placed by a deterministic selection. This can be intuitively ex-
plained as follows. The concept classmay contain a subset of
overly complex concepts [and, in fact,VC-dimension may
well be infinite]. However, if this is the case, such a “patholog-
ical” subset will have a negligible probability (see Statement
1 in the proof of Theorem 9). Therefore, a random extraction of
concepts will fall in the pathological subset with negli-
gible probability. This advantage is obviously missing if deter-
ministic selection is used, since the probability of falling into
the pathological subset is no longer governed by.

We end this section with a final theorem concerning Algo-
rithm 4. Its proof is omitted, but can be easily worked out based
on the observations presented so far. Also, in the statement of
the theorem we have glossed over the tedious definition of prob-
ability .

Theorem 10:Choose such that . If the
concept class is d.f. PAC-learnable w.p.i., then computed
through Algorithm 4 is such that

where is a probability which accounts for all random ele-
ments in the problem, i.e., , and the random
selection of concepts .

VI. CONCLUDING REMARKS

In this paper, we have introduced a new notion of learning,
called learning with prior information. This new notion of learn-
ability is significantly weaker than the widely studied notion of
PAC (probably approximately correct) learnability. Necessary
and sufficient conditions have been derived for a concept class
to be learnable with prior information, both in fixed-distribution
learning and distribution-free learning. A new concept called
“dispersability” has been introduced, and it has been shown that
dispersability (defined appropriately for the situation) is both
necessary and sufficient for learnability with prior information.
Thus, the results presented here are quite definitive.

It has also been shown thatanycollection of measurable func-
tions mapping a separable metric space into a compact interval is
learnable with prior information. This result, while conclusive
and elegant, also suggests that perhaps learnability with prior
information is too mild a form of learnability. Thus there still
remains the challenging problem of defining other, still newer
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notions of learnability that are intermediate between PAC learn-
ability and learnability with prior information. This is a topic
for further research.
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