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Learning With Prior Information

M. C. Campi and M. VidyasagaFellow, IEEE

Abstract—in this paper, a new notion of learnability is intro- A learning problentakes place when there is a fixed but un-
duced, referred to as learnability with prior information (w.p.i.).  known functiong (usually referred to as tharget function and
This notion is weaker than the standard notion of probably approx- the problem at hand is one of constructing a suitable approxima-

imately correct (PAC) learnability which has been much studied tion to ¢ b d b fi | lassical | . ti
during recent years. A property called “dispersability” is intro- 10N 10 g Dased on observations. In a classical learning setting

duced, and it is shown that dispersability plays a key role in the [26], the observations are collected according to the following
study of learnability w.p.i. Specifically, dispersability of a function ~scheme: At each instant of timg an elements; is drawn at

class is always a sufficient condition for the function class to be random fromX according taP. Moreover, theith sample is in-
learnable; moreover, in the case of concept classes, dispersability isdependent of the previous ones. After each sample, an “oracle”

also a necessary condition for learnability w.p.i. Thus in the case of t th | fth K ¢ t functi |
learnability w.p.i., the dispersability property plays a role similar ~ "€tUrns the valug(z;) of the unknown target function evalu-

to the finite metric entropy condition in the case of PAC learnability ~ ated at the randomly generated sampleThus, at timet, the
with a fixed distribution. Next, the notion of learnability w.p.i.isex-  information available to the learner consists of ldieeled mul-
tended to the distribution-free (d.f.) situation, and itis shown that  tisample

a property called d.f. dispersability (introduced here) is always a

sufficient condition for d.f. learnability w.p.i., and is also a neces- (z1, 9(x1)), ..., (@4, glaz))
sary condition for d.f. learnability in the case of concept classes. ’ T AT
The approach to leaming introduced in the present paper is be- \yhereq, ..., =, is an i.i.d. sequence distributed according to

lieved to be significant in all problems where a nonlinear system . .
has to be designed based on data. This includes direct inverse con-the probabilityP. Based on these data, the learner is asked to

trol and system identification. construct an approximation to the functign Specifically, he

has to choose a functign € F' (called thehypothesiwith the
objective of minimizing the distancér(g, »:). The quantity
dp(g, ht) is calledgeneralization erroy since it can be inter-
preted as the expected error we make by using the hypothesis

Index Terms—Bayesian learning, dispersability, learning theory,
system identification.

|. INTRODUCTION AND PROBLEM DEFINITION h; to predict the value of theextoutcomey(z; ;) of the value
A. A Well-Studied Problem: Probably Approximately CorrectOf ¢ at a randomly generated element; .
(PAC) Learnability The procedure through which the hypothesgs are gen-

erated is called amlgorithm Precisely, an algorithm is an
indexed family of mapsy: (X x [0, 1) — F, ¢t > 1.
Once {a,} is fixed, the hypothesig, at time ¢ is obtained
simply by applying the algorithm to the available data:
hy == at((xlv g(xl))v LR (xtv g(xt)))
As time increases, the hypotheaids based on an increasing
dp(f, 9) = / |[f (@) = g()| P (dx). number of data, and is therefore expected to become a progres-

X sively better approximation of the target functignA natural
Itis easily seen thatp(-, -) is in fact a pseudometric afi. The question to ask in connection with the asymptotic behavior of
quantitydp( f, ¢g) can be given a very meaningful interpretationthe algorithm is whethek, tends tog ast tends to infinity. A
Suppose that a sample pointe X is selected at random in precise definition of this idea, however, calls for some care as
accordance with the probabilit)?. Suppose also that is the the functionk, is in fact a random element being determined on
“true” function—so thaty(x) is the “true” outcome—and that the basis of the random datay , g(1)), ..., (z+, g(z:)). The
f is an approximation to it. Thedp(f, g) is the average error following definition has by now become standard in learning
we make by using(x) as an approximation to the true outcom¢heory.
g(x). Definition 1 (PAC Learnability, [3]): An algorithm{a,} is
probably approximately correct (PAC) to accuracif

ONSIDER a measurable spac¥, &) and a probability

measureP on X'. Further, letF" be a set of measurable
functions mappingX into [0, 1]. Given two functiongf, g € F,
we can define the distance between them as
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Fis PAC learnable, an algorithm exists that PAC-leahdhe bution case, Benedek and Itai [3] have shown that a so-called
actual selection of such an algorithm usually requires the dinite metric entropy condition is both sufficient and necessary
plicit knowledge of P. Later on in this section, we will intro- for concept learning. Here, we present a general result (Lemma
duce a stronger definition of learnability called distribution-fre&) which encompasses both the concept learning case as well as
PAC learnability. There, it is required that a single algorithm ithe function learning case.

able to learn for all possible probabilitiés Given a function familyF" and a pseudometri¢p on F', a
Let us define the quantity finite collection{ f1, ..., fn} C Fissaidto be ar-coverof F'

. if, foreveryg € F, there exists an indexsuch thatip (g, f;) <

r(t, & F) = S‘égp {dr(g; hw) > <} e. The smallest integelV such that there exists ancover of

cardinality NV is called the:-covering numbeof F' with respect
Thus PAC learnability to accuraeycorresponds to the condi-tg the pseudometridp, and is denoted by (¢, F, dp). Now
tion thatr(t, ; F') approaches zero as— co. SUPPOSE NOW the general result is as follows.
that an algorithn{a, } PAC learns a given function class Sup- Lemma 1: SupposeF is a given function class mapping
pose an “accuracy parameterand a “confidence parameter”into [0, 1], and P is a given probability measure aki. Then,
¢ are specified, and that we are able to determine an intggethe function class is PAC learnable iftN (¢, F, dp) < oo,
with the property that for eache > 0. In caseF’ consists only of binary-valued func-
tions (concept learning), the above condition is also necessary
9 . > .
e F)<é  Vizto. for PAC learnability.

Then it can be asserted with confiderce § that, aftert, sam-  The conditionN (¢, I, dp) < oo for eache > 0 is referred
ples have been drawn, the generalization error is no larger tH@rs thefinite metric entropy condition

¢, N0 matter what the taget functignis. The functionto (6, ¢) In the case of concept learning, the finite metric entropy con-
is referred to as theample complexity function dition is both necessary and sufficient for PAC learnability. In

A specific, yet significant, instance of learning problem ithe case ofunctionlearning, the finite metric entropy condition
one in whichF is a set of indicator functions o ; that is, 1S Sufficient, but not necessary, for PAC learnability; see [30, Ex.
F = {I.,c € C C X}. The collection of set&’ is called 6.11]. N . S
a concept clasand the problem of estimatingy is termed a  The learnability of a concept clags in a distribution-free
concept learning problem setting is closely related to the so-called uniform convergence

In Definition 1, a subtle measurability issue arises regardir®j €mpirical probabilities property [28], [29]. This connection
the definition of the probability®* {dp(g, h;) > ¢}. Sinceh, Was first highlighted in [6] where it was shown that the distri-
belongs tal”, the function|g — .| is measurable andip(g, h;) bution-free PAC learnability of a concept class is equivalent to
is always well-defined. However, without any extra assumptioffde finiteness of its so-called Vapnik—Chervonenkis dimension
on {a;}, there is no guarantee that the $€t-(g, 1) > ¢} [27], [28].
is measurable, so thadt'{dp(g, hy) > ¢} may not be well- Lemma 2 [6]: A concept class is PAC learnable in a distri-
defined. Such an issue is discussed in [6]. In the present pajtion-free setting if and only if it has finite VC-dimension.
here and elsewhere, we gloss over these measurability issues.Extensions of these results to function learning are mainly

Definition 1 can be extended to the case where the probabilflye to Pollard and Haussler. In particular, in [16], by extending
P is unknown but belongs to some known family of probabilPrevious results of Pollard, Haussler proves that the finiteness of
ities 7. In particular, a case widely studied in the literature e Pollard-dimension [24] of a function claBsmplies that the
whenP = P*, the set ofall probabilities on(X, X), which class is distribution-free PAC learnable. On the other hand, the

is known as thelistribution-free learning problenin this case, finiteness of the Pollard-dimension is not required in general for

the definition of PAC learnability is as follows. distribution-free PAC learnability to hold. Subsequently, it was
Definition 2 (Distribution-Free PAC Learnability, [26]):An  shown by Bartletet al. [2] that, in the case of trying to learn a

algorithm{a, } is distribution-free probably approximately cor-function class undemoisymeasurements, the finiteness of the

rect (d.f.-PAC) to accuracy if Pollard-dimension is still not necessary. However, the finiteness
of a smaller dimension (the fat-shattering dimension) is neces-
lim sup sup P*{dp(g, hy) > ¢} =0, sary and sufficient in that case. We do not dwell on these results

t—oo * .
PP geF here, as they would take us too far afield.

whereP* denotes the set of all probabilities ¢/, X’). The ) ) )
algorithm {a,} is d.f.-PAC if it is d.f.-PAC to accuracy, for C. Learning With Prior Information
everye > 0. The function clas¢’ is d.f.-PAC learnable if there  When the conditions that guarantee PAC learnability are not

exists an algorithm that is d.f.-PAC. U met, a natural question to ask is whether learnability holds in
Obviously, distribution-free learning is in general a mucBome weaker sense, or else if the class we are dealing with is
harder task than learning with a fixed distributién intrinsically unlearnable for any reasonable definition of learn-

ability. This observation motivates the introduction of other def-
initions of learnability as alternatives to the classical definition,

The classical learning problems described above have besenthat one can “rank” different learning problems in order of
deeply investigated both in the fixed distribution as well as idifficulty. At present, the study of such alternative learning for-
the distribution-free settings. In particular, for the fixed distrimulations is still in its infancy.

B. Summary of Known Results for PAC Learnability
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Benedek and Itai in [4] have proposed the notion of “nonunproblem consists in quantifying the probability of error and, in
form learnability” by simply dropping the uniformity require-particular, in giving bounds for the cumulative error, i.e., the
ment with respect to the target function in Definitions 1 andumber of mistakes made in the finst guesses as a function
2. They give conditions for this property to hold in differenbf m. The interesting issue of bounding the probability of
situations. An apparent drawback of this approach is that tegor is somewhat complementary to the issue treated in this
sample complexity function then explicitly depends upon theaper, namely the characterization of function classes which
target functiony [i.e., to(6, €) is now replaced byo(g, 6, €)], are learnable with prior information.
and consequently the learner does not know when to stop th&efore giving a precise definition of learning with prior in-
learning process. This drawback, however, is partially alleviatéarmation, we motivate this approach and highlight some ad-
by a procedure described in [4] based on an alternation of estintages it may have over other learning formulations.
mation and testing phases. If the learner is content with learning/Ve start with a general observation applicable to any learning
to a prespecified level of accuracy and confidence, this progaroblem. Suppose as usual that the problem at hand is one
dure indicates when to stop collecting new data. of estimating a target functiop based on the observations

A second very interesting stream of literature is the one déx, g(z1)), ..., (21, g(x:)). Given an algorithm{a.}, the
voted to the so-called PAC-Bayesian learning, [20], [21], [25&ccuracy of the estimafe computed vig{a; }, as measured by
In PAC-Bayesian learning, the concept class has a prior prdbe numberdy(g, h:), depends on the extracted multisample
ability associated with it. This probability is used in order ta: = (x4, ..., ) as well as on the target functign Corre-
incorporatea priori knowledge in the algorithm. However, dif- spondinglydpr(g, ;) may be higher or lower depending on the
ferently from the standard Bayesian approach, the results taggetg and the multisample. Both ¢ andz can be regarded
valid for each single target concept. The basic idea behind this uncertain elements in our learning problem. Therefore, we
approach is worth mentioning. In standard PAC learning, the azan claim that the “goodness” of the output of the algorithm is
curacy level is fixed and one is asked to find a hypothesis thacertain and depends on two basic uncertain elemegrtst’
meets the assigned level of accuracy with a certain confidenaadx € X*.

In this context, the accuracy level does not depend on the targeln a classical PAC-learning framework, the two uncertain el-
concept. In the PAC-Bayesian approach, one drops the unifementsg andz are treated in completely different ways. The
mity requirement with respect to the target concept and the dearning performance is required to baiform with respect
curacy level is allowed to depend explicitly on the selected hie the one uncertain element € F', but is permitted to fail
pothesis. This broadens the applicability of the theory with revith a probabilityé with respect to the other uncertain element
spectto standard PAC learning. There is however a price one has X¢. The requirement of uniformity with respectganakes

to pay for such a generality. In PAC-Bayesian, the accuracythe classical learning definition quite demanding, and, not sur-
no longer uniform with respect to the target and, therefore, itgisingly, the corresponding learning conditions are not always
not possible to computepriori the size of the data sample thasatisfied.

permits one to obtain a specified generalization error. The abovéf one agrees to drop the uniformity requirement with respect
mentioned approach has been studied in [20] in connection withg, then a quite natural approach consists in treabioid un-
countable families of concepts first and then generalized in thertain elementg andz in the same way. This leads to a “fully
same paper to all subsets of arbitrary concept classes. The papachastic” approach which we cldbrning with prior informa-

[21] deals with a nontrivial extension of the results in [20] to distion. This is achieved by equipping the set of target functibns
tributions on arbitrary concept classes. with a probability measure of its own. This probability can de-

The present paper is devoted to the study of a new notionsafribe either aa priori available information on the probability
learnability, called here as learnability with prior informatiorof occurrence of the different functiogse F' or, more simply,
(w.p.i.). Instead of insisting on considering each target functidhe relative importance given to different targets. Then all vari-
as a separate entity, we view the set of target functions as a whailtées involved in the learning process can be viewed as func-
and introduce a probability measure which quantifies the retégens defined on the product probability space< X*, and all
tive importance given to different targets. This formulation gbrobabilities can be computed in this product probability space.
the learning problem is not new and it has been discussed, foil he approach to learning outlined above may be a meaningful
example, in [30, Ch. 9]. However, in that reference only the dediternative to more standard learning settings in identification
inition of learnability w.p.i. is introduced, and it is shown thatind control problems. As an example, consider the problem of
any countablefunction class is learnable w.p.i.—a very wealestimating a functiory by means of a neural network (NN).
sufficient condition. In the present paper, we present a compiigypical applications are: direct inverse control problems where
hensive treatment of learnability w.p.i. In particular, we estalthe NN is used so as to obtain a dead-beat controller for non-
lish necessary and sufficient conditions for learnability w.p.i. dinear plants [22]; or, more simply, the modeling of a nonlinear
aconcepfclass. dynamical system.

Previous work on learning theory in a Bayesian set- Itis well known, see e.g., [1], [7], and [10], that the best size
ting—though with a focus completely different from the one ifn terms of the number of neurons of the NN results from a
the present paper—can be found in [17], [18]. In these papetempromise between two contrasting needs. On the one hand,
the following problem is addressed: A learner is progressivetliye architecture of the NN should be rich enough to have good
given the value of the target concept corresponding to randonalgproximation capabilities. On the other hand, if the size of the
extractedz points and is asked to guess the next value. TN is too large, it is difficult to train it accurately based on the
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available finite amount of data points, and this leads to a poorSimilarly to Definition 1, in Definition 3 algorithm{a,} is

generalization capability. While the first aspect can be capturesuired to learn only for a given fixed probabiliB;. A func-

by a deterministic approximation analysis, the second is bettiEm classt’ is PAC learnable w.p.i. if an algorithm exists able

described in a stochastic setting, resulting in a probability, to PAC learn w.p.i. for the givelr,. It should be emphasized

confidence, that the NN generalizes well. that this algorithm may be specifically tuned to the gin.
Clearly, the best compromise between the two sources of &herefore, selecting the algorithm requires in general explicit

rors described above depends on the assumed complexity ofkhewledge of the probability’ and the distributiors? over .

target functionf: the more compley is, the larger the size of  The learnability condition (4) can be rephrased by saying that

the NN should be. A by now standard way of describing tHeAC learnability w.p.i. holds if the confidence

complexity of the target functiorf is to consider its Fourier

transformf and to bound its norm in some way. In Barron [1], 6r = Pri{dp(g, he) > €}

use of the following bound is proposed: ) o
approaches zero wheén- oo. In this connection, it is important

< to remember that; is a probability inf’ x X*. Consequently,
/n ] ‘f(w)‘ dw < C. ) under the conditios, — 0, no specific statement can be made
for any singletarget functiony concerning the probability that
OnceC has been assigned, the size of the NN can be optimizg generalization error is below the accuracy lev&ather,
by minimizing the overall estimation error due to the approXjs the averageprobability of success over all the probabilistic
mation Capablllty of the NN within the function class deﬁne@|ements involved in the |earning process.
by (2) and the generalization error due to the fact the NN has toThe fully stochastic approach of Definition 3 offers an im-
be trained based on a finite number of data points. portant advantage over the nonuniform learning formulation. In
The above approach relies heavily on the choice of the cafe learning problem with prior information one carpriori
stantC'. If C'is chosen to be small, the condition (2) may be togompute a sample complexity functiap(6, ¢) such that for
restrictive to include the actual target functigpnOn the other ¢ > to(8, €) learnability holds to accuracy and confidence
hand, selecting a largé results in a NN that has many parames. This is very similar to the classical PAC learning approach.
ters and therefore requires a large number of data points to traifneontrast, in the nonuniform learning formulation, the sample
The philosophy of learning with prior information suggests gomplexity depends explicitly on the unknown target function,
way around this dilemma. Let(C') denote an increasing func-which means that in principle the learner does not know when
tion of C', and suppose that the probability of the target functiong stop learning in a specific situation.
satisfying the condition of (2) i&(C). In mathematical terms  The paper is organized as follows. In Section I, we introduce
the so-called dispersability property, and present some simple
Pr {/ |w] ‘f(w)‘ dw < C} =a(0). (3) sufficient conditions for a class of functions to be dispersable.
R» Among other results, it is shown thatif is a separable metric
Given a desired confidence levél one can use (3) to verify space, th_erev_eryfamlly of meas_urable funcpons mappitig
whether a specified accuracy can be achieved. A simple wAP [0, 1]is drllspersgble. In particulaall _funct|on and concept
to proceed is to assign a certain fraction of confidence—s SSEs (_)VGR are dispersable. In Section Ill, some algorlthm_s
p6.p € [0, 1]—to the probability that the target function r learning w.p.i. are presented. It turns out that the role of dis-

does not belong td [ |w||f(w)|dw < T} [that is C is persability in PAC learnability w.p.i. is similar to that of finite
JR» = |

selected so that — o(C) < ps.] Then, the size of the NN is metric entropy in classical PAC learnability. Specifically, dis-
= PO | ersability is asufficientcondition for learnability w.p.i. in the

chosen so as to optimize the generalization error for the CI%%Sse of function classes, and is@cessary and sufficienbn-
{ [ |0]| f(w)| dw < T} with confidence(1 — p)s. ' y

The precise formulation of PAC learning with prior infor—?r:tézz E)l;iﬁasrg?ggz;vﬁl?sllﬁég tirrleS(::Sti% r?f”(fog%?ﬁé;l;ssfﬁé ?(!_
mation is now introduced. LeF be a givens-algebra onZ’ ’ 9

such that the pseudometrik> is measurable with respect toSUItS of Secticlns Il and Il shows thatl functionland conc_ept
F, and letQ denote a probability measure on the measurab (Iaasses oveR are learnable w.p.i., f(_)r every mteger_ this
space(F, 7). Throughout, by the symbdr; we indicate the result covers practically all examples in the learning literature.
product probability@ x P! on the product measurable spac
(Fx X' FoXt.

Definition 3 (PAC Learnability With Prior Information):An
algorithm {a;} is probably approximately correct (PAC) with

prior information (w.p.i.) to accuracy if

Section IV is devoted to an analysis of the sample complexity of
ﬁ1e algorithms for learning w.p.i. introduced in Section Ill. The
problem of PAC learning w.p.i. in a distribution free setting is
dealt with in Section V; this problem formulation entails some
technicalities. Then, the conditions for learning in this context
are established. Finally, Section VI contains the concluding re-

lim Pro{dp(g, hy) > ¢} =0. (4) marks.

The algorithm{a;} is PAC w.p.i. if it is PAC w.p.i. to accuracy Il. DISPERSABLECLASSES OFFUNCTIONS

e, for everye > 0. In the theory of learning with prior information, a function
The function clasg’ is PAC learnable w.p.i. if there exists anclass F' is PAC learnable if there exists an algorithm that is

algorithm that is PAC w.p.i. [0 able to return an accurate estimaterfowst but not necessarily
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all, target functions. In fact, the algorithm is allowed to fail Inthe remainder of the section, several results concerning dis-
for target functions whose probability of occurrence is suf- persability are proved. First, itis shown that finite metric entropy
ficiently small. In view of this observation, it is expected that amplies dispersability, and then it is shown that the converse is
well-posed condition for PAC learnability w.p.i. should simulnot true in general.

taneously account for the richness of the function class as welLemma 3: Suppose a function clask satisfies the finite

as the probability of occurrence of the different functions in thmetric entropy condition with respect th>, and let be an
class. arbitrary probability measure afi. ThenF is dispersable.

In this section, we introduce the notion dispersability Proof. Recall that a function clasg’ satisfies the finite
which is a very natural way of combining the two aspectsietric entropy condition if, for every, no matter how small,
described above. It turns out that a function class satisfying tthee set " can be covered by a finite number of (closed)
finite metric entropy condition is always dispersable. On thaalls of radiuse. Let N(¢) denote the minimum number
other hand, the dispersability condition is much milder thaof balls of radiuse needed to covef#'. The proof consists
the finite metric entropy condition and holds whenever thef showing thatdisp(r) < ¢, V7 > N(¢), from which it
“uncoverable” part off" has a small enough probabiliy. follows thatlim, ., disp(r) = 0, i.e., thatF is dispersable.

The dispersability property applies in particular to concef@onsider a collection ofV(e) closed ballsB; centered at
classes. In Section I1l, we show that dispersabilityneaessary f;, for i = 1, ..., N(e), such that JY B, = F. Define
and sufficientcondition for PAC learning w.p.i. in the case off;, = B, \ U;,: Bj,i=1,..., N(¢). Then
concept classes.

Consider a partitiodl of the function clas¢, i.e., a collec- . . .
. P disp(N(e)) = f  disp(Il
tion {F; € F},_, suchthalJ;_, F; = F andF; N F; = 0, isp(N () II: IHIP=N(6) tsp(Il
i F ] N(e)
Definition 4 (Dispersion Under a Partition):Thedispersion < Z jl}f/ dp(g, )Q (dg)
of the classt” under the partitiodl is defined as Pl AL O}
. N(e)
disp(ID) := Y inf / dp(g. )Q (dg). O = 2_; /F rlg, J)Q (dg)
i=1 Fi ;_( )
The expressiomnf ;e f,. dp(g, f)Q(dg) is a measure of < Z eQ(F;) =« (5)

the dispersion of the sdt; (theith element of the partitiof) i=1
where each functioy € F; is given a weight according to

probability Q. Thereforedisp(11) quantifies the dispersion of a . . .
function class once it has been split into the subclasses form%nrﬁon the qther hand, dispersability is a milder property than the
the partition. IMite metric entropy property, as shown next.

Suppose now one is allowed to select a partifibof given Lemma 4: SupposY, p) is a separable metric space such

/ /
cardinality » so as to minimize the dispersion. The resulting]atp(y’ yd) < Bl f;r elverl))/y, erESY’ and Iepi dent())tgllt_?e
dispersion is the so-called minimal dispersion: orresponding Boret-algebra orY’. Supposé s a probability

Definition 5 (Minimal Dispersion): The minimal dispersion measlél;:)%:m(?ivje}%.;:?)ms/ellzglsapf(;ls;?;i.le séi; € ¥} such
under a partition of cardinality is defined as that, withB; equal to the closed ball of radigs2 éenteréd aw;,

disp(r) := inf disp(IT). o we have that ), B; = Y. %Li(lih a countable set exists sirice
IL: || =r is separable. Sét,, := |J;_; B;, and note that)(Y,,) T 1.
Choosen(e) such thatQ(Y, ) > 1 — ¢/2. Define F; :=

Y\Yi_1 = BA\UZ] B;. Then

A partition I1 is said to be “optimal” when its dispersion is
minimal, that isdisp(IT) = disp(r). Note that an optimal dis-
persion need not exist in general. However, there will always
exist a partitionIl of cardinality such thatdisp(II) is arbi- -1
trarily close todisp(r). In the proofs of the various theorems ~ disp(n(¢)) < / Py, 1)Q (dy) + Q (Y\Yo (o)
below, it is always assumed that an optimal partition exists. =1 ki
This is purely to reduce notational clutter, and the proofs can <
be readily amended to cater to the case where optimal partitions
do not exist. =

Definition 6 (Dispersability): The function clasd’ is dis-
persableif Sincee is arbitrary, this implies that” is dispersable. O

In particular, Lemma 4 implies that every countable set is dis-
lim disp(r) = 0. O persable under every bounded metric, because a countable set
e is always separable. On the other hand, it is easy to construct

Thus a function class is dispersable if its dispersion can beamples of countable sets with a bounded metric that do not
made arbitrarily small by considering partitions into more anshtisfy the finite metric entropy condition, which shows that dis-
more subsets. persability does not in general imply finite metric entropy.
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Example 1:Let X = [0, 1), & = Borel o-algebra onX concept class, namely: := {c(¢), ¢ € [0, 1]}. It is important
and P = Lebesgue measure cti. Consider the concept classto observe that any two distinct conceptg; ) andc(tz) in C
C = {c}2,, wheree; = Uf: [(2j —1)/2%, 2j/2%). Clearly, are 0.5 apart of each other in tHe metric. In fact
dp(ci, ¢;) = 0.5, whenevet # j. Thus,N(¢) = oo, Ve < 0.5, dolelt .
and so this concept class does not satisfy the finite metric erfip(c(ty), c(t2))

tropy condition. However, since it is countable, it follows from = P(c(t1)Ac(t2))
Lemma 4 that” is dispersable. O = P({z € X: z(t1) € [0, 0.5] andx(t2) € (0.5, 1]}
Next, the mildness of the dispersability condition is U{z € X: z(t1) € (0.5, 1] andz(tz) € [0, 0.5]})

highlighted by proving a very general result, namely, that dis-
persability holds whenever the underlying Sétis a separable

metric space. In particular, function and concept classes oveClearly, ¢ can be placed in one-to-one correspondence
R™ are dispersable for every integer This result is therefore with the interval[0, 1] by the relationt « ¢(t). This permits
applicable to practically all examples in the learning literatureys to immediately introduce a-algebra and a probability

Theorem 1: Suppose thak' is a separable metric space anén ¢ by defining them as the images of the Botehlgebra
let X’ be the associated Borelalgebra. Lef” denote the family and the Lebesgue measure [ 1] through the one-to-one
of all measurable functions frofd to [0, 1]. Let > be any prob- correspondence. The claim is that the concept afass not
ability measure of.X, X'), and letd denote the correspondingdispersable. This can be verified by noting that, for any partition
pseudometric oir’. Finally, let? be any probability measure onjy — {C;¥r_,, we have
the Borelo-algebra of the metric spa¢é’, dp). Then, the func- i,
tion classF' is dispersable. . _ . '

Proof: The theorem is proven by showing tHét, dp) is disp(Il) = chfrclfc /CZ_ dp(e, )Q(de)

a separable metric space. Once the separability#ofip) is r
established, its dispersability follows from Lemma 4. = Z 0.5Q(C;) = 0.5

Note first that the Boreb-algebra on a separable matric i=1
spaceX is countably generated (by all the balls with rationgy, o js  under any partitiot, the dispersion is always equal to
radius centered on a dense countable subsé&t)ofThus, X’ is 05. 0
countably generated. Next, apply [5, Th. 19.2], which states
that the spacd?(X), 1 < p < oo, whereX is a set with
o-finite measure is separable provided thatdhalgebra onX
is countably generated. This leads to the conclusion that the
spaceL!(X) of summable functions ofiX, X') is separable. A dispersable function class is PAC learnable w.p.i. using a
Finally, on observing thatF, d,) is included inL!(X), the Minimum empirical risk algorithm applied to a suitably selected
conclusion follows. [0 partition of the function class. This is shown in Theorem 3. An

Even though the notion of dispersability is very general, it @nalysis of the complexity of this algorithm in the present setting

possible to find examples of function classes that are not digcarried out in Section IV. It turns out that, in the caseaf-
persable. ceptclasses, the dispersability condition is atsecessaryor

Example 2: Let X = RI% 1 be the set of real functions de-PAC learnability w.p.i. Since this latter result has a very short
fined on the interval0, 1]. The variablet € [0, 1] is inter- Proof, it is proved first.
preted as time and an elemente X is a trajectory of a sto-  In the sequel, we will take the liberty of identifying a set of
chastic process. We endoWwwith ac-algebra and a probability concepts”’ with the corresponding function clags:= {I., c €
by means of the standard procedure based on Kolmogoro@$. In particular, we shall say that “a concept clésss learn-
existence theorem [5, Th. 36.1]. Specifically, given any finitable [dispersable]” iff’ = {I.,c € C} is learnable [dis-
set of time instantsy, ..., t;, € [0, 1], define the finite-di- Persable].
mensional distribution corresponding#a ..., t; as the uni-  Theorem 2: A concept clas€” is PAC learnable w.p.i. only
form distribution in the hypercubj@, 1]*. This completely de- if it is dispersable.
fines the probability of cylinder sets, that is sets of fofm e Proof: Consider an algorithm which PAC learsw.p.i.
X: (x(t1), ..., x(tx)) € H}, wherex(t;) represents the valueand denote by{h;} the corresponding random hypothesis
of the trajectoryz in t; andH is a Borel set ink*. Clearly, this Sequence. The probability spa@é x X, @ x P*) inwhich h,
system of finite dimensional distributions is consistent, in th@sides can be embedded in the larger time-invariant probability
sense precisely stated in [5, Sec. 36]. Then, by KolmogorowBgace(C' x X, @ x P=). In this last probability space, the
existence theorem, it follows that there exists a probabfity PAC learnability w.p.i. assumption implies that the sequence
defined over ther-algebra generated by the cylinder sets whodelr(c, 71)}§2; converges to zero in probability. Therefore,
finite dimensional distributions coincide with the given unifornirom the sequencédp(c, h:)};2, it is possible to extract a
distributions. This completely defin¢s, X', P). subsequencdp(c, hy, )}, that converges to ze@ x P>

We are interested in concepts of the fonft) := {x ¢ almost surely (see, e.g., [14]). This implies thap > 0,
X: z(t) € [0, 0.5]}, wheret is some time in0, 1]. Thus the 3C(p) C C such that
conceptc(t) consists of all trajectories that take on value in =~ 1) Q(C(p)) > 1 — p;
the interval[0, 0.5] at time¢. Denote byC' the corresponding  2) limy,—oo SUp.cc(p) 2°°4dp(c, ht,) > € =0,Ve > 0.

=0.2540.25 =0.5.

I1l. CONNECTIONS BETWEEN DISPERSABILITY AND
LEARNABILITY W.P.I.
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By virtue of Theorem 2 in [3], Condition 2 implies théX p) We begin by computing the probability thd(g, h:) —
satisfies the finite metric entropy condition, and is therefore digp(g, f°) exceeds /2. Note that if
persable by Lemma 3. Now select a partitidrof C(p) such

that the dispersion of/(p) is less than or equal to; then the dp(g, fi) —dp+(g, fi) < i fori=1,...,7, (8)
partition11 U (C\C(p)) of C has a dispersion not greater than, 4
2p. Sincep is arbitrary, this proves that is dispersable. O 4 €
The remainder of the section is devoted to showing that dis- dp,(g, %) = dp(g, f°) < 4 ©)
]E)ersabmty is asufficientcondition for PAC learnability w.p.i. then it follows that:
or a function class, by constructing a suitable learning algo-
rithm. We begin by considering a given fixed partition of the dp(g, he) — dp (g, hy) < <
function class and introduce a natural procedure for the selec- ’ ’ 4
tion of an element of the partition. Moreover, an estimate of tidnceh, € {f1, ..., fr},
probability that the corresponding generalization error exceeds dp7t(g, hy) — CZp7t(g, %<0
a given threshold is also computed. by the manner of choosing,
Consider a partitiodl = {I;}/_,. For the sake of clarity, . on _ €
we assume throughout the sequel that there exist funcfigns dr,i(g, f°) = dr(g, f°) < 4

i =1, ..., r, minimizing the dispersion of each elemdntec . . .
I ie. fF dp(g, f)Q(dg) = infer fF dp(g, 1O (dg). Adding these three inequalities leads to
Should this condition not be satisfied, suitable approximations 0
could be used in place of thgs. dr(g, hu) = dr(g, 7)<

The following procedure is simply a minimal empirical erro
algorithm for the selection of afj in the set{ f;}/_;

F
2
Ii—|ence, the probability thatp(g, hy) — dp(g, f°) > ¢/2is at
Procedure 1: most equal to the sum of the probabilities that one ofithel
. . - . inequalities in (8) or (9) is violated. By Hoeffding’s inequality
1) Determine functions{ fi}i_; such that [, dr(9, fi)  (see, e.g., [23]), the probability that any one of these inequalities
Q(dg) = infycr [ dr(g, £)Q (dg). is violated does not exceestp(—te?/8). Hence

2) Compute the empirical error of each functifin
PHdp(g, he) — dp(g, [°) > ¢/2} < (r+ 1) exp(~tc*/8).

. (20)
dp,(g. f) : ZL‘J zj) — filx;)l; =L Fpaly
Pr,{d h
3) Selecth; to be the minimizer of the empirical distance rid{dr(g. hu) > €}
drilg. f:)thus = [ P'arte, ) > Q)
F
h’t = arglnln dP t(,97 fz) u < / Pt ({dl’(gv hf) dP(g, f ) E}
fii=1, .., r F 2
U <dp(g, > -
A natural question to ask in connection with Procedure 1 is: { rlg: 1) 2 }) (dg)
what is the probability in thg product probability spd€e<_ Xt. < / pt {dp(% he) — dp(g, f E} (dg)
thatdp(g, h:) exceeds a given value > 0. The question is 2
dealt with in the following lemma. 2 d 0 )
Lemma 5: With all notations as above, we have € r(9
2 + 1) exp(—te?/8) + = dlsp II
Pr{dp(g, hy) > ¢} <(r+ 1) exp(—te?/8) + - disp(11), S ) (=1</8) D
Ve 0. (6) Where in the last inequality we have used (10) for bounding the
first term and equation (7) for the second one. O
Proof: Fixg € F,and choose af® € {f1, ..., f,}such We are now in a position to present our learning algorithm,
that which consists simply of partitioning the function class so as to
reduce the corresponding dispersion to a minimum, and then se-
dp(g, fo) = min dp(g, f). lecting an hypothesis through Procedure 1. In Theorem 3 below
1<i<r

itis shown that this algorithm PAC learns w.p.i. when applied to
Thus, whilek; is the minimizer of theempirical distance be- a dispersable class provided that the rate of growth of the parti-

tween the target functiop and thef;’s, f° is the minimizer of 10N Size is subexponential.

thetrue distance betweepand thef;'s. Note that by definition Algorithm 1: Select an increasing integer-valued function
of disp(I1) we have r(t) T co. At time ¢, do the following:

1) determine an optimal partitiofl, of cardinality »(¢)
o ) [thus,disp(1l;) = disp(r(¢))];
/F dp(g, f7)Q(dg) < disp(Il). ™ 2) selecth, by applying Procedure 1 to the partitibh. [
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In Algorithm 1 it is assumed that an optimal partition exists; It is natural to ask whether a result similar to Lemma 5 still
if not, “nearly optimal” partitions can be used instead, and thelds for Procedure 2. This is indeed the case, as shown next.

proof below can be modified appropriately. Note that there is now an extra element of randomness in Proce-
Theorem 3:If F is dispersable andl(t) = exp(o(t)), then dure 2 since at the first step of this procedure functifissare
Algorithm 1 PAC learns class’ w.p.i. randomly selected. As a consequence, the hypothegEsow a
Proof: The conclusion follows readily from Lemma 5,random element in the probability spaEex X x I} x - - - x F,.
which states that Denoting byQ r, the probabilityQ restricted taF; (i.e.,Qr, =
Q/Q(F})), the probability onf” x Xt x [} x --- x . isthen
Pri{dp(g, he) > ¢} given byPr; := Q x P x Qp, X --- X QF, . The generalization
< (r(t) + 1) exp(—te2/8) + 2 disp(r(t)) of Lemma 5 to Procedure 2 makes reference to this probability.
5 € Lemma 6: With h; generated according to Procedure 2 we
= exp(o(t) — te?/8) + - disp(r(t)). (11) have

Sincer(t) T oo, the right side of (11) tends to zero for every Pr{dp(g, hy) > ¢} <(r + 1) exp(—te?/8) + édisp(ﬂ),
¢ > 0. Hence, the algorithm PAC learns w.p.i. O Ve 06

The theorems proved thus far permit us to draw some very ) ’
general conclusions regarding learnability w.p.i.

Theorem 4: A concept class is PAC-learnable w.p.i. if anqO
only if it is dispersable.

Proof: The “only if” partis provenin Theorem 2. The “if” ;L?I}at?ec?fz:)ﬁsitt%r I;iig:ﬁ;: fver the upper bound of the prob
part follows from Theorem 3 which proves the existence of an Proof: The proof is analodous to that of Lemma 5 and
algorithm that PAC learns clagsw.p.i. _ IZI therefore omitted. 0

_Theorem 5:_Let X be a separable metric space, equippe With Lemma 6 in place it is possible to prove a result analo-
with the associated Borel-algebra. LetF” denote the set of all gous to Theorem 3 for the following variant of Algorithm 1.

measurable functions mappidg into [0, 1]. Finally, let@} be . . . I .
any probability measure afi. ThenF' is PAC learnable w.p.i. At,‘;\ilr%c;rltth(;r:)ih(f?;ﬁgsv?:;creaQng integer functioft) T cc.

The proof follows readily from Theorems 1 and 3. . : .
Theorem 5 shows that in the most widely studied situation 1) determ|.ne an optimal partifiodl, := {1, ...,
where X is a subset of some Euclidean sp#te for some in- Forwh i
tegern, learnability w.p.i. is automatic. 2) selecth, by applying Procedure 2 ;. =
It is interesting to note that in Algorithm 1, attention is first 1heorem 6:1f [”is dispersable and(t) = exp(o(t)), then
restricted to a finite number of candidate hypotheses (functiofis cOmputed through Algorithm 2 satisfies
{fi}}—,), and then this number is permitted to go to infinity (in

By comparing Lemmas 5 and 6, we see that the upper bound
r the probability of error with the random Procedure 2 in-

a controlled way) as the number of data points increases. The thj{}o Pri{dp(f, In) > ¢} =0, Ve>0

reason for this is that if too many hypotheses are considered at

the same time, the probability that the generalization error fotherePr, := Q x P* x Qp, , X --- X QF, - U
all of them can be correctly estimated from data is very low.

Then, selecting a hypothesis which exhibits good adherence to IV. SAMPLE COMPLEXITY EVALUATION

data gives no guarantee that this hypothesis generalizes well. In this section, we examine the sample complexity of Algo-
This idga of restri-cti.ng aFtention to asgbclass of hypothese%iﬁ]m 1. The star’ting point is the bound (6) in Lemma 5, which
standard in the statistical literature and it has been used in mMalios that given a partitiaii of cardinalityr, the hypothesis
different forms and contexts (see, e.g., [15], where the notign ' e
of “sieve” is introduced in connection with the problem of es%t generated through Procedure 1 satisfies
timating probability measures). The very interesting fact within ) 2
the framework of the present paper is that restricting attention td’ i {dp(g, i) > ¢} < (r+1) exp(—tc”/8) + p disp(II).
a finite set of concepts as indicated in Algorithm 1 worksen-
evera Concept class is PAC learnable Wp| Note that the above result holds true for every, ande.
We now present an alternative to Procedure 1. In the first stepVhenIl is an optimal partition (as is the case in Algorithm
of Procedure 1, one is obliged to determine functigrsthat 1), we havelisp(Il) = disp(r) and
are at a minimal average distance from the functions irttie 9
element of the partitiodl. However, determining these func- 8(r, t, €) := (r + 1) exp(—te? /8) + = disp(r)
tions may be very difficult. Instead, one possibility is to select €
an f; € F; atrandom for eachh according to the probabilit. is the so-calledconfidence function This expression for

This leads to the following alternative to Procedure 1. §(r, t, €) can be minimized with respect to the parameteis
Procedure 2: a function oft ande. Lettingro(t, €) denote the optimal value
1) Fori =1, ..., r, selectatrandom a functigih out of /;  for r, the minimal confidencé is defined as

according to probability) restricted to set?;;
2) and 3) as in Procedure 1. O bo(t, €) := 6(ro(t, €), t, €). (12)
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The functions = (¢, ) can be made explicit with respect#o where M5 is a suitable constant. This equation can be easily
(with a little caution due to the fact thais an integer variable) made explicit with respect g leading to the sample complexity
as follows: function

to(6, €) := the smallest integersuch thaty(t, €) < 6. to(8, €) = O <i2 [bgl +log %D ) (14)
€ €

In th‘? sequelfo(d, €) is referred to as theample complexity Other bounds wherg, exhibits a dependence erof the form
f””CF'OF‘ . . . O(1/¢) can be achieved by tightening the bound in (6) by using
It is important to give a correct interpretation to the funcgg nstein's inequality (see, e.g. [11, Ch. 8])

tion to(% ©)- _leenharr: ?c?uracg and a cor:sfldencé,<tge In- Note that the sample complexity function (14) is similar to
tigert?( : ;) IS Sucd ¢ ‘E OO(t}Eé’ ), €, ol ’66)’ E)f_h [slee the one derived in a classical concept learning context in [3].
(. )]Cé n otlerv<vor S'.t € ?On ! er:sce at t:jﬁtg ’hf) (;]t €rea" The relation (14), however, has a different interpretation from
%oﬂ r(9; J?) i 1f6's(5at easﬂ—o prr?w eh t ;‘tt de par}g}uon the results in [3] at least in two respects. First, the confidence
. has cardina ityro (o ), €), ¢). On the other hand, in Algo- ¢ is computed here as a probability in the product probability
nthm 1 the integer functiom(¢) has to b(_a chosen at the OUtseépaceF « X* rather than a probability in the sample spage

and is not allowed to be a function et time¢ = to(é, ¢). So: Secondly, results in [3] are worked out under the finite metric

7(to(6, €)) # ro(to(6, €), ) in general. o entropy condition whereas the present results make use of the
Clearly, a sensible way to determine functiaft) in Algo- milder dispersability condition

rithm 1 is to choose first a functiof(t) and then optimize by
selecting (t) = ro(t, <(t)). If this is the case, the confidenge ; p,qrpi81TI0N-FREE LEARNING WITH PRIOR INFORMATION
attimet is in fact optimal for accuracy(t), i.e.,é = o(t, €(t)),
but it is in general suboptimal far «(t). A. Mathematical Setting and Definitions
In conclusion, the sample complexity function provides a the- This section is devoted to the problem of learning with prior
oretical lower bound which can only be partially achieved by iaformation in the case in which the probabilifyis not fixed
given algorithm. Precisely, if(t) = ro(t, €(t)) for some pre- and it can in fact banyprobability onX’. Define P* to be the
specified functior:(-) and, for some, we seleck = ¢(t) and  set of all probabilities o’
6 = bo(t, €(t)), then we achieve accuraeywith confidence  Let F denote a giverr-algebra onF, and letQ) denote a
at timet andt is in fact optimal:t = #o(9, ). probability measure ofF, F). The probabilityQ constitutes
In order to determine an explicit expression for the sampiRea priori probability that a functiorf happens to be the target
complexity function, one has to introduce some specific forfiynction, or else the relative importance placed on different
for the minimal dispersion functiodisp(-). Here, as an ex- target functions. The probabilit) is known to the learner.
ample, we examine the case in which According to the philosophy of learning with an arbitrary
. o distribution, given a functiory € I, the probability P(g)
disp(r) = O(1/r%) (13) according to which the samples are collected is allowed to
be any probability irP*. Moreover, the probability” may be
different for different functiong. By the symbolK we denote
a kernel of probabilities indexed hye F

for some constant > 0.
Example 3: Suppose that’ satisfies the finite metric entropy
condition and thatV(e) = O(1/¢*), for some constank >

0. This is quite a common situation; see for instance several K = 1{P(g), g€ F}
examples reported in [19]. Then, by using (5), it is readily seen i ’ )
that (13) holds in this case witlh = 1/\. O thatis, for a givery, P(g) is a probability overX and the prob-

Example 4: Consider again Example 1 in Section Il and asability P(g, A) of a setd € X' is F-measurable. In the context
sume thatQ(c;) = i~/ > ;= i, for someX > 1. In this of distribution-free learningk’ plays a role similar to that aP
case the finite metric entropy condition is violated. However, an the fixed distribution setting. Throughout, it is assumed that
easy computation shows that equation (13) is still satisfied wiffl is not known and can be any kernel. The set of all kernels is

a=A-—1. [0 denoted byC*.
The first step in the determination of the sample complexity Given a kernelK, the probability@} allows us to define a
function is the optimization of the confidence function corresponding probabilit’r; in the product measurable space
9 1 (F x X', F @ X*") as the unique probability measure which
8(rt €)= (r 4+ 1) exp(—t?/8) + = M, —, extends the definitioRr, (A x B) := [, P'(g, A)Q(dg), A €
c T Xt, B € F, tothes-algebraF @ X*.
whereM; is a suitable constant. Selecting Our first step in the development of a distribution-free

learning theory with prior information is the extension of the

definitions in Sections | and Il to the present setting.
Definition 7 (Distribution-Free PAC Learnability With Prior

Information): An algorithm{a,} is d.f. PAC w.p.i. to accuracy

e if

1 1/(a+1)
r(t,e)=—-1+ [— exp(t62/8)}
€

leads to

lim sup Pr, {dp(g)(g, hi) > 6} =0. (15)

t=00 gekr

1 1/(a+1)
ot ) < 80t ), ) < Ma [ Lexp(-t2a)|
€
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The algorithm{a;} is d.f. PAC w.p.i. if it is d.f. PAC w.p.i. The dispersion of the clads under partitioni! is then defined
to accuracye, for everye > 0. The function clasd” is d.f. as
PAC learnable w.p.iif there exists an algorithm that is d.f. PAC
W.p.i. O disp(ll) := Inf sup Epy [dp)(g, f(, 9] (17)
The distinctive feature of Definition 7 as compared to Defini- oM wek:
tion 3 is that in (15) convergence is required to hold uniformlwhere, in analogy with previous notatioRr, is defined as
in i € K*; that is, the probability” is allowed to depend o the product measur@ x [P(g)]°. The interpretation of (17)
and this dependence can be arbitrary siiiP¢g)} can be any is as follows. Fix a magf € M. Clearly dp(g) (g, f(z, g))
kernel. Clearly, the convergence requirement in (15) is strondgera random variable that depends on the multisampsnd
than the one in (4). the target functiory and it is therefore defined ok’ x X*.
Next we wish to extend the notion of dispersability to the disSuch a random variable depends on the kedethrough
tribution-free setting. For this purpose some preliminary obse®(g). Next, the operatorE'p,, performs integration over
vations are in order. F x X7, thus returning the average distance of eadinom
In the fixed distribution setting, the dispersability conditiotthe corresponding’(z, g). The average here is with respect
is equivalent to the following requirement: As the cardinality oo the target functiory and the random multisample So, all
the partitionII approaches infinity, the sum over the elemenis all, Er. [dp(,)(g, f(z, g))] is a deterministic number that
F; (forming the partitionlI) of the average (with respect @) measures the average dispersiorydfom the corresponding
dp-distance between the functions i and some representa-f(z, g); it depends on the map and the kernelK. Finally,
tive function f depending or; tends to zero. In mathematicaldisp(1l) is defined asinf; supy Ep:,[dp(g) (g, f(z, g))] and,
terms, this requirement can be recast in the following stateménérefore, it quantifies how small such an average dispersion
equivalent to Definition 6. Denote b/ the set of all maps can be made in the worst case with respecktdy suitably
f: F — F such thatf(g) is constant ove¥;, ¢ = 1, ..., r. selecting the mayg.
Then the dispersability condition is equivalent to requiring that Analogously to (16), Definition (17) is worst case owing to
the presence of the quantifietp ;.. However, differently
inf Egldp(g, f(g))] from (16), in (17) the partition is allowed to depend-ork X*
feM and the dispersion is computed as an average bver X°.
Such a dependence gives one the possibility of forming some
tends to zero when the sizeof the partitionll = {F}, i = estimate ofP(g) beforeF is partitioned. Finally, theninimal
1, ..., r} tends to infinity (compare with Definition 4). EX- dispersionlisp(r, s)is defined as the infimum afisp(11) when

tending this idea to a distribution-free setting requires songranges over the set of all partitions of cardinatitpased on
care. A straightforward, but rather naive, extension would cofhe multisampler € X*.

sist in requiring that Here, once again, a measurability issue arises. As a matter of
fact, without any extra assumption on the njgmne cannot be
flg]a Igu}g Eqldpgy(g, f(9)] (16) surethatthe functiodp (g, f(z, g)) is measurable. Here and
e

elsewhere in this section, we take the liberty of glossing over

o o these measurability issues. This is a technical point certainly
tends to zero when the partition sizeincreases. However, worthy of further investigation.

a litle thought reveals that sending the quantity in (16) 10 \yg are now in a position to define the notion of distribu-
zero is in general an impossible task. Suppose for instang, free dispersability.
that we are considering concept learning. Then, the integrantheinition 8 (Distribution-Free Dispersability):The func-

dp(g)(9; f(g)) can be always made equal to 1 by suitablyy, ¢jassr is distribution-free (d.f.) dispersablé
selecting the probability’(¢), whenevew # f(g).

The trouble with the above attempt to extend the definition lim disp(r, s) = 0. O
of dispersability comes from the fact that one is asked to deter- TETee
mine a partition able to reduce the dispersion, and yet, the metriqygte that disp(-, -) is a nonincreasing function of both
dp(g) used to measure such a dispersion is unknown. Cleagyyyments and, therefore, the order in which the limit
this is an unfair game. To make the problem formulation more ¢ _, s taken in Definition 8 is immaterial. The fact that
meaningful, the learer must be in a position to form some sy, .. .) is nonincreasing can be seen as follows. The function
mate ofP(g) before he is asked to determine the partition. Thgp(g) (g, f(z, g)) defined onX* x F can be embedded in the

leads tq the notion_ adata dependentartitions. N larger invariant spac& ™ x F. Then,E px, [dp(,)(g, (=, 9))]
Consider a multisample = (z1, ..., ;). A partitionII of becomesEr, . [dp(4)(g, f(x, 9))], which exhibits no explicit

cardinz_zll_ityr l_Jased on the multisampleis simply a collection dependence on Now, by increasing and/ors, the set of maps

of partitions indexed by:: M over which the infimum in (17) is taken becomes larger. It

follows thatdisp(r, s) is a nonincreasing function efands.
O={r(z),i=1,...,r}h
B. Conditions for D.F. PAC Learning W.P.I.
Let M be the set of map$: X° x F — F such that for all: € In this section, various connections between the d.f. dis-
X®andg € F, f(z, g) is constant oveF;(x), ¢ = 1, ..., r. persability condition and the notion of d.f. PAC learning w.p.i.
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are established. In the interest of clarity, the principal results Proof: The proofis an extension of those of Lemma 5 and

are summarized beforehand. Theorem 3.
1) Under the d.f. dispersability condition, a function class ~ First, fix arbitrarily ag € F', a probability P(g) € P*, a
is d.f. PAC learnable w.p.i. multisampler € X*®), and set
2) The d.f. dispersability condition is satisfied if the Pol- R .
lard-dimension of the function clasg (or the Vapnik fo= f_(m?riillmn 8 dp(g)(g; fi(x)).
Chervonenkis-dimension in the case of a concept class e
C) is finite. Similarly to Lemma 5, one can prove that

3) The d.f. dispersability condition israecessary and suffi- B
cient conditiorfor a concept class to be d.f. PAC learnabld’(g)'~*(*) {dp(g)(g, he) = dp) (g, f7) < 5}
W.p.i. >1—(r(t)+1 —(t — s(t))e?/8 Ve>0. (18
Result 1 states that the d.f. dispersability condition is suffi- ~ (r(#) + 1) exp[—(t — s(t))e”/8], €>0. (18)
cient for the d.f. PAC learnability property. The second resuliefine
brings out an interesting link between standard conditions for
learning in a classical setting and the d.f. dispersability condk(g, P(g), x)
tion. Finally, the third result states the very interesting fact that ts(t) o €
; . e 2 = X :d he) —d — .
the d.f. dispersability condition is a necessary and sufficient con- {x < r(9)(9, ht) — dp(g)(g, °) }
dition for the d.f. PAC learnability w.p.i. of a concept class Then, for any kernek € K*
In the light of this result, we can think of the d.f. dispersability '
condition as thenatural condition for d.f. PAC learning a con- / /
F Jxs
- P(g

, we have

(&
d g, hy) — =
/Xt—s<t>\A<g, Pg), =) ( P9, be) 2)

)0 (dw)P(g)*® (de)@Q (dg)

cept class w.p.i.
We begin by introducing an algorithm which generalizes Al-
gorithm 1 of Section Il so as to tailor it to a distribution-free

framework. S/ / dpy(g, £2)P(g)°® (dz)Q (dg)
Algorithm 3: Select two increasing integer-valued functions FJXe® o
r(t) T oo ands(t) T oo such thats(¢) < ¢ for all ¢. = Epe,y [drg)(9: £

At time ¢, do the following: < disp(1l;)

1) determine an optimal partitiofl; of cardinality (¢) = disp(r(¢), s(t)). (19)
based on the multisample € X*®), i.e., a partitionLl, o o . o
such thatlisp(I1,) = disp(r(t), s(£)); Similarly to the derivation of (6), (19) used in conjunction

2) determine a mag such that with the estimate (18) gives

disp(LL;) = oup Epy [dpg)(g, f(=, 9))); Pri{dp(g)(g; 1) > e} < (r(t) + 1) exp(—(t — s(t))<*/8)
T

+§ disp(r(¢), s(t)), Ye>0

3) compute the empirical error of each functigh(z),
for any kernelK € K*.

¢ = 1,...,r(t), associated with the map, where . o
© = (21, ..., Zagp) is the firsts(t)-dimensional portion From this, and also taking into ac_cou_nt_tb@t) = o(t) and
of the multisampler = (x: 22) r(t) = exp(o(t — s(t))), the conclusion is immediately drawn
o that
t
5 1 - ] —
i), 9, i) =y 2(:) 19(9) = fies ) A, sup Pri{dp(g; h) > ¢ =0
j=s(t)+
i=1, ..., 7(b); that is, Algorithm 3 d.f. PAC learns w.p.i. the class O
Our next result, besides being instrumental to the proof of
4) select Theorem 9 below, is of interest in its own right. It proves that
the finiteness of the Vapnik Chervonenkis dimension implies the
hy:= argmin d g, fi(@)). O d.f. dispersability property.
' fi(@),i=1, .., r(t) Pl (@) Theorem 8:If VC-dimension(C) < oo, then the concept
_ . . N classC is d.f. dispersable.
In Algorithm 3, the existence of an optimal partitioh and Proof: We start by introducing a “natural” partition &f
of a suitable magf is assumeo_l. Sh_ould this be not the case, 0Rg sizer = 2* based on the multisamplee X*.
can resort to suitable approximations. Given an integei € [1, 2°], denote byb(i) the binary rep-

The following theorem, which states that a function clasgsentation ofi — 1). Let C;(z) C C be the collection of all
is d.f. learnable w.p.i. provided that it is d.f. dispersable, isets4 in C such that theith elementz; of the multisampler
somehow expected. belongs ta4 if and only if the;jth digit of i(:) is equal to 1. The

Theorem 7: Suppose that the function clagsis d.f. dis- so-called “natural” partition of is then defined as
persable. Ifs(t) = o(t) andr(t) = exp(o(t — s(t))), then Al-
gorithm 3 d.f. PAC learns class w.p.i. I:={Ci(z),i=1, ..., 2°}.
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Our goal consists in proving that

lim disp(Il) =0

S§—0C

which in turn implies that

lim disp(2°, s) =0

=00

which is the desired conclusion.
For any givernc € C andz € X? let C.(z) denote the ele-

ment of the family{C;(x), ¢ =1, ..., 2°} that containg. We
have
disp(II) = inf sup Ep; [dpo(c, (z, ¢
D) = juf, s B ldpio (e (2. o)
< sup Epy, | sup dpy(c, c’)]
Kekr S E€C, ()
S/ sup Eps | sup dp(c, c’)] Q(dc). (20)
C rPep* /€C. (x)

Next, it is shown that the integrand

sup dp(c,c’)
/eC.(x)

sup Ep-
Pep:

|

can be bounded above using the finiteness of the VC-dimens
of C. Define

CAC = {cAcd: ¢, € C}.
Itis shown in [30, Th. 4.3, p. 88] that
VC-dim(CAC) < 10VC-dim(C) =: n, say.

For any set: € CAC and any multisample € X?, define its
empirical probabilityas

Pla; z) = % Z Lo (x;).
=1

Then it is known (see [30, Th. 7.2, p. 198]) that

}

2 T]
<4 <_> exp(—s¢*/8) =: v(s, <), say
U

sup |P(a; ) — P(a)| > ¢

P? {a: e X?:
a€CAC

In particular, recall thaf’.(«) denotes the particular componen
of the partition ofC' that containg.. Hence

P(eAd; z) =0, vV e Cox).
Therefore
P’{xe X’ sup sup dp(c,c)>ep <v(se).
c€Cc’eC. (=)

This implies that the integrand in (20) satisfies

sup Eps
pPepr

sup dp
/€C. ()

(c, c’)] <[1—vis, )]e+ (s, ¢).
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Sincer (s, ¢) approaches zero asapproaches infinity for each
fixed ¢, it can be seen that this quantity can be made arbitrarily
small by choosings large enough. Hencéisp(II) — 0, as

s — 0. |

Using entirely analogous reasoning, Theorem 8 can be ex-
tended to function classes with finite Pollard-dimension. In par-
ticular, any function class with finite Pollard-dimension is d.f.
dispersable. Moreover, the so-called “natural partition” defined
above can be readily extended to a family of functions, and it
disperses the function family. As a consequence, it follows that
the procedure described in Algorithm 3 is PAC w.p.i. even for a
function family.

Together, Theorems 7 and 8 establish that finite VC- (or Pol-
lard-) dimension implies d.f. dispersability, which in turn im-
plies d.f. learnability w.p.i. This conclusion is not surprising,
since the finiteness of the VC- or Pollard-dimension in fact im-
plies the much stronger property of d.f. learnability (without
prior information).

The fact thatP(g, A) must beF-measurable for ang € X
imposes a constraint on permissible kernels. In the next the-
orem, we show that, in the case of concept classes, if the set
of kernelsX* is rich enough that any family of probabilities
{P(g), g € F}isinfact a permissible kernel, then d.f. dis-
persability is anecessary and sufficienbndition for d.f. learn-
ability w.p.i. Thus, d.f. dispersability characterizes d.f. learn-
lﬁﬂlity w.p.i., in the same way that finite VC-dimension charac-
terizes d.f. learnability (without prior information).

Theorem 9:If K* is the set of all families of probabilities
P(g) indexed byg € F, then a function clas€’ is d.f. PAC
learnable w.p.i. if and only if it is d.f. dispersable.

Proof: The “if” part is a straightforward consequence of
Theorems 7 and 8. Therefore, we concentrate here on the “only
if” part.

Consider the product spaceé x X°° and for a given kernel
K, denote byPrg the corresponding probability measure in
C x X=°. In this framework, the fact that the algorithfn,}

d.f. PAC learns w.p.i. the concept clagstranslates into the
condition

lim sup Prg {dl’(c)(cv ht) > 6} =0,
t—oo Kekr

Ve>0. (21)

Our intermediate goal consists in showing that (21) implies that
for all p > 0, there exists a s&t(p) C C such that

1) Q(C(p) = 1 -p;
2) limy, oo SUPcecyy) SUPpeps P{dp(c, br,) > €} =
0,Ve > 0
where{t,, } is a suitable sequence of time instants.
First, fix a sequence of real numbets | 0. From (21) it is
easy to see that a sequereg} of time instants can be deter-
mined such that

t

Z sup Pry {dp(c)(c, ht,) > cn} < 00.
= Kek:

This implies that

>

sup P{dp(c, hy,) > €, }Q (de) < >0
Pep:
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from which it follows that: 3) compute the empirical error of each conceyt:):
t
li P={dp(c, he,) > en} =0, 5 1
m, sup Pdp (e e ) > e dpeo,oles @) =5 D2 lefws) - cila ;)]
(Q—almost surely j=s(t)+1
i=1,...,2°0;

that is,sup pep- P={dp(c, hy,) > €,} converges to zero al-
most surely as a function ef Now it is well known thatifa %) select
random variable converges almost surely to zero, then it con-

verges uniformly to zero on a subset whose probability is arbi- hy = argiiimn S(ﬂdl’(c),t(c’ ci(x))- -
trarily close to 1. Thus for app > 0, there exists a sét(p) C C =t 2
such that Itis important to note that theasndomextraction of concepts
) QC(p) 21— p; {ci(z)} at the second step of Procedure 2 has a fundamental
i) lim, 0o SUP.ec(,) SUP pep- P{dp(c, he,) > en} =  beneficial effect which is missing if random extraction is re-
0. placed by a deterministic selection. This can be intuitively ex-

Condition i) is the same as Condition 1), whereas Condition @jained as follows. The concept classnay contain a subset of
obviously implies Condition 2) sincs, | 0. Thus our interme- overly complex concepts [and, in fadC-dimensior{C') may
diate goal is established. well be infinite]. However, if this is the case, such a “patholog-
Note now that Condition 2 corresponds to the requiremeigl” subset will have a negligible probability (see Statement
that the algorithn{a,, } d.f. PAC learns the concept claS$p). 1 in the proof of Theorem 9). Therefore, a random extraction of
On the other hand, it is well known, [13], that this requiremergonceptsc; ()} will fall in the pathological subset with negli-
is equivalent to the finiteness of the VC-dimension of the clagéble probability. This advantage is obviously missing if deter-
C(p). Thus it has been shown that for all> 0 there exists a ministic selection is used, since the probability of falling into

setC(p) C C such that the pathological subset is no longer governedpy
1) Q(C(p)) > 1 — pand We end this section with a final theorem concerning Algo-
3) VC-dim(p)) < cc. rithm 4. Its proof is omitted, but can be easily worked out based

The dispersability property of' can now be easily proven on the observations presented so far. Also, in the statement of
from Statements 1 and 3, using Theorem 8. Consider a sequethégtheorem we have glossed over the tedious definition of prob-

of partitionsII= Y’ of C(p) based on the multisamplee X  ability Pr,.
of cardinalityr such that Theorem 10:Chooses(t) such that2*) = o(t). If the

concept clasg€” is d.f. PAC-learnable w.p.i., thela, computed

through Algorithm 4 is such that
lim_disp (Hggm) —0. 22) gh A9
7 tlim sup Pri{dp()(c, h) > €} =0, Ve>0
Such a sequence exists in view of Theorem 8 and Statement 3. Kk
Then partitionC' as follows: wherePr, is a probability which accounts for all random ele-
ments in the problem, i.ec € C, z € X! and the random
Iy = 1P UT(p). selection of concepts (z). O
Then, we have VI]. CONCLUDING REMARKS

In this paper, we have introduced a new notion of learning,
disp(IL,; ,) < disp (Hf(;’)) + p(using Statement 1) called learning with prior information. This new notion of learn-
’ ability is significantly weaker than the widely studied notion of
PAC (probably approximately correct) learnability. Necessary
and sufficient conditions have been derived for a concept class
Sinceyp is arbitrary, this implies thatisp(1l,41,5) — 0 andthe o pe learnable with prior information, both in fixed-distribution

—p as r, s — oo.[using (22)]

theorem is proved. U learning and distribution-free learning. A new concept called
The proof of Theorem 9 suggests that, éonceptclasses, a “gispersability” has been introduced, and it has been shown that
variant of Algorithm 3 is possible. dispersability (defined appropriately for the situation) is both
Algorithm 4: Select an increasing integer functigfit) T cc. npecessary and sufficient for learnability with prior information.
At time ¢, do the following: Thus, the results presented here are quite definitive.
1) determine the natural partitidh, := {C;(x) 3;(;) , Where It has also been shown theatycollection of measurable func-
x = (21, ..., T,()) IS the firsts(¢)-dimensional portion tions mapping a separable metric space into a compactintervalis
of the multisampler = (x4, ..., z¢); learnable with prior information. This result, while conclusive
2) fori = 1,...,2°®, extract at random a concegiz) and elegant, also suggests that perhaps learnability with prior

out of C;(x) according to probability@ restricted to information is too mild a form of learnability. Thus there still
Ci(x); remains the challenging problem of defining other, still newer
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notions of learnability that are intermediate between PAC learnge] L. G. valiant, “A theory of the learnable Commun. ACMvol. 27, pp.

ability and learnability with prior information. This is a topic 1134-1142, 1984. o
for furth h [27] V.N. Vapnik and A. Y. Chervonenkis, “Uniform convergence of the fre-
or turther research. quencies of occurrence of events to their probabiliti@qgviet Math.
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[28] ——, “On the uniform convergence of relative frequencies to their prob-
abilities,” Theory Probab. Applvol. 16, pp. 264-280, 1971.
——, “Necessary and sufficient conditions for the uniform convergence
of means to their expectationsTheory Probab. Appl.vol. 26, pp.
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