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Abstract

In this paper we consider the problem of constructing confidence regions for the parameters of nonlinear dynamical systems. The proposed
method uses higher order statistics and extends the LSCR (leave-out sign-dominant correlation regions) algorithm for linear systems introduced
in Campi and Weyer [2005, Guaranteed non-asymptotic confidence regions in system identification. Automatica 41(10), 1751–1764. Extended
version available at 〈http://www.ing.unibs.it/∼campi〉]. The confidence regions contain the true parameter value with a guaranteed probability
for any finite number of data points. Moreover, the confidence regions shrink around the true parameter value as the number of data points
increases. The usefulness of the proposed approach is illustrated on some simple examples.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that a model of a dynamical system is of
limited use if no quality tag which describes the accuracy of
the model is attached. Confidence regions for the system pa-
rameters are commonly used as quality tags, and asymptotic
theory is widely used for the construction of such regions. How-
ever, in practice one always has a finite number of samples,
and—even though the asymptotic theory delivers sensible re-
sults in many cases—there are also examples (Garatti, Campi,
& Bittanti, 2004) where it fails when applied to a finite num-
ber of data points. Thus, there is a need for techniques which
deliver confidence regions with guaranteed probabilities when
only a finite number of data points are available.
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In Campi and Weyer (2005) a method called LSCR (leave-
out sign-dominant correlation regions) was proposed for finding
confidence regions to which the parameters of a linear system
belong with guaranteed probability. See also Campi and Weyer
(2006) for a comprehensive presentation of LSCR. LSCR ex-
tends earlier work by Hartigan (1969, 1970) to a dynamical
system setting, and it has two important features: first, the prob-
ability that the confidence region contains the true parameters
is guaranteed for any finite amount of data samples; second, the
confidence region concentrates around the true parameter value
when the number of samples increases. In Campi and Weyer
(2005), second order statistics were explored for the construc-
tion of the confidence regions. In the present paper, we consider
nonlinear systems. It is well known (see for example, Ljung,
2001 for a general discussion, or Subba Rao, 1981 for the par-
ticular case of bilinear systems) that second order statistics are
insufficient for the identification of nonlinear systems. Here we
show that it is possible to extend the framework of LSCR to
higher order statistics, and hence to consider the problem of
nonlinear system identification within this setting.

The focus of this paper is on time series, that is the system
to be identified has no exogenous inputs which are measured.
The outline of the paper is as follows. In the next section, we
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motivate the use of higher order statistics for nonlinear systems.
Section 3 contains the procedure for the construction of the
confidence region, and the properties of this procedure are also
studied. In Section 4 a simulation example using a bilinear
system is presented before conclusions are given in Section 5.

2. A simple nonlinear example: from second to higher
order statistics

This section illustrates the problems encountered when the
standard LSCR procedure of Campi and Weyer (2005) using
second order statistics is applied to a nonlinear system.

Consider the system

yt = �0(y2
t−1 − 1) + wt , (1)

where �0 is the parameter value to be identified and wt is an
independent sequence of Gaussian variables with zero mean
and unit variance. We use the standard LSCR algorithm for
construction of a confidence region for �0. To this end, we first
rewrite the system with a generic parameter �, yt =�(y2

t−1−1)+
wt , and then compute the associated optimal predictor: ŷt (�)=
�(y2

t−1 − 1), and the prediction error: �t (�)= yt − ŷt (�). LSCR
constructs a confidence region based on an empirical evaluation
of the correlations E[�t (�)�t+r (�)], r �1. In Campi and Weyer
(2005) it is shown that �0 is the only value of � for which these
correlations are zero in the case of linear ARMA systems and,
consequently, the obtained confidence region shrinks around
the true parameter value � = �0 as the number of data points
grows. Here we show that E[�t (�)�t+r (�)] = 0 does not imply
� = �0 for the system in (1), i.e. second order statistics do not
suffice.

Suppose that the true parameter value is �0=0. Then yt =wt ,
and we have

�t (�) = yt − ŷt (�) = wt − �(w2
t−1 − 1).

Thus,

E[�t (�)�t+r (�)]
= E[(wt − �(w2

t−1 − 1))(wt+r − �(w2
t+r−1 − 1))]. (2)

For r �2, E[�t (�)�t+r (�)] = 0 for any value of � since wt and
(w2

t−1 − 1) are zero mean random variables, and the products
in (2) only contain terms with different time indeces. For r = 1
we have: E[�t (�)�t+1(�)] = −�E[wt(w

2
t − 1)] = −�(E[w3

t ] −
E[wt ]) = 0. So, E[�t (�)�t+r (�)] = 0 for any r �1, and any
value of �. This implies that it is not possible to establish the
true value of � from the conditions E[�t (�)�t+r (�)] = 0. In
turn, following the analysis in Campi and Weyer (2005), we
see that the confidence region obtained by using the standard
LSCR algorithm does not shrink around �0 when the number
of samples increases.

We complete this example by showing that the true value �0

can indeed be determined by using higher order statistics. Take
for example the condition E[�2

t (�)�t+1(�)] = 0. We have

E[�2
t (�)�t+1(�)] = �(E[w2

t ] − E[w4
t ]) = �(1 − 3) = −2�. (3)

Thus, E[�2
t (�

0)�t+1(�
0)]=0 since �0=0, while E[�2

t (�)�t+1(�)]
�= 0 for any � �= �0.

So, in order to construct confidence regions that shrink
around �0 higher order statistics must be utilized. In the next
section we generalize the LSCR method to this case.

3. Extension of LSCR to higher order statistics

Consider a nonlinear system S0 which maps a non-measured
noise process wt into a measured signal yt . Furthermore, as-
sume that S0 belongs to a parameterized system class {S�}, that
is S0 =S�0 for some �0. wt is an independent sequence of ran-
dom variables, whose distribution is symmetric around zero.
Apart from this, we make no other assumptions on wt . The dis-
tribution of wt can as well be time-varying. We aim at finding
a confidence region for the parameter vector �0 by observing
the output yt .

The LSCR method in Campi and Weyer (2005) constructs,
for every value of �, a sequence wt(�) such that for the true
parameter �0 we have that wt(�

0)=wt . Then, roughly speaking,
the confidence region for �0 is obtained by choosing the values
of � for which wt(�) resembles an independent process. For
linear systems, one can take wt(�)= �t (�), the prediction error,
since �t (�

0) = wt , see Campi and Weyer (2005).
The case of nonlinear systems requires some extra care be-

cause �t (�
0) �= wt and �t (�

0) is not even an independent pro-
cess in general. To see this, consider, e.g. the system class
yt = �yt−1 + yt−1wt . The optimal predictor is ŷt (�) = �yt−1;
but yt − ŷt (�

0) = yt−1wt is not an independent sequence!
In order to obtain a sequence wt(�) such that wt(�

0)=wt , we
can proceed in a different way by resorting to system inversion
instead of constructing the prediction error, see Fig. 1. For
linear systems these two approaches coincide since constructing
the prediction error is the same as inverting the system. In
the example above we let wt(�) = (yt − �yt−1)/yt−1, so that
wt(�

0) = wt as long as yt−1 �= 0. System inversion is used as
a basic building block in the algorithm presented below.

Before proceeding we formally introduce our working as-
sumptions.

Assumptions.

(i) The observed data yt are obtained as output of a causal
system S0 whose input is an independent noise sequence wt

symmetrically distributed around zero, i.e. yt = S0(w�, �� t).
(ii) The system S0 belongs to a system model class S�, i.e.

there exists a value �0 of the parameter such that S�0 = S0.
(iii) The systems in {S�} are invertible with a causal inverse,

i.e. for every � there exists an inverse system S−1
� such that

S−1
� (y�(�), �� t) = wt , where yt (�) = S�(w�, �� t).

wt yt yt
S0 S-1

�

wt(�)

Fig. 1. Scheme for the extraction of wt (�).
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The assumptions state that the model class consists of causal
systems which are also causally invertible and that the true data
generating system belongs to the model class.

3.1. Construction of the confidence region

We next describe the algorithm for the construction of the
confidence region.

Algorithm.

(A.1). Compute wt(�) = S−1
� (y�, �� t) for t = 1, 2, . . . , K .

(A.2). Choose an integer s�0 and let e = (e0, e1, . . . , es) be
a vector of nonnegative integers such that at least one
of the ej , 0�j �s, is odd (the way e should be chosen
is discussed later). For every t = 1, 2, . . . , K − s = N ,
compute

ft,e(�) =
s∏

j=0

wt+j (�)ej .

(A.3). Let IN = {1, . . . , N} and consider a collection GN of
different subsets IN

i ⊆ IN , i=1, . . . , M , forming a group
under the symmetric difference operation (i.e. (IN

i ∪IN
j )−

(IN
i ∩ IN

j ) ∈ GN if IN
i , IN

j ∈ GN ). Suppose, without

loss of generality, that IN
M is the zero element of the group

GN : IN
M = ∅, the empty set. Compute

gN
i,e(�) = 1

#IN
i

∑
k∈IN

i

fk,e(�), i = 1, . . . , M − 1

(# stands for “number of elements in the set”).
(A.4). Select an integer q in the interval [1, (M +1)/2) and find

the confidence region �N
e where at least q of the gN

i,e(�)

functions are bigger than zero and at least q are smaller
than zero.

The intuitive idea behind the algorithm is as follows. For
the true parameter vector �0, wt(�

0) = wt is an independent
sequence symmetrically distributed around zero. Since at least
one ej is odd, ft,e(�

0) is a zero mean random variable. More-
over, when � = �0, the functions gN

i,e(�),i = 1, . . . , M − 1, are
sums of zero mean random variables. It is therefore unlikely
that nearly all of them are positive or that nearly all of them
are negative. Based on this observation we exclude the regions
in parameter space where the gN

i,e(�) functions take on positive
or negative values too many times.

Note that the construction of �N
e does not require any knowl-

edge of the characteristics of the noise wt . The Algorithm let
the data speak for themselves and constructs the region �N

e
correspondingly: �N

e does depend on the noise level, but this
is through data only, not through a priori assumptions.

The next theorem says that the Algorithm always produces
a region that contains �0 with a probability chosen by the user.

Theorem 1. The region �N
e constructed above has the property

that

P [�0 ∈ �N
e ] = 1 − 2q/M .
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Fig. 2. Some of the gN
i,e(�) functions obtained with e = (2, 1), N = 1000.

Proof. See Appendix A.1. �

Thus, the user controls the probability that �0 ∈ �N
e via the

choice of q.
In general, in order to determine a confidence region of

suitable shape we may want to intersect several regions
�N

e obtained with different e vectors. If we have h vectors
e1, e2, . . . , eh, then the confidence region is given by

�N =
h⋂

l=1

�N
el

. (4)

Theorem 2. The region �N constructed above has the property
that

P [�0 ∈ �N ]�1 − 2hq/M . (5)

Proof. The proof follows from Theorem 1. The inequality in
(5) is due to possible overlaps between the events �0 /∈ �N

el
,

l = 1, . . . , h. �

To make the procedure more concrete, we next apply it to
the example in Section 2.

Example 3. Suppose we want to find a 90% confidence region
for �0. Since yt =�(y2

t−1 −1)+wt , let wt(�)=yt −�(y2
t−1 −1).

Note that, in this example, wt(�) = �t (�), the prediction error.
In Section 2, we established that E[�t (�)2�t+1(�)] = 0 only for
� = �0. Motivated by this observation we take e = (2, 1).

We simulated the system with N =1000 and constructed the
group GN as explained in Appendix A.3 with M = 256. We
discarded the parameter values where less than q=12 functions
out of the M = 256 functions were positive or less than 12
functions were negative. Fig. 2 shows some of the obtained
gN

i,e(�) functions. The confidence interval for �0 turned out to
be [−0.05, 0.03].
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Fig. 3. Ninety percent confidence regions with e = (2, 1) for increasing N.
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Fig. 4. Some of the gN
i,e(�) functions obtained with e = (1, 1), N = 1000.

The gN
i,e(�) functions are estimates of the third order statistic

E[w2
t (�)wt+1(�)]. From Eq. (3), E[w2

t (�)wt+1(�)] = −2�, so
the gN

i,e(�) functions cut the � axis near �=0 and the confidence

region is a neighborhood of 0 = �0.
As N increases one expects that the gN

i,e(�) functions become
better and better approximations of the function −2�. Corre-
spondingly, the confidence interval is expected to shrink around
� = 0. In Fig. 3 the confidence intervals obtained for increas-
ing values of N are shown, and the trend is that the length of
the intervals decreases as N increases. Section 3.2 provides a
general study of the convergence properties of the algorithm.

As a comparison, Fig. 4 shows some of the gN
i,e(�) functions

obtained using the second order statistic E[wt(�)wt+1(�)],
i.e. by choosing e = (1, 1). As we noticed in Section 2,
E[wt(�)wt+1(�)] = 0 for all values of �; hence the gN

i,e(�)

functions are all flat along the � axis, and the confidence
interval does not shrink around � = 0. �

Theorems 1 and 2 are very general and apply to any statistic
as described in point A.2 of the algorithm. Consequently, the
probability of the obtained region is always guaranteed. On the
other hand, the effect of the used statistics shows up in the
shape of the obtained region. Determining suitable statistics is
a problem for which no general guidelines can be given, and
the user should choose the statistics based on an analysis of the
system class at hand. See also Section 4 for an example.

3.2. Asymptotic behavior

When N → ∞, we would like the confidence region �N

given by (4) to shrink around the true value �0. In this section,
we discuss general conditions for this to happen.

We need the following additional assumptions (while some of
these assumptions can be relaxed, we have preferred to maintain
them to avoid very technical mathematical derivations).

Assumptions.

(iv) The input noise wt is independent and identically dis-
tributed (i.i.d.).

(v) For every � the considered statistics are in L1, i.e.
E[|ft,el

(�)|] < ∞, l = 1, 2, . . . , h, and �0 is the only solution
to the set of conditions E[ft,el

(�)] = 0, l = 1, 2, . . . , h.
(vi) The groups GN are constructed as explained in Appendix

A.3, the value of M is fixed and the value of N is increasing.

Theorem 4. Under the hypotheses above, for every fixed � �=
�0,

P [∃N̄ | � /∈ �N, ∀N > N̄ ] = 1.

Proof. See Appendix A.2.

In other words, Theorem 4 says that any � �= �0 is eliminated
from �N starting at some N̄ with probability 1.

Remark 5. The Algorithm in Section 3.1 can be generalized so
that the assumption of Theorem 4 that E[|ft,el

(�)|] < ∞, l =1,

2, . . . , h, is certainly satisfied. In points A.2 and A.3 of the Al-
gorithm, the ft,e(�) functions can be replaced by more general
expressions. By inspection of the proof of Theorem 1, we see
that the only property of ft,e(�) used is that ft,e(�) is a function
of wt(�), wt+1(�), . . . , wt+s(�) which is even or odd in all ar-
guments and odd in at least one argument. For example, suppose
s = 2 and e = (2, 1, 2), then ft,e(�) = wt(�)2wt+1(�)wt+2(�)2.
This function is even in wt(�) and wt+2(�) and odd in
wt+1(�). However, other functions than monomials exhibit
the same odd–even structure. For example, the function
tanh2(wt (�)) tanh(wt+1(�)) tanh2(wt+2(�)), where tanh is the
hyperbolic tangent, can be used and Theorem 1 still holds. This
observation makes it easier to satisfy the first part of Assump-
tion (v) where it is required that E[|ft,e(�)|] < ∞ since such



1422 M. Dalai et al. / Automatica 43 (2007) 1418–1425

a condition is automatically satisfied by considering bounded
functions such as tanh2(wt (�)) tanh(wt+1(�)) tanh2(wt+2(�)).

4. Application example: a simple bilinear system

Here we illustrate the proposed approach on a bilinear sys-
tem, see Bruni, Di Pillo, and Koch (1974), Fnaiech and Ljung
(1987), Mohler and Kolodziej (1980), Priestley (1991), and
Subba Rao (1981).

Consider the system

yt = �0yt−2wt−1 + wt , (6)

where wt is i.i.d. with symmetric distribution around zero and
with unit variance. This system has been studied in detail in
Terdik and Máth (1998). By iterating (6), it is easy to see that
the output yt can, for any q �1, be written as

yt =
q−1∑
k=0

�0k
wt−2k

k∏
j=1

wt−2j+1 + �0q
yt−2q

q∏
j=1

wt−2j+1. (7)

Note that the product
∏q

j=1wt−2j+1 has second order moment
equal to 1 for any q:

E

⎡
⎢⎣

⎛
⎝ q∏

j=1

wt−2j+1

⎞
⎠

2
⎤
⎥⎦ =

q∏
j=1

E[w2
t−2j+1] = 1.

Thus, if |�0| < 1, by letting q → ∞ in (7) we can take

yt =
∞∑

k=0

�0k
wt−2k

k∏
j=1

wt−2j+1 (8)

as a candidate stationary solution. A calculation omitted here
shows that the series on the right-hand side of (8) is indeed
convergent in the L2-sense as well as almost surely, the limit
is stationary and it satisfies the system Eq. (6). We will refer
to this stationary solution in what follows.

A simulation with �0 =0.2 and wt normally distributed with
zero mean and unit variance was carried out. A confidence
region was then constructed as explained next.

Following the procedure in the previous section, wt(�) was
obtained by applying the inverse system S−1

� (|�| < 1) to the
output yt , which can be done by solving the recursive relation

wt(�) = yt − �yt−2wt−1(�).

Note that for � = 0 we have wt(0) = yt . This has impor-
tant consequences: after some cumbersome calculations it is
possible to show that yt satisfies E[ytyt+r ] = 0 for every
r > 0 and E[ytyt+ryt+l] = 0 for every l�r �0 except for
(r, l)=(1, 2). Since wt(0)=yt , this implies that—independently
of the true parameter �0—the value � = 0 is a solution
of the equations E[wt(�)wt+r (�)] = 0 for every r > 0 and
E[wt(�)wt+r (�)wt+l (�)] = 0 for every l�r �0 with (r, l) �=
(1, 2). So it is clear that the only possible statistic (up to third
order) is E[wt(�)wt+1(�)wt+2(�)]. Indeed, this choice turns
out to be an effective one since it can be shown that the only
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Fig. 5. Some of the gN
i,e(�) functions obtained with e = (1, 1, 1), N = 1000.
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Fig. 6. Ninety percent confidence regions with e = (1, 1, 1) for increasing N.

solution to E[wt(�)wt+1(�)wt+2(�)] = 0 is the true parameter
� = �0.

Following the above reasoning, we selected e = (1, 1, 1) in
point A.1 in Section 3.1. The group GN was constructed as
in Appendix A.3 with M = 256, and the functions gN

i,e(�), for
i = 1, 2, . . . , M − 1, are given by

gN
i,e(�) = 1

#IN
i

∑
k∈IN

i

wk(�)wk+1(�)wk+2(�).

Some of the gN
i,e(�) functions obtained with N=1000 are shown

in Fig. 5. The corresponding 90% confidence region for �0

turned out to be [0.11, 0.21]. In Fig. 6 the confidence regions
for different values of N are plotted.
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5. Conclusion

In this paper we have derived a method for construction of
confidence regions for the parameters of nonlinear systems.
The obtained confidence regions have guaranteed probability
to contain the true parameter value for any finite number of
data points. Moreover, the confidence regions shrink around
the true �0 under natural assumptions on the data generating
system and the model class provided the higher order statistics
are suitably chosen.
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Appendix A. Proofs

A.1. Proof of Theorem 1

The proof is similar to the proof of Theorem 2.1 in Campi
and Weyer (2005), the only difference being that Proposition
A.1 in appendix A of Campi and Weyer (2005) is replaced by
Proposition 6 below. Throughout, we omit to indicate explicitly
the dependence on N and we, e.g. write G for GN and Ii for IN

i .

Proposition 6. Let wt be a sequence of independent random
variables with symmetric distribution around zero. Let I =
{1, . . . , N}, and let G be a collection of subsets Ii ⊆ I , i =
1, . . . , M , forming a group under the symmetric difference op-
eration (i.e. Ii�Ij := (Ii ∪ Ij ) − (Ii ∩ Ij ) ∈ G if Ii, Ij ∈ G).
Choose an integer s�0 and let e = (e0, e1, . . . , es) be a vector
of nonnegative integers such that at least one ej is odd. For
every t ∈ I , let Wt =∏s

j=0w
ej

t+j . Pick any Ī ∈ G; then, the set
of variables⎧⎨
⎩

∑
k∈Ii

Wk, i = 1, . . . , M

⎫⎬
⎭ (A.1)

has the same joint M-dimensional distribution as the set of
variables⎧⎨
⎩

∑
k∈Ii

Wk −
∑
k∈Ī

Wk, i = 1, . . . , M

⎫⎬
⎭ , (A.2)

provided that the order of the variables is suitably rearranged.

Proof. The idea of the proof is to introduce new variables
w̃t = −wt for some of the wt and to rewrite these wt as −w̃t

in (A.2) in such a way that the set (A.2) is written as (A.1)
with some of the wt replaced with w̃t . As wt is symmetrically
distributed around 0, wt and w̃t will have the same distribution

and (A.2) and (A.1) will have the same joint M-dimensional
distribution.

Consider the whole set of elements

W1, W2, W3, . . . , WN . (A.3)

We scan these elements from left to right and we rewrite some
of them in the new notation. Starting from W1, we do not
change anything until we find an element—say Wk̄—in the set
{Wk, k ∈ Ī }. Recall that

Wk̄ = w
e0

k̄
w

e1

k̄+1
· · · wes

k̄+s
.

Let p be the maximum integer such that ep is odd and define
w̃k̄+p = −wk̄+p. Then rewrite Wk̄ as

Wk̄ = −w
e0

k̄
w

e1

k̄+1
· · · w̃ep

k̄+p
· · · wes

k̄+s
.

We next substitute the old variable wk̄+p with the new one
−w̃k̄+p in all other elements Wk of the sequence (A.3) where
the variable wk̄+p shows up. The important thing to note is that
the substitution of wk̄+p with −w̃k̄+p does not introduce any

“minus” sign in front of the elements Wk with k < k̄. In fact,
if wk̄+p is contained in an element Wk′ with k′ < k̄ then, by
construction, this wk̄+p is raised to an even exponent. Thus,

with this substitution only the signs of the Wk for k > k̄ can be
affected. We continue with our procedure and check the sign
of Wk̄+1, Wk̄+2and so on. If the generic element Wk has sign
“+” and k ∈ Ī , or if Wk has sign “−” and k /∈ Ī , we substitute
the variable wk+p with −w̃k+p, stopping the procedure when
all the Wk have been scanned. (See Example 7 at the end of
the proof for an example of this procedure.)

Set vk =wk if wk has not been substituted and vk = w̃k if wk

has been substituted. Define the new elements Vk =∏s
j=0 v

ej

k+j .

If k ∈ Ī we have Wk = −Vk , while if k /∈ Ī Wk = Vk . Now, the
ith element of (A.2) is given by

∑
k∈Ii−Ī

Wk −
∑

k∈Ī−Ii

Wk =
∑

k∈Ii−Ī

Vk +
∑

k∈Ī−Ii

Vk

=
∑

k∈Ii�Ī

Vk . (A.4)

As G is a group under the symmetric difference, the set
{Ii�Ī , i=1, . . . , M} coincides with the set {Ii, i=1, . . . , M}.
This means that (A.2) can be written, by reordering the elements
and using (A.4), as⎧⎨
⎩

∑
k∈Ii

Vk, i = 1, . . . , M

⎫⎬
⎭ . (A.5)

But, for every k, vk and wk have the same distribution and, as
the wk are independent, so are the vk . Thus, for every k, Wk and
Vk have the same distribution and, more generally, the set of
variables in (A.5) has the same joint M-dimensional distribution
as the set of variables in (A.1). �
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Example 7. For the sake of clarity we give a simple exam-
ple illustrating the procedure explained in the proof for the
substitutions of the wk with −w̃k . Set I = {1, . . . , 7}, s = 4,
e = (1, 0, 3, 2) and Ī = {2, 4, 5}. The sequence of elements Wk

is

w1w
3
3w

2
4, w2w

3
4w

2
5, w3w

3
5w

2
6, w4w

3
6w

2
7,

w5w
3
7w

2
8, w6w

3
8w

2
9, w7w

3
9w

2
10.

We consider these elements from left to right. As 1 /∈ Ī , we skip
W1. Then we find that 2 ∈ Ī . Here, p = 2, so that we substitute
w4 with −w̃4 obtaining

w1w
3
3w̃

2
4, −w2w̃

3
4w

2
5, w3w

3
5w

2
6, −w̃4w

3
6w

2
7,

w5w
3
7w

2
8, w6w

3
8w

2
9, w7w

3
9w

2
10.

Note that the substitution of w4 has not changed the sign of W1.
Continuing, we skip W3 and W4 because their signs are already
correct (there is a “+” in front of W3 and 3 /∈ Ī , and there is
a “−” in front of W4 and 4 ∈ Ī ). We stop again at W5, which
is written without a “−” while 5 ∈ Ī . Thus, we substitute w7
with −w̃7 obtaining

w1w
3
3w̃

2
4, −w2w̃

3
4w

2
5, w3w

3
5w

2
6, −w̃4w

3
6w̃

2
7,

− w5w̃
3
7w

2
8, w6w

3
8w

2
9, −w̃7w

3
9w

2
10.

Finally, we skip W6 and we stop at W7 because there is a “−”,
but 7 /∈ Ī . Thus we change w9 with −w̃9 obtaining

w1w
3
3w̃

2
4, −w2w̃

3
4w

2
5, w3w

3
5w

2
6, −w̃4w

3
6w̃

2
7,

− w5w̃
3
7w

2
8, w6w

3
8w̃

2
9, w̃7w̃

3
9w

2
10,

and the procedure is completed.

A.2. Proof of Theorem 4

We will prove that with probability 1 the functions gN
i,el

(�),
i = 1, . . . , M − 1, tend to E[ft,el

(�)] when N goes to infinity.
For � �= �0 there is an l such that E[ft,el

(�)] �= 0 (see assump-
tion (v)), and for that value of l, when N → ∞ all the gN

i,el
(�),

i = 1, . . . , M − 1, will have the same sign as E[ft,el
(�)]. Con-

sequently, � will be discarded from �N for N large enough, as
stated in the theorem.

Take an element IN
i in the group GN . For a fixed i, we

consider the elements in IN
i for increasing N. Note first that

IN
i is a set increasing with N, i.e. I

N1
i ⊆ I

N2
i if N1 �N2. Let

N = n(M − 1), for n = 1, 2, . . . , that is we restrict attention to
N that are multiples of (M − 1) (the case of generic N’s easily
follows). The set I

n(M−1)
i can be decomposed as

I
n(M−1)
i =

⋃
j∈I

(M−1)
i

{j, j + (M − 1), . . . , j + (n − 1)(M − 1)},

so focusing on subsets of regularly spaced indices. We now
have

g
n(M−1)
i,el

(�) = 1

#I
n(M−1)
i

∑
k∈I

n(M−1)
i

fk,el
(�)

= 1

n · #IM−1
i

∑
j∈IM−1

i

n−1∑
r=0

fj+r(M−1),el
(�)

= 1

#IM−1
i

∑
j∈IM−1

i

1

n

n−1∑
r=0

fj+r(M−1),el
(�). (A.6)

We want to show that

1

n

n−1∑
r=0

fj+r(M−1),el
(�) → E[ft,el

(�)] a.s., (A.7)

for any j, so concluding the proof.
wt is an i.i.d. process and hence it is strict sense sta-

tionary and ergodic. Since wt(�) = S−1
� (y�, �� t) and

yt = S0(w�, �� t) we have that wt(�) is a function of
wt, wt−1, . . . , etc. and fj+r(M−1),el

(�) is a function of
wj+r(M−1)+s , wj+r(M−1)+s−1, . . . , etc. Thus fj+r(M−1),el

(�)

inherits from wt the property of being strict sense stationary
and ergodic, from which (A.7) follows from Birchoff–Khinchin
theorem (see Shiryaev, 1991, Theorem 3 in Section 3,
Chapter 5).

The reader may be interested in noting that the splitting of
(A.6) in a double summation formula is necessary because,
even though ft,el

(�) is stationary, fk,el
(�), k ∈ I

n(M−1)
i , is in

general not a stationary sequence due to the irregular sampling.

A.3. Group construction

Given a set IN ={1, 2, . . . , N} and an integer M=2m, we use
the following extension of Gordon’s method, (Gordon, 1974),
for constructing a collection GN of M subsets IN

i , i=1, . . . , M ,
which is a group under the symmetric difference.

(1) Generate an M × (M − 1) matrix QM−1 using Gordon’s
construction (Gordon, 1974). That is, let R(1) = [1], and
recursively compute (k = 2, 3, . . . , m)

R(k) =
[

R(k − 1) R(k − 1) 0
R(k − 1) J − R(k − 1) e

0T eT 1

]
,

where J and e are, respectively, a matrix and a vector of
all ones and 0 is a vector of all zeros. Then let

QM−1 =
[
R(m)

0T

]
.

(2) Construct the matrix

Q = [QM−1 QM−1 · · · QM−1]
by listing enough QM−1 matrices so that Q has at least
N columns and then extract the submatrix QN of Q con-
taining the first N columns of Q. The so obtained QN is
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the incidence matrix of GN , i.e. the matrix with generic
element QN(i, j) = 1 if j ∈ IN

i and zero otherwise.
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