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Abstract—Majority voting is often employed as a tool to
increase the robustness of data-driven decisions and con-
trol policies, a fact which calls for rigorous, quantitative
evaluations of the limits and the potentials of majority vot-
ing schemes. This letter focuses on the case where the
voting agents are binary classifiers and introduces novel
bounds on the probability of misclassification conditioned
on the size of the majority. We show that these bounds can
be much smaller than the traditional upper bounds on the
probability of misclassification. These bounds can be used
in a ‘Probably Approximately Correct’ (PAC) setting, which
allows for a practical implementation.

Index Terms—Machine learning, agents-based systems,
statistical learning.

I. INTRODUCTION

A. Binary Classification and Majority Voting

THE OBJECTIVE in classification is to attach a label to an
instance of a set of features. Like many machine learning

techniques, classification has found a place as a standard tool
in the control community. One important example of appli-
cation is in the medical domain. For example, consider the
case of an Automatic External Defibrillator (AED), which has
to determine whether to shock a person experiencing cardiac
arrest or not (the label) based on several properties such as
blood pressure, heart rate, etc (the features) (see [1] for such a
classifier, which is based on [2]). If the shock is effective, then
the crisis is over, otherwise the shock may worsen the situation
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by further damaging the cardiac muscle. This implies the need
to design techniques to support the control action of whether
one should shock or not. Hence, we see that classification
plays a role similar to a state estimator in this application.

Furthermore, classification has been used in optimal control
of affine switched systems [3], policy iteration [4], and classi-
fication of the environment in order to select the appropriate
controller [5], [6]. The control community has particularly
been concerned about the theoretical guarantees that can
be attached to classification schemes, which has motivated
original investigations such as [7].

The main metric to judge such a classifier is the proba-
bility of misclassification, i.e., the probability that the clas-
sifier assigns the wrong label to a new feature vector. The
optimal/safest classifier from the feature vectors to their binary
labels is in many cases unknown and/or difficult to model.
For this purpose, machine learning algorithms have been
developed that construct approximations of these mappings
from a set of example pairs of feature vectors and labels
(training set). From an empirical estimate of the probability
of misclassification in the training and/or validation set, it is
possible to give an upper bound on the true probability of
misclassification with a high confidence. We refer to works
in statistical learning theory for a detailed description on this
matter, see, e.g., [8], [9].

One approach to improve existing classifiers is to combine
many of them. There is a vast amount of literature on this
topic, see, e.g., [10]–[12] for several approaches. The main
idea behind combining multiple classifiers is that the classi-
fiers may compensate for the weaknesses of each other and
thus increase the overall performance. In the present work
we consider a weighted majority voting scheme. That is, the
labels given by the classifiers are weighted and the label with
the highest weighting is the classification of the majority vote.
We consider the case where the labels can take only two values
(binary classification).

B. Contributions: Tighter Bounds on Majority
Misclassification Due to a Novel Perspective

Bounding the probability of error of majority voting clas-
sifiers has been a topic of interest for several years, see,
e.g., [10], [11], [13] for early work. Such bounds have also
been used to derive new machine learning algorithms [14].
Unfortunately, although majority voting can very often lead
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to significant improvements, it has been shown that majority
voting can, in principle, worsen the performance with respect
to the individual classifiers [15].

This letter is part of a project aiming at putting data-based
decisions on a solid theoretical ground and, in this particular
case, understanding the limits and exploiting the potentials
of majority decisions. Here we adopt a novel perspective.
Namely, instead of providing a single ‘expected’ probability
of misclassification over the entire set of feature vectors, we
look at the operational side of the majority voting scheme and
provide a probability of misclassification that depends on the
size of the majority for the classified feature vector. That is
to say, if one classifies a newly obtained feature vector using
a majority voting scheme, we give tighter guarantees on the
probability of misclassification, given that we know the size of
the majority. Preliminary work on this perspective in the case
of two classifiers has been presented by some of the authors
of the present paper in [16]. The present work forms a sig-
nificant extension as the main results hold for majority voting
schemes of any finite number of classifiers, which requires a
different approach than in [16].

The main results of this letter are two novel upper bounds
on the probability of misclassification conditioned on the size
of the majority. These novel bounds as well as their ‘uncon-
ditional’ counterparts from the literature rely on unknown
parameters of the ensemble of classifiers. These parameters
can typically be estimated with high confidence, for example
(but not necessarily) by resorting to an extra validation set.
This fact was taken into account in the construction of the
novel bounds in this letter such that they are ‘tighter’ than
their unconditional counterparts at the same confidence level.

C. Structure of the Letter
The remainder of this letter is structured as follows.

Section II presents some preliminaries on majority voting
schemes. The main results are presented in Section III, along
with numerical results to demonstrate their effectiveness. We
demonstrate that the novel bounds can be used in order to
design and analyse abstaining classifiers in Section IV.

II. MAJORITY VOTING PRELIMINARIES

A. Mathematical Notation
Let � = X × Y denote the set of all possible data points

δ = (x, y) ∈ �, where X ⊆ R
n is the set of possible feature

vectors (for some n ∈ N) and Y = {0, 1} is the set of labels.
We assume that � is equipped with a probability distribution
P� that is not known to the user.

A training set T N ∈ �N is a set of N random points
{δ(1), . . . , δ(N)} drawn according to the product probability P

N
�

(hence, i.i.d.). A classifier ŷ is a mapping X → Y and a classi-
fication algorithm is a map from training sets T N to classifiers.
We consider a pool of M ∈ N base classifiers ŷc ∈ P , where
P := {̂y1, ŷ2, . . . , ŷM}. The power set of P is denoted by 2P .

We use the notation 1{·} to denote the indicator function
such that 1{A} = 1 if A is true and 1{A} = 0 if A is false.

B. Majority Voting Classifier
The majority voting classifier in this letter is denoted by

ŷ∗ and works as follows. Each base classifier ŷc is assigned a
weight wc. For ease of exposition, we represent these weights
of the base classifiers through a probability distribution func-
tion PQ : 2P → [0, 1]. In particular, assuming that the weights

are positive and sum up to 1, for any P ′ ⊆ P the weight is
given by

PQ{̂y ∈ P ′} =
∑

c:̂yc∈P ′
wc.

This distribution PQ may depend on the training set. Note that,
contrarily to P�, the distribution PQ is known to the user and
can be chosen.

When classifying an instance x ∈ X, the classifiers are par-
titioned into two sets P0(x) and P1(x) based on the label
they return. The weights of the classifiers within each set are
summed and the set with the largest weight is denoted by
P∗(x) ⊆ P . Formally, P∗(x) is defined as1

P∗(x) =
{P0(x), if PQ{̂y ∈ P0(x)} ≥ PQ{̂y ∈ P1(x)},
P1(x), if PQ{̂y ∈ P1(x)} > PQ{̂y ∈ P0(x)}.

The majority classifier ŷ∗(x) assigns to x the label of the
classifiers in P∗(x).

Furthermore, let E denote the error function such that for
any δ = (x, y) ∈ � and any classifier ŷ we have

E(δ, ŷ) := 1{̂y(x) 	= y}.
The probability of error for a classifier ŷ is then defined as

PE(̂y) := E�

[

E(δ, ŷ)
] = P�{̂y(x) 	= y}.

The probability of misclassification of the majority voting
classifier ŷ∗ is denoted by

BQ = PE(̂y∗).

C. Gibbs Classifier
In order to provide bounds on the probability of error of

the majority voting scheme, we will make use of a stochastic
classifier ỹQ that works as follows. For an input feature vector
x ∈ X, a classifier ŷ ∈ P is randomly selected according to
PQ and the feature vector is classified according to the output
of that classifier. This type of classifier is known as the Gibbs
classifier [17, Ch. 4]. The probability of misclassification of
the Gibbs classifier is equal to GQ := PE(̃yQ). Denoting by EQ
the expectation taken with respect to PQ, by Fubini’s theorem,
we have

GQ = E�

[

EQ

[

E(δ, ŷ)
]

]

= EQ

[

E�

[

E(δ, ŷ)
]] = EQ

[

PE(̂y)
]

, (1)

and thus GQ is the weighted average of the probability of
misclassification of the base classifiers.

D. Agreement Index and Expected Disagreement
Throughout this letter we will make use of the notion of an

agreement index (as defined in [18]),

AQ(x) = PQ{̂y ∈ P∗(x)},
which is the ‘weight’ or ‘size’ of the majority for a feature
vector x ∈ X. Note that the value of AQ(x) is known to the
user as it can be computed based on the user-chosen PQ, and
that, by the definition of the majority voting, it holds that
AQ(x) ∈ [ 1

2 , 1] for all x ∈ X.
Furthermore, we make use of the expected disagreement,

denoted by dQ and defined as the probability that two base
classifiers ŷ′ and ŷ′′ do not assign the same label to a feature

1In case of PQ{̂y ∈ P0(x)} = PQ{̂y ∈ P1(x)}, we have arbitrarily chosen to
assign the label 0 as the majority. Other rules are possible.
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vector if one were to select these two base classifiers indepen-
dently according to PQ with replacement. It follows that dQ
can be expressed as

dQ := E�EQEQ

[

1{̂y′(x) 	= ŷ′′(x)}]

= 2E�EQEQ

[

1{̂y′(x) ∈ P∗(x)}1{̂y′′(x) /∈ P∗(x)}
]

= 2E�

[

AQ(x)(1 − AQ(x))
]

. (2)

E. Margin
The notion of margin MQ is defined in [10] as the mapping

MQ : � → [−1, 1] such that, in the case of binary classifiers,
for any δ = (x, y) ∈ �,

MQ(δ) := PQ{̂y(x) = y} − PQ{̂y(x) 	= y}
= EQ

[

1 − E(δ, ŷ)
] − EQ

[

E(δ, ŷ)
] = 1 − 2EQ

[

E(δ, ŷ)
]

.

Hence, the expected value of the margin (also known as the
strength of the pool of classifiers [11]) is equal to

E�

[

MQ(δ)
] = 1 − 2 GQ. (3)

For any δ ∈ �, the margin MQ(δ) captures both the size of
the majority as well as whether the majority correctly classifies
the feature vector. This is evident from the following deriva-
tion. For any ŷ′ ∈ P∗(x), it is true that E(δ, ŷ′) = E(δ, ŷ∗).
Furthermore, any ŷ′′ /∈ P∗(x) must assign the opposite label
to x than any ŷ′ ∈ P∗(x). Hence, the error is also the oppo-
site and therefore E(δ, ŷ′′) = 1 − E(δ, ŷ∗) for any ŷ′′ /∈ P∗(x).
Combining these observations yields

MQ(δ) = 1 − 2EQ
[

E(δ, ŷ)
]

= 1 − 2EQ
[

E(δ, ŷ∗)1{̂y ∈ P∗(x)}
+ (1 − E(δ, ŷ∗))(1 − 1{̂y ∈ P∗(x)})

]

= (

2AQ(x) − 1
)

(1 − 2E(δ, ŷ∗)). (4)

Since (1−2E(δ, ŷ∗)) ∈ {−1,+1} and AQ(x) ≥ 1
2 , it is true that

|MQ(δ)| = 2AQ(x) − 1. Clearly, the sign of the margin shows
whether the majority vote is correct about x (the margin is
positive) or not (the margin is negative). The second moment
of the margin is thus completely determined by AQ(x). In fact,
using (2), it holds that

E�

[

MQ(δ)2
]

= E�

[

(2AQ(x) − 1)2
]

= 1 − 2dQ. (5)

We can combine (5) with (3) to conclude that the variance of
the margin is given by

V�

[

MQ(δ)
] = 4GQ(1 − GQ) − 2dQ. (6)

F. Bounds on the Majority Voting Error
Using the margin, several bounds on BQ have been proven

in the literature. A well-known result is the following (see,
e.g., [14], [15]).

Lemma 1 (2-Bound): It holds that

BQ ≤ 2GQ.

The factor of 2 in the bound in Lemma 1 was shown to
be tight [15], which exposes a possible limitation of major-
ity voting. Namely, majority voting can result in a worse
performance than the average performance. This is one of the
main motivations behind the analysis of the majority voting
misclassification probability.

By resorting to additional information on the distribution
of AQ(x) in the form of dQ, it is possible to provide a more

refined result. The following lemma was introduced in [19]
(see [14] for a more detailed analysis) and is known as the
C-bound.

Lemma 2 C-Bound, [14], [19]: If GQ < 1
2 , then it holds

that

BQ ≤ 1 − (1 − 2GQ)2

1 − 2dQ
. (7)

The right-hand side (RHS) of (7) can be smaller than GQ.

III. MAIN RESULTS

A. Main Theorems
As mentioned in Section I, the key new viewpoint in this

letter is that we look at the probability of misclassification,
conditioned on the size of the majority. Led by the idea that
a larger majority in many cases is associated with a smaller
error of the majority vote, we define the ‘probability of error
conditional to the majority size’ as

Ca := P�

{

ŷ∗(x) 	= y
∣

∣ AQ(x) ≥ a
}

= P�

{

ŷ∗(x) 	= y ∧ AQ(x) ≥ a
}

P�

{

AQ(x) ≥ a
} . (8)

The main results of this letter are the following two theo-
rems that provide upper bounds to (8), the first one depending
only on GQ.

Theorem 1: For any a ∈ [ 1
2 , 1 − GQ), it holds that

Ca ≤ 1 − a

a

GQ

1 − a − GQ
. (9)

The proof can be found in Appendix A. The reason to investi-
gate a bound that only requires GQ is that GQ is often one
of the easiest properties to estimate in majority classifica-
tion schemes. An example is the case where one has several
classifiers at his disposal with individual guarantees on the
probabilities of misclassification. One can then estimate GQ
as the weighted average of the estimates of the individual
probabilities of misclassification, see, e.g., [18].

By conditioning on the fact that the majority has a cer-
tain size, Theorem 1 is able to provide a better guarantee
than the ‘2-bound’ of Lemma 1. It is easily derived that
GQ ≤ 3

2 − √
2 ≈ 0.0858 is a necessary condition for the RHS

of (9) to be no larger than 2GQ for at least one value of a.
Furthermore, the minimal value of the RHS of (9) is attained
at a = α := 1 − √

GQ at which the value is GQ

α2 . Note that for
a ≥ 1

2 + 1
2

√

1 − 4 GQ, the RHS of (9) is larger or equal to 1
and hence provides a trivial upper bound. Theorem 1 can thus
be conservative. However, if we assume that we only have
GQ as information, then Theorem 1 is not conservative in the
sense that it can drastically improve upon the bounds in the
literature, i.e., Lemma 1.

As with Lemma 1, the RHS of (9) is larger or equal to GQ.
The added value of Theorem 1 with respect to Lemma 1 is that
it demonstrates that even though majority voting can worsen
the performance, it does not worsen by much. Theorem 1
modulates the performance guarantee based on the observed
majority.

In practice, a bound on GQ can be computed from available
bounds on the probability of error of the individual classifiers,
or by resorting to more sophisticated ‘Probably Approximately
Correct’ (PAC) bounds such as in the PAC-Bayes framework,
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which is of particular interest when there are many base clas-
sifiers and PQ is user-chosen. See also Section III-D for an
example.

The second main result is an upper bound on Ca that
depends on GQ and dQ.

Theorem 2: If GQ ≤ 1
2 , then for any a ∈ [ 1

2 , 1
2 +

1
2

√

1 − 2dQ) it holds that

Ca ≤ GQ(1−GQ)− 1
2 dQ

GQ(1−a)+a(a−GQ)− 1
2 dQ

· 2a(1−a)
2a(1−a)−dQ

. (10)

The proof can be found in Appendix B. Similar to how
Theorem 1 was able to provide better guarantees than
Lemma 1, Theorem 2 can yield siginificantly better guarantees
than Lemma 2. In fact, the RHS of (10) can be much smaller
than GQ.

In conclusion, Theorem 1 requires little information (only
GQ) and is more oriented towards a ‘worst-case guarantee’.
Theorem 2 provides a significant step towards detecting the
actual benefits of a majority voting classifier.

B. Four Useful Lemmas
The proofs of Theorems 1 and 2 make use of several lemmas

that provide bounds on either the numerator or denominator
of (8). These lemmas are interesting in their own right. The
proofs can be found in the Appendices.

Firstly, we provide the following two upper bounds on
P�

{

ŷ∗(x) 	= y ∧ AQ(x) ≥ a
}

. The first of them appeared (with-
out proof) in [18] and only requires knowledge on GQ.

Lemma 3: For any a ∈ [ 1
2 , 1] it holds that

P�

{

ŷ∗(x) 	= y ∧ AQ(x) ≥ a
} ≤ GQ

a
. (11)

The second bound requires knowledge on GQ and dQ. It is a
generalization of the C-bound (Lemma 2).

Lemma 4 (General C-Bound): If GQ < 1
2 , then for any

a ∈ [ 1
2 , 1] it holds that

P�

{

ŷ∗(x) 	= y ∧ AQ(x) ≥ a
} ≤ GQ(1 − GQ) − 1

2 dQ

GQ(1 − a) + a(a − GQ) − 1
2 dQ

(12)

Remark 1: Since AQ(x) ≥ 1
2 by construction, Lemma 3

provides an alternative proof of Lemma 1.
Remark 2: For GQ < 1

2 and a = 1
2 , Lemma 4 reduces to

the C-bound of Lemma 2.
Secondly, we provide two novel lower bounds on

P�

{

AQ(x) ≥ a
}

. The first of which is a function of GQ only
and the second is a function of dQ only.

Lemma 5: For any a ∈ [ 1
2 , 1 − GQ), it holds that

P�

{

AQ(x) ≥ a
} ≥ 1 − a − GQ

1 − a
. (13)

Lemma 6: For a ∈ [ 1
2 , 1

2 + 1
2

√

1 − 2dQ] it holds that

P�

{

AQ(x) ≥ a
} ≥ 1 − dQ

2a(1 − a)
. (14)

Remark 3: Lemma 6 provides a tighter bound than
Lemma 5 if and only if a ≥ dQ

2GQ
.

Remark 4: Lemma 6 has a wider range of applicability
than Lemma 5 because 1

2 + 1
2

√

1 − 2dQ ≥ 1−GQ. This is eas-
ily proven as follows: by Jensen’s inequality, E�

[

MQ(δ)2
] ≥

Fig. 1. Comparison of the bounds presented in this letter for the simu-
lation example. For illustrative purposes, it is assumed that the empirical
estimates are equal to the true values. The dashed line (C-bound) is not
a bound on Ca but on the probability of misclassification of the majority
voting classifier BQ . This line is displayed in order to show the compar-
ison of performance increase due to the conditional perspective. Note
that the vertical axis is displayed from zero to 2ĜQ .

E�

[

MQ(δ)
]2; substituting (3) and (5) in this inequality yields

the result.

C. Comparison of Bounds
In order to provide a numerical illustration of our bounds

and compare them with traditional ones, we now provide an
example on detection of counterfeit banknotes. We used the
‘Banknote Authentication’ data set obtained from [20]. This
data set contains 1372 data points consisting of n = 4 features
and the corresponding labels (762 genuine and 610 counter-
feit). The data set was randomly divided into two sets of equal
sizes (for other studies, see, e.g., [21]). One set, the training
set, was used to train M = 10 classifiers using GEM [22]. The
other set was used as a validation set to select the weight-
ing distribution PQ (see Section III-D for details). We remark
that these choices are just made for the sake of numerical
illustration: the results of Theorems 1 and 2 are of general
applicability, and we do not aim here at suggesting any specific
training, validation or classification scheme.

The empirical estimates of dQ and GQ obtained from the val-
idation set were d̂Q = 0.0169 and ĜQ = 0.0107, respectively.
The empirical estimates of the probability of misclassification
of the base classifiers ranged between 0.0029 and 0.0235. In
Figure 1, where we used the empirical estimates as if these
were the true values, we provide a numerical instance of the
bound of this letter. It is evident that Theorem 1 can pro-
vide better guarantees for a wide range of a than the 2-bound
of Lemma 1. Likewise, Theorem 2 is able to provide better
guarantees than the C-bound for a wide range of a.

D. Extension to PAC-Bounds
It is evident that the empirical estimates of dQ and GQ do

not have to be equal to the true values. However, by making
use of these estimates and statistical learning theory, it is pos-
sible to provide bounds on dQ and GQ that hold with a high
confidence. This allows for a practical use of the main results
of this letter. For the numerical example described above, we
resort to PAC-Bayesian theorems (for an overview, see [23]).
The prior distribution PP over the classifiers was chosen
to be the uniform distribution and the posterior distribution
PQ was obtained by minimisation of the empirical C-bound,
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Fig. 2. Comparison of the bounds presented in this letter for the simu-
lation example. All bounds hold with a probability at least 1 − 10−5. The
dashed lines (2GQ and C-bound) are not bounds on Ca, but they are
displayed in order to show the comparison of performance increase due
to the conditional perspective.

which resulted in KL(PQ‖PP) = 0.0291. By Corollary 21
from [14, p. 809] it was found that GQ ≤ 0.0453 with a con-
fidence at least 1 − 10−5. This upper bound was used in order
to obtain a PAC version of the 2-bound and Theorem 1 as
shown in Figure 2. For the C-bound and Theorem 2 we used
‘PAC-Bound 2’ from [14, p. 820] mutatis mutandis.

All curves in Figure 2 hold with a probability at least
1 − 10−5. Several facts stand out. Firstly, Theorem 1 provides
better guarantees than Theorem 2 for a < 0.68 in this example.
This is due to the fact that Theorem 1 only depends on GQ as
opposed to Theorem 2, which also depends on dQ. Although
this dependency on both GQ and dQ resulted in tighter deter-
ministic results (see Section III-C), it degrades more easily in
the PAC setting. This demonstrates the relevance of Theorem 1
in addition to Theorem 2. Secondly, for a large range of a, both
Theorems 1 and 2 can be used to provide better guarantees on
the classification error than either the 2-bound or the C-bound.

IV. MAJORITY VOTING WITH ABSTENTION

If the size of the majority is small, it might be of interest to
abstain from providing the classification, since, heuristically, a
small majority indicates a higher probability of error. We call
such a classifier an abstaining classifier (due to similarities
with the notion of abstaining classifiers presented in, e.g., [24])
and it works as follows. Let a∗ ∈ [ 1

2 , 1] denote the quorum
or threshold value for the majority size. It is assumed that the
base classifiers always provide an output in Y . Then, for any
feature vector x ∈ X, such an abstaining classifier returns the
label ŷ∗(x) if AQ(x) ≥ a∗ and it abstains from returning a label
if AQ(x) < a∗. In the latter case, the abstaining classifier is
assumed to not be making an error. The expected probability
of error of the abstaining classifier is thus

P�

{

ŷ∗(x) 	= y ∧ AQ(x) ≥ a∗}, (15)

where ŷ∗(x) is the majority voting classifier as discussed
throughout this letter. Given that the abstaining classifier does
provide a label, the probability of error is Ca∗ (see (8)). We
would like to stress that the results in this letter provide
upper bounds for both (15) (see Lemmas 3 and 4) and Ca∗
(Theorems 1 and 2). Furthermore, the probability that the quo-
rum is reached and the abstaining classifier thus provides a
label is equal to P�

{

AQ(x) ≥ a∗}. Lemmas 5 and 6 provide
lower bounds for this probability. Hence, the results in this let-
ter can be used in the design of abstaining classifiers in order
to analyse their properties.

A reasonable choice for a∗ would be a minimizer of
either one of the bounds on Ca presented in this letter
(Theorems 1 and 2). As an illustrative example, the following
approach uses Theorem 1 to create such an abstaining classi-
fier. Assume that there is a constant Gβ

Q available for which it

holds that GQ ≤ Gβ

Q with a probability larger than 1 − β, for
some β ∈ [0, 1). The RHS of (9) is convex in a with the mini-

mum at a = 1−√

GQ. Let us now choose a∗ = α := 1−
√

Gβ

Q.
Using Lemma 3, Lemma 5, and Theorem 1, respectively, it can
be shown that

P�

{

ŷ∗(x) 	= y ∧ AQ(x) ≥ α
} ≤1−β

Gβ

Q

α
,

P�

{

AQ(x) ≥ α
} ≥1−β α,

P�

{

ŷ∗(x) 	= y
∣

∣ AQ(x) ≥ α
} ≤1−β

Gβ

Q

α2
,

where we used the notation ‘≤1−β ’ and ‘≥1−β ’ to denote that
the particular inequality holds with a confidence of at least
1 − β.

V. CONCLUSION

This letter was part of a project aiming at putting data-based
decision making on solid theoretical ground, and introduced a
novel perspective on the analysis of majority voting schemes in
binary classification. Namely, by conditioning on the fact that
the majority has a given size, it was possible to provide better
guarantees on the probability that the majority voting classi-
fier is correct. The main results of this letter were two novel
bounds on this conditional probability. It was shown that these
bounds can be used in a PAC setting that allows them to be
used practically, as illustrated in a numerical example, show-
ing significantly better guarantees than the traditional bounds.
Furthermore, we have shown that these results can be used in
the analysis of abstaining classifiers.

APPENDIX A
PROOF OF THEOREM 1

Theorem 1 is a consequence of Lemmas 3 and 5, proven
below.

Proof of Lemma 3: From (4) it is clear that {̂y∗(x) 	= y ∧
AQ(x) ≥ a} is equivalent to {MQ(δ) ≤ −(2a − 1)} for any
a > 1

2 . For a = 1
2 it holds that

P�

{

MQ(δ) ≤ 0
} = P�

{

ŷ∗(x) 	= y ∧ AQ(x) ≥ 1
2

}

+ P�

{

ŷ∗(x) = y ∧ AQ(x) = 1
2

}

.

Hence, for a ∈ [ 1
2 , 1], it holds that

P�

{

ŷ∗(x) 	= y ∧ AQ(x) ≥ a
} ≤ P�

{

MQ(δ) ≤ −(2a − 1)
}

,(16)

which can be rewritten as

P�

{

ŷ∗(x) 	= y ∧ AQ(x) ≥ a
} ≤ P�

{

1 − MQ(δ) ≥ 2a
}

.

Since 1 − MQ(δ) is non-negative, we can use Markov’s
inequality to obtain

P�

{

ŷ∗(x) 	= y ∧ AQ(x) ≥ a
} ≤ 1 − E�

[

MQ(δ)
]

2a
= GQ

a
,

where the latter equality is due to (3).
We require the following lemma in order to prove Lemma 5.
Lemma 7: It holds that

E�

[

AQ(x)
] ≥ 1 − GQ. (17)
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Proof: I It holds that

GQ = E�

[

EQ

[

E(δ, ŷ)
]

]

= E�

[

EQ

[

E(δ, ŷ)(1{̂y ∈ P∗(x)} + 1{̂y /∈ P∗(x)})
]

]

.

As discussed in Section II-E, it holds that

GQ = E�

[

EQ
[E(δ, ŷ∗)1{̂y ∈ P∗(x)} + (1 − E(δ, ŷ∗))1{̂y /∈ P∗(x)}

]]

= E�

[E(δ, ŷ∗)AQ(x) + (1 − E(δ, ŷ∗))(1 − AQ(x))
]

.

Since AQ(x) ≥ 1
2 , it is true that AQ(x) ≥ 1 − AQ(x) for all

x ∈ X and thus

GQ ≥ E�

[

E(δ, ŷ∗)(1 − AQ(x)) + (1 − E(δ, ŷ∗))(1 − AQ(x))
]

= E�

[

1 − AQ(x)
] = 1 − E�

[

AQ(x)
]

.

This lower bound on the expected value of the agreement
index allows us to prove Lemma 5.

Proof of Lemma 5: The complementary event satisfies

P�

{

AQ(x) < a
} ≤ P�

{

AQ(x) ≤ a
}

= P�

{

1 − AQ(x) ≥ 1 − a
}

≤ 1 − E�

[

AQ(x)
]

1 − a
≤ GQ

1 − a
,

where the second inequality is Markov’s inequality (1 −
AQ(x) ≥ 0) and the third inequality is due to (17).

The proof of Lemma 5 makes use of (17) to lower bound
E�

[

AQ(x)
]

. Although this is more conservative, in this way it
is possible to provide the bounds of Lemma 5 completely in
terms of GQ.

Proof of Theorem 1: The substitution of (11) and (13) in (8)
completes the proof of Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

Theorem 2 is a consequence of Lemmas 4 and 6, proven
below.

Proof of Lemma 4: For any a ∈ [ 1
2 , 1], it holds that

P�

{

ŷ∗(x) 	= y ∧ AQ(x) ≥ a
}

≤ P�

{

MQ(δ) ≤ −(2a − 1)
} = P�

{−MQ(δ) ≥ 2a − 1
}

= P�

{−MQ(δ) + E�

[

MQ(δ)
] ≥ 2a − 1 + E�

[

MQ(δ)
]}

= P�

{−MQ(δ) + E�

[

MQ(δ)
] ≥ 2(a − GQ)

}

,

where the first inequality is due to (16) and the third equality
is due to (3). Note that a − GQ ≥ 0 by assumption. We now
use Cantelli’s inequality [25] on −MQ(δ) to obtain

P�

{

ŷ∗(x) 	= y ∧ AQ(x) ≥ a
} ≤ V�

[

MQ(δ)
]

V�

[

MQ(δ)
] + 4(a − GQ)2

.

Substitution of (6) and rewriting yields the claim.
Proof of Lemma 6: For x ∈ [ 1

2 , 1], the function x �→ x(1−x)
is non-negative and decreasing. Hence,

P�

{

AQ(x) < a
} ≤ P�

{

AQ(x) ≤ a
}

= P�

{

AQ(x)(1 − AQ(x)) ≥ a(1 − a)
}

≤ E�

[

AQ(x)(1 − AQ(x))
]

a(1 − a)
= dQ

2a(1 − a)
,

where the second inequality is Markov’s and the conclusion
is by substitution of (2).

Proof of Theorem 2: The substitution of (12) and (14) in
(8) completes the proof of Theorem 2.
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