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Direct Nonlinear Control Design: The Virtual
Reference Feedback Tuning (VRFT) Approach
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Abstract—This paper introduces the virtual reference feedback
tuning (VRF'T) approach for controller tuning in a nonlinear setup.
VREFT is a data-based method that permits to directly select the
controller based on data, with no need for a model of the plant.
It is based on a global model reference optimization procedure
and, therefore, does not require to access the plant for experiments
many times so as to estimate the control cost gradient. For this
reason, it represents a very appealing controller design method-
ology for many control applications.

Index Terms—Controller tuning, data-based tuning, direct con-
trol, model reference control, nonlinear systems.

I. INTRODUCTION

N THIS paper, we consider the problem of designing a con-

troller for a nonlinear plant on the basis of input/output mea-
surements (data-based design) with no need for a mathematical
description of the plant.

Designing controllers based on measurements is of great im-
portance in connection with industrial applications since it is
common experience in industrial control design that a math-
ematical description of the plant is not available and that un-
dertaking a modeling study is too costly and time-consuming.
Moreover, even when a mathematical description of a nonlinear
plant is available, such a description is often too complex to be
used for design purposes. Rather, it can be used as a plant sim-
ulator, and this is synergic to data-based design methods: Data
are generated by the simulator without upsetting the real plant
operation and then they are used in the data-based method to
design the controller.

The method developed in this paper is called virtual refer-
ence feedback tuning (VRFT) and generalizes a previously
introduced method—still known under the same name of
VRFT—for linear design; see [1]-[5].

VREFT is a “one-shot” direct data-based controller design
method (this terminology is explained in detail in Sections I-A
and B). In the linear context, VRFT does have features that
make it particularly appealing, but it is just an alternative to
other existing methods in this same category. In contrast, no
other “one-shot” direct data-based controller design methods
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seem to exist for nonlinear controller tuning, which makes
VRFT a unique methodology.

A. Direct Data-Based Controller Design

Data-based controller design methods are adaptive methods
where adaptation is performed offline. This means that a con-
troller class is first selected, and then a specific controller is
chosen in the class based on the collected data. Differently from
standard online adaptive control where the controller choice
(adaptation) is performed online during the normal operation of
the closed-loop control system, in data-based controller design
the selection is performed offline, based on a batch of data col-
lected from the plant, and the designed controller is then placed
in the loop without allowing for any further adaptation. The ad-
vantage gained over online adaptive control is that the designed
controller can be tested for diverse requirements (e.g., stability)
before it is placed in the loop, so overcoming the traditional dif-
ficulty of standard online adaptive control that the closed-loop
behavior is difficult to predict. This is a substantial advantage in
control applications.

More specifically, VRFT is a direct data-based method. Being
direct means that the controller is directly selected without pre-
liminarily using the data to identify a model of the plant: the con-
troller selection is obtained through an optimization procedure
where the optimization variables are directly the controller pa-
rameters. Direct methods present two fundamental advantages
over indirect ones.

i) In indirect methods, the identification phase has to
return a model which meets a suitable compromise
between simplicity and reliability. However, deciding
which aspects of the plant dynamics have to be kept
in the model since they significantly impact the final
control objective is in general a difficult task. In direct
methods, the degrees-of-freedom in the controller
selection are directly spent toward the achievement of
the final control goal and the aforementioned modeling
problem disappears. So to say, the relevant aspects in
the plant dynamics take care of themselves through
the impact they have on the optimization control cost.
In direct methods, a controller class of specified struc-
ture can be a-priori selected. If, e.g., one is inten-
tioned to use, say, a PID controller, the PID controller
class can be considered. This is different from indi-
rect methods where relatively complex model struc-
tures have often to be used in identification, which then
result in complex controller structures (the structure of
the controller is related to the structure of the model
for many control design methods). Thus, if one desires
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a simple controller, he/she has often to a-posteriori un-
dertake a difficult controller reduction phase. For the
sake of completeness, however, it should also be men-
tioned that the a-priori selection of a suitable controller
class is not always a simple task in direct methods.

B. VRFT: A One-Shot Direct Data-Based Method

The VRFT method introduced in this paper is a one-shot di-
rect data-based method: One collects one batch of data from
the plant (two batches in case of noisy data) and the procedure
returns a controller, without requiring iterations and/or further
accesses to the plant for experiments. The reason why this is
possible is that the “design engine” inside VRFT is intrinsically
global, and no gradient-descent techniques are involved.

For the sake of completeness, we must add that the quality of
the selected controller obviously depends on the experimental
conditions in which data have been collected. For badly exciting
signals, the selected controller can be poorly performing, and
this may require undertaking additional rounds of data collec-
tion. This is intrinsically so: If data do not “explore” enough,
not enough information is available for design. The point is that
VREFT directly searches for the global optimum, relative to the
information content present in the given batch of data.

The fact that VRFT is one-shot makes it very appealing be-
cause

a) itis low-demanding, i.e., one has not to access the plant
for experiments many times, halting the normal oper-
ation of the plant;

b) VRFT does not suffer from local minima and initial-
ization problems.

The VRFT method was originally proposed in a linear frame-
work by the same authors of this paper, see [1]-[3], and then
used by others; see. e.g., [6]-[10]. For linear plants, VRFT pro-
vided an alternative to most traditional methodologies, such as
Ziegler and Nichols tuning method and alike, [11], [12]. In the
nonlinear context of this paper, no direct one-shot data-based
methods exist for controller tuning and VRFT offers a viable,
simple, and convenient way to address this problem. In the ear-
lier paper [4], only the bare idea behind designing a controller
based on a virtual reference was introduced. Here, VRFT is de-
veloped in all its aspects to a ready-to-use procedure.

A method alternative to VRFT—but based on an iterative
gradient-descent approach—is iterative feedback tuning (IFT).
In a sense, IFT is complementary to VRFT in that it calls for
many accesses to the plant for data collection and suffers from
local minima problems, but—if suitably initialized—it provides
the optimal controller minimizing the control cost. In contrast,
VRFT is one-shot and therefore very convenient when accessing
the plant many times is a problem, but it provides the optimal
controller only under ideal conditions, while a nearly optimal
controller is achieved in general situations (see Section III).
IFT was initially introduced in a linear context in [13]-[15],
grounded on a bright idea for the calculation of the gradient
using global (i.e., nonincremental) signals. Turning to a non-
linear context, [16]-[18], the computation of the gradient does
require the use of incremental signals, so leading to a delicate
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compromise: The increments must be not too large (since gra-
dient is inherently a local concept), but they need not be too
small as well (since otherwise they get buried in noise). VRFT
avoids this problem since it performs a global search in one-shot
and uses global signals.
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Fig. 1.

Control system.

C. Structure of the Paper

Section II contains the control setting, while the VRFT
method is presented in Sections III-V. Finally, Section VI
delivers a multipass procedure for refining the experimental
conditions in which data are collected.

II. CONTROL SETTING
A. Control System

The control system we make reference to is as represented
in Fig. 1. It is a classical one-degree-of-freedom control system
where the controller C' processes the error signal e so as to gen-
erate the control input u to the plant P. y,, is the plant output
corrupted by noise 7, and r is the reference signal. P and C' are
in general nonlinear systems.

B. Control Objective (General)

The control objective is to design a controller C' so that the
control system behavior adheres as much as possible to that of
a given model reference M when the reference trajectory is a
given signal 7. When 7 is sufficiently exciting and the controller
C does achieve a good adherence, this requirement also entails
that the feedback control system resembles M for a large class
of reference signals. In general, however, the control objective
is a requirement on the reference trajectory 7 only.

A precise mathematical specification of the control objective
is given in Section II-I.

C. Plant

The nonlinear plant P is a discrete-time single-input—single-
output nonlinear dynamical system described as

s u(t—npy)) (1)

where p is a nonlinear function.

Remark 1: The utoy delay in P is 1. Generalizing the results
in this paper to a multiple delay setting presents no difficulties.

Later on, we will consider reference models with delay 1. If
the plant delay is d > 1, a same delay should be introduced in
the model. If not, minimizing a model reference cost may pro-
duce severe deteriorations in the control system performance, a
fact that is true in general, not just for VRFT. *

We want to see the plant as operating as follows:



it is initialized with the initial conditions: %.c.
y(O), s 7?/(1 - nPy)7 u(_1)7 s 7“’(1 - nPu);
it is fed by an input signal applied in a given interval,
say [0, N — 1]: u(0:N — 1) := [u(0) - - u(N — 1)]T.
Then, P generates an output y(1:N) according to (1). This
output is written as: y(1:N) = P[u(0:N — 1),1.c.], so empha-
sizing the fact that—for a given ¢.c.—P operates as a nonlinear
map from RY to RV,

Example 1: To illustrate ideas in an easy-to-follow manner,
the theoretical developments of this paper will be accompanied
step by step by the following simple example. Consider the plant

y(t) = y(t = 1) +u(t —1)°.

Take N = 2, and 7.c. = 0; operator P is then described by

[y(l)] B [uw)g(ﬁ)im?’} '

This result illustrates a general fact: P is a (nonlinear) lower
triangular operator (i.e., the ith element of the output depends
on the first jth, 7 < ¢, input elements only). *

We make the following assumptions.

Assumptions

A.1 p is smooth;
A.2 for any given i.c., if u; (0:N — 1) # ua(0:N — 1),
then Pluy (0:N — 1),4.c.] # Plug(0:N — 1),i.c.]. =
Remark 2: Assumption A.2 is an invertibility condition on
map P. In [19], it is proven that the invertibility of map P for
inputs defined over the time horizon [0:N — 1] implies the in-
vertibility of the same map over any interval [0:T], with T' <
N —1. *
Remark 3: In Assumption A.2, the invertibility of the plant
is required to hold for any possible input sequence. While this
condition is satisfied for linear plants (and it holds true for some
notable classes of nonlinear plants as well), yet it can be restric-
tive for general nonlinear systems. However, as it can be easily
verified, the whole theory of this paper goes through unaltered
if invertibility is required in suitable U and Y neighborhoods of
given input and output trajectories only, and the v and y signals
stay in these neighborhoods. We have preferred to assume in-
vertibility in the large to ease the notations. *

D. Controller

The controller is a nonlinear system (that we select in a pre-
specified class according to the VRFT procedure that will be
illustrated later on) described as

w(t) = c(u(t —1),...,u(t —ncwu), e(t),...,e(t — nce))-

Similarly to P, we want to see the controller operating
follows:

it is initialized with the initial conditions: i.c.

it is fed by the error signal e(0:N — 1).

Then, C' generates signal u(0:N — 1), which we write
w(0:N — 1) = C[e(0:N — 1),1i.c.].
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E. Feedback Operation

In order to describe the feedback control system in Fig. 1, the
plant and controller equations in Sections II-C and D have to be
complemented with the relations describing the control system
interconnections. This leads to equation

y(L:N) = P[u(0:N — 1),i.c.]

= P[C[e(0:N — 1),i.c.],i.c] )

with
e(0:N —1) :=r(0:N — 1) — y(0:N — 1).

Givenr(0: N —1) and the 7.c.’s for the plant and the controller,
(2) defines one and only one y(1:/V), as is clear by solving (2)
recursively.

FE. Initial Conditions and Shorthand Notations

In the sequel, we let: ¢.c. of P = 0, i.c. of C' = 0.

More generally, one could assume nonzero initial conditions
with some extra notational complications. Moreover, there is no
need for the initial conditions to be consistent one with another;
for example, u(t —2) is an argument of the plant equation which
gives the initial condition u(—1), and in controller we also have
u(t — 1) which again gives the initial condition u(—1). The fact
that in both cases we have the same symbol u(¢ — 1) stems from
the fact that—during the normal operation—the two variables
are the same. However, one could as well use different symbols
for the two initial conditions u(—1) in the plant and in the con-
troller and let them assume different values.

The assumption on the initial conditions to be all zero is made
to ease notations and generalizations are easy to obtain. We also
remark that—under stability conditions—if [V is large the initial
conditions play a marginal role.

Since the initial conditions are set to zero, from now on we
omit indicating them explicitly. Moreover, we gain in readability
by also dropping the time argument, and we shall write: u for
w(0:N—1),r forr(0:N—1), efore(0:N —1),and y for y(1:N).
Also, y(0:N — 1) is written as Dy, where D is the delay matrix
defined as

0 0 0 0
10 0 0

D:=1]01 0 0 3)
00 --- 10

With all these notational conventions in place, the closed-loop
system writes y = P[C[r — Dy]].

G. Parameterized Controller Class

In VRFT, the goal is to select a suitable controller in a given
parameterized controller class, viz.

w(t) = c(u(t —1),...,u(t — ncw), e(t),. ..,

Given a § € R™, the corresponding controller is written Cy
and the closed-loop system is yg = P[Cyg[r — Dyg]], where the
index 6 in yy emphasizes the controller used.

The following assumption is in place.
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Assumption
—  AJ3c:Rrowtneetltne R is smooth. *

H. Desired r to y Mapping

The control objective is expressed by saying that—for a given
reference 7 of interest—the control system behaves as closely as
possible as an assigned reference model M. While we postpone
details on the control objective to Section II-1, we here introduce
in a formal way the reference model M

M is alinear map r — y.

Remark4: While nonlinear maps M could as well be consid-
ered, it is usually more convenient for the user to express his/her
control objective through a linear system M where concepts like
frequency response, bandwidth etc. make sense to give an intu-

itive handle on the choice made. *
Assumption
— A4 M is lower triangular and invertible. *

The fact that M is lower triangular simply means that oper-
ator M is causal with a delay at least of 1, i.e., at least the plant
delay (remember that r = 7(0:N — 1) and y = y(1:N) are
defined with a 1-time delay shift one with respect to the other).
Invertibility of M entails that the delay is actually equal to 1.

Example 2: The simplest example of M is M = I, which
corresponds to requiring that y(t) = r(t — 1). *

As atypical choice, M is assigned through a reference model
filter

blz—l + .+ bnMrZ—nMr

L+aiz=t+ - +ay,, 27"y

M(z™)

“)
which in the time domain corresponds to

y(t) = —ary(t — 1) — -+ — an,,, y(t — nary)
+bir(t — 1)+ -+ by, 7t — npre)-

Supposing b1 # 0 and that, for simplicity, the filter initial
conditions are zero, then (4) defines M such that Assumption
A.4 holds.

I. Control Objective (Mathematical Specification)

The control objective is expressed as
minimize J(0) := ||ys — M[F]||> o = P[Co[F — Dys]] (5)

where 7 is a given reference signal, and || - || is Euclidean norm.
Remark 5: If {Cy,0 € R™} is sufficiently rich and 7 is suf-
ficiently exciting, solving (5) returns a controller such that the
feedback control system is close to M. In a general nonlinear
context, (5) is a requirement on the reference trajectory 7 only.
*

As it has been repeated more than once, our standpoint is
that a description of the plant is not available (P in (5) is un-
known), so that the optimization problem (5) is not a standard
optimal control problem. Along the VRFT approach, the lack
of knowledge of P is compensated for through input/output

data collected from the plant and elaborated in an offline di-
rect data-based controller design scheme. In Sections III-V, we
present the heart of the method, where one batch of input/output
data is used to come up with a controller that allows the feed-
back control system to suitably track a reference signal 7.

III. VRFT APPROACH
A. Data

We assume that a batch of input/output data coming from the
plant is available. How this batch has been generated is imma-
terial for the description of the VRFT algorithm and, therefore,
we omit any comment on this point in this section and direct
the reader to Section VI for further discussion. Moreover, for
the sake of presentation clarity, we assume for the time being
that the data have been generated noise-free. The noisy case is
treated in Section V-C.

The batch of data is

@(0:N — 1), §(1:N) with g(1:N) = P[a(0:N — 1)].

We shall write @ for 4(0:N — 1), and g for §(1:N).

B. Meeting the Control Objective (5) When 7 is the “Virtual
Reference”

Introduce the reference signal 7 := M ~![§], where 7 is the
actual output signal collected from the plant. Our goal here is to
design Cy so as to meet (5) for this reference signal.

Remark 6: The reference signal 7 := M ~1[] is “artificially
constructed” from data and it is well possible that it does
not coincide with the reference trajectory one is interested
in. On the other hand, as already pointed out in Remark 5, if
{Cy, 8 € R™} is sufficiently rich and 7 is sufficiently exciting,
solving (5) delivers a controller such that the closed-loop
resembles M for a large class of reference signals, and it is
our experience that the design performed on 7 := M~1[7] is
practically suitable for other references of interest. The reader
is also referred to [1] for a theoretical study of this issue in a
linear context.

When, however, the minimization of (5) in correspondence of
a specific reference signal 7 is required, a multi-step procedure

can be undertaken, where a sequence of 7 := M ~1[7] signals
are generated converging to the desired r of interest. This is
explained in Section VI. *

Remark 7: 7 admits a simple interpretation: It is the refer-
ence signal such that—when it is injected at the control system
input—we are happy to see ¥ as the corresponding output since
y = MJr]. *

Remark 8: 1 is called the “virtual reference” where “virtual”
indicates that it does not exist in reality and, in particular, it was
not in place when data 4 and y were collected. It only exists in
our computer where we construct it by relation 7 := M =[]
and it is generated for future use in the VRFT algorithm. The
virtual reference 7 gives the name to the whole method: VRFT
= Virtual Reference Feedback Tuning. *

The basic idea behind VRFT is now explained. The control
cost in (5) depends on P, i.e., on the unknown plant, so that we



cannot minimize it directly. However, we can set out to mini-
mizing the following alternative P-free cost:
minimize Jyrrr(0) := ||F[Cs[é]] — Fla]||*> é=#— Dj
(6)
where F : RV — RY is a filter to be chosen. The important fact
is that Jyrpr () in (6) is a purely data-dependent cost [differ-
ently from (5), P does not show up explicitely in (6)] and it can,
therefore, be minimized.

The intuitive logic behind (6) is as follows (for the time being,
let us forget about F' whose role is unessential to the following
explanation): A good controller is one that produces u when
fed by € = 7 — Dy because—through P—this generates g, the
desired output when reference is 7. This reasoning represents
the core of the VRFT method.

The rest of this section is devoted to showing that (6) can actu-
ally be used for controller selection in place of (5). Specifically,
we show that minimizing (6) returns a minimizer of (5) in case
perfect matching (ys = M|r], for some #) is possible. This re-
sult holds regardless of the choice of F'. The significance of F'
comes into play to match up (6) to (5) when perfect matching
cannot be achieved and this is discussed in Section IV.

Theorem 1 substantiates the fact that minimizing (6) returns a
minimizer of (5) when perfect matching is possible. Before the
theorem, we give a simple example to illustrate ideas.

Example 3 (Example I Continued): For the plant in Example
1, consider the controller class u(t) = fe(t)'/® and the refer-
ence model y(t) = r(t — 1).

The system is operated for N = 2 instants with the input
4(0) = 1, a(1) = 1, so generating the output y(1) = 1, §(2) =
2, from which we compute 7(0) = 1, 7#(1) = 2.

Suppose now for a moment that the plant is known. If this
were the case, the control objective in (5) could be explicitly
calculated as follows:

Yo (1) = ye(0) + °(7(0) — 6 (0))
=0+6%(1-0) =6

yo(2) =yo(1) + 6°(7(1) — ys(1))
=0%+0%2 -0 =30° - ¢°

so that

J(9) —1)% +((36% — 65) — 2)2

(6°
5 — 1463 + 146° — 66° + 612.

=5
Note that 6y = 1 gives perfect tracking. Function J(6) is de-

picted in Fig. 2.
Next, we write the Jyrpr cost, with F' = T

&0)=F0)—0=1-0=1
&) =i(1)—g(1)=2—-1=1

so that

Jvrrr(0) =(0-13 —1)2 4 (9 - 1/2 —1)?
=2—46 +26°.
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Fig. 2. J(8) vs. Jvrrr(8).

The important fact to note here is that Jyrrr(69) = 0, ie.,
o is also obtained by minimizing Jygrpr(f), despite that
Jvrrr(0) # J(6) (see Fig. 2 for a graphical comparison of
J(&) and JVRFT(H))-

Two comments are in order.

In contrast with J, the JyrrT cost can be constructed
out of data without knowledge of P.
Since the controller class is in this example linearly
parameterized, .JJyrpr is quadratic in 6 (and, therefore,
easy to minimize). *
The fact seen in the previous example that the ideal 6, giving
perfect matching can be found by minimizing J(6) is a general
fact and it is proven in the next theorem.
Theorem 1: 1f 6 gives perfect tracking: ||ys, — M[]||?> = 0,
then 6 is a minimizer of || F[Cy[e]] — F[a]||*. *
Thus, if ||F[Cy[¢]] — F[u]||? has a unique minimizer, such
a minimizer also minimizes ||yg, — M[7]||* and gives perfect
matching.
Proof: ||lys, — M[7]||*> = 0 entails

Yo, = U- @)
However
Yo, = P[Cy, [T — Dyg,]] and § = P[]
so that in view of Assumption A.2 we get
Co, [T — Dyg,] = @ ®)
Also, from (7)
7T—Dyg, =7—Dy=¢
which, used in (8), gives
Cole] =1
from which the thesis follows. *



CAMPI AND SAVARESI: DIRECT NONLINEAR CONTROL DESIGN: THE VRFT APPROACH 19

The theorem result points to a conceptually interesting prop-
erty of Jyrp that has a great importance for applications. This
property can be rephrased as follows: we set out in the first
place to minimize a (generally highly nonconvex) control cost .J
which, however, cannot be computed since it depends on P, an
unknown element in the control problem. On the other hand, an-
other cost .Jyrpr can be constructed from data without knowl-
edge of P. This cost is different from .J (and it is in fact quadratic
in case of linearly parameterized controllers as in Example 3),
but it shares with J the same minimizer in case the controller
class is large enough to allow for perfect matching and there-
fore it can be used to minimize J.

It remains to understand what happens when perfect matching
is not possible. In Section IV, we shall see that—by suitably
selecting the prefiltering action F'—minimizing Jygpr leads to
a @ that "nearly minimizes’ .J even when no perfect matching can
be achieved. Since perfect matching is not expected in practical
applications, the use of filter F' is important and the (somewhat
complicated) analysis of Section IV is justified.

IV. FILTER DESIGN

A. Filter Objective (General)

When perfect matching is not possible, we use F' so that min-
imizing JygrpT generates a “nearly minimizer” of .J.

The logic behind the selection of F' is as follows. We first in-
troduce a so-called “ideal controller,’ i.e., a controller that, if
put in the loop, generates a closed-loop system that coincides
with M, the reference model. We prove that such an ideal con-
troller exists. However, the ideal controller is usually a complex
nonlinear system and it does not belong to our controller class:
It is introduced for analysis purposes only, and moreover its ex-
pression is not used in the filter F', so that the actual computa-
tion of the ideal controller is not required when implementing
the filter. Next—again for analysis purposes—we consider an
“ideal control design problem” where J is minimized over an
expanded controller class that contains the ideal controller and
show that a suitable selection of F' permits to make the Jygrpr
cost for this ideal problem to be the second order expansion of
J for the same problem. Then, returning to the original J and
JVRFT costs, we can see that these two costs are the same as the
ideal J and Jygrpr except that the minimization is conducted in
a constrained sense over the selected controller class. However,
then, minimizing Jygrpr with the selected filter returns a nearly
minimizer of .J since we are minimizing in a constrained sense
the second-order expansion of .J.

We first start with the theoretical developments. Simulation
examples are provided in Section IV-E.

B. The “Ideal Controller”

To ease the notations, we here indicate with M the (lower
triangular) matrix that represents operator M defined in Sec-
tion II-H: Given r, the matrix product Mr is the output of the
linear operator M applied to r.

Using the delay matrix D in (3), we have that matrix I — M D
takes on the form

1 0 0 0
* 1 0 0
I—MD= | * = 0 0
P |

(x denotes a generic element) and is therefore invertible. Since in
view of Assumption A.2 map P is invertible too, the following
definition makes sense:

C%.=P'(I-MD)'M.

CY is the “ideal controller.”
If such a C? is put in the loop, the closed-loop 7 to y map is
given by M, as it can be easily verified
y =P[C°[r — Dy]] = (I - MD)~'M(r — Dy)
= (I -—MD)y=Mr— MDy
=y— MDy= Mr— MDy
=y = Mr.

Example 4 (Example 3 Continued): For the situation in Ex-
ample 3 we have M = I, so that

(I-MD)*M=(I-D)"' = {_11 ﬂ_lz E ﬂ

Moreover

S y(1) =u(0)?
o {y<2>=u<0>3+u(1>3
L fu(0) = y(1)3
e {uu) = (y(2) — y(1))/?
leading to
c° [6(0)} =PI - MD)™! [6(0
(1)

M
=77 o ) = e

i.e., the ideal controller is u(t) = e(t)'/3.

C. The Ideal Control Design Problem
Let
ot =176 feR;
Co+ :=Cy +0(C° — Cy)
where Cy is Cy computed for § = 0. Note that
— (Y is obtained for 8 := [0T 1]7; }
—  {Cp} is obtained by imposing the constraint § = 0.
The ideal control objective is given by
minimize J(6) 1= ||yg+ — M[F]||?
with yg+ = P[Co+ [ — Dyg+]]. ©))

Remark 9: Given 7, yg+ = P[Cy+[r — Dyg+]] in (9) de-
fines one and only one yy+ so that ys+ is well defined. This fol-
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lows from the fact (showed next) that Cy+ = Cy + §(P~(I —
MD)~1M — Cy) is lower triangular (i.e., when such an oper-
ator is applied to a vector in R, the ith element of output only
depends on the first ¢ elements of input), so that existence and
uniqueness of yy+ follows by recursively solving (9).

The fact that Cy+ is lower triangular follows from the fol-
lowing reasoning: I — M D is a lower triangular matrix, so
that (I — M D)~ is a lower triangular matrix too and operator
(I — M D)~ islower triangular. M and Cj are lower triangular
operators. The fact that P~! is lower triangular follows from
Assumption A.2 (see Remark 2). Since composition and sum of
lower triangular operators is lower triangular, Cy+ is lower tri-

angular. *
D. Filter Objective
Let
Jyrpr(0F) := || F[Co+[e]] — Fla]||*.
We want to select F’ so that
82JVRFT(€+) . 82J(€+) (10)
80+2 9+ - 60+2 0+
0 0

Remark 10: If Cy+ [¢] is linear in 0, under (10)Jyrrr(07)
is the second-order expansion of J(AT). In general cases,
matching up the second order derivatives produces well-tuned
controllers whenever a controller exists in the selected class
that is not “too far” from C?. In loose words, this means that
the controller class should not be too under-parameterized with
respect to the control goal at hand. *

The following theorem specifies how F' must be selected so
that (10) is satisfied.

Theorem 2: 1If

(11)

then (10) holds.
Proof: See the Appendix.
A few remarks are in order.
Remark 11 (About the Structure of the Filter): The filter in
(11) is formed by two parts: i) (OP[u]/0u)|,; andii) (I—M D).
(OP[u]/0u)|, keeps into account the effect of input (used in
the VRFT cost) on output (used in the control objective cost).
Term ii) calls for a bit of more-in-depth analysis. To make things
more concrete, suppose that M is given by a transfer function
M(z71) (see Sections II-H) and let L(z71) = M(271)/(1 —
M(z1)) be the corresponding open-loop transfer function. It
is then easy to see that (I — M D) is a linear operator whose
magnitude frequency response is small at frequencies where
M(z7') ~ 1, ie., where L(z7') is large. Thus, (I — M D)
in (11) de-emphasizes those frequencies where L(z~1) is large
and this can be interpreted as follows: The closed-loop .J cost
is little sensitive to errors where L(z~!) is large; on the other
hand, Jygrpr is an open-loop cost that does not automatically
incorporate this effect. Then, the term (I — M D) is forced in
artificially through the filter in order to level out such a differ-
ence between .J and JyRrpT.
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Typically, the magnitude of M (z~') drops off over the high
frequency range so that the main feature of (I — M D) is that
of giving little emphasis to the low frequency range where
M(z71) ~ 1. *

Remark 12 (Direct Versus Indirect): The term (OP[u]/0u)|,
appearing in the filter expression has to be estimated from data.
One thing that should be noted is that this is the incremental
linear operator around the actual input % (so that in order to
equalize the second order derivatives around the ideal controller
one has in fact to linearize around the actual trajectory at hand,
a perhaps surprising result). System (0P[u]/du)| is linear and
time-varying and it can be estimated, e.g., via forgetting factor
identification techniques [20]-[22].

Since (OP[u]/0u)|; has to be estimated, strictly the VRFT
method is not direct. On the other hand, one should note that the
estimated expression of (OP[u]/du)|, is not used for design, it
is only used as a filter to process the data. As a consequence, a
precise determination of (0P[u]/du)|, is not required: impre-
cision in (OP[u]/0u)|, only reflects in that the second deriva-
tive of Jyrpr Will not precisely match that of .J around 0(')" .

We finally remark that (0 P[u]/0uw)|, canbe arapidly varying
system if the plant is highly nonlinear and signals change value
at a fast rate. In these cases, resorting to forgetting factor iden-
tification methods can be inadequate. One can then resort to an
approximate model, obtained by any means, e.g., first princi-
ples. Moreover, it is our practical experience that in many appli-
cations neglecting the (9P[u]/0u)|; part of the filter (11) and
only implementing the (I — M D) part still produces acceptable
results. *

Remark 13 (Comparing (11) With Filter for Linear VRFT): Tt
is interesting to compare filter (11) with the filter in (10) of
[1] valid for the linear case. In [1], the filter goal was that of
matching up a model reference complementary sensitivity cost
(with no concern for specific reference signals) with the VRFT
cost. The filter turned out to be (in the linear and stationary
notations of [1]): F = (1 — M)M(1/®%/?), where ®%/? is
a spectral factorization of the spectral density ®; of u, i.e.,

oL/ 2
sider a model reference cost involving the reference sinal 7 =
M~1[g] = M~ P[q]. Again in the notations of [1], this corre-
sponds to adding <I)7~1/ =M *1P<I>11~/ ? to the model reference
cost, so that the filter matching up the two costs now becomes:
(1—M)M (1/@}/2) M=1P®Y? = (1— M)P. This is indeed
the linear counterpart of our filter (11).

Example 5 (Example 4 Continued): We have

= ®;. In the nonlinear set-up of this paper, we con-

*

Cy given by :u(t) =0e(t)'/?;
C° given by wu(t) = e(t)"/3;
Cy+ given by :u(t) = fe(t)'/3 + fe(t)'/>.

So, letting f., := 6 + 0, Cyy is given by u(t) = Ooze(t)'/?
and J(Heq) =5- 14924 + 14(921 - 692q + 951,3, JVRFT(ﬂeq) =
2—40.4+ 293(1 (compare with Example 3). Computing second

derivatives yields

a2‘](09(1) 4 7 10
o0 | = —840,, + 42002, — 43207+ 132010] = 36

1
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performance functions
T

35

JVRFr(e) with filter

25F

e,
e,
e,
e,

RI:T(e) without filter

‘.

051

P

Fig. 3.  Jvrer(8.,) with and without F for 6., = 6.

while, without filter F'

a2JVRFT(06q)

= 4], =4
62,

1

Instead, including filter F' = (I — M D) (0P[u]/0u|;)=
1 0] [3a02 o ] 1 0][3 o]
—1 1] [3@(0)2 3@(1)2]_ {—1 1} {3 3] =
3 0 .
0 3| gives

JVRET (Beg) = (30eq - 12 = 3)? + (30, - 113 — 3)?
=18 — 366, + 1862,

with the second-order derivative

a2JVRFT (geq)

02J(0.q)
— 36|, = 36 = 4
962,

L 202,

1

For a visual comparison, Jyrrr(fe,) with and without filter

are displayed in Fig. 3. *

E. An Example With an Under-Parameterized Controller Class

We here present an example where the role of prefiltering is
discussed in connection with an under-parameterized controller
class (the most realistic setup in practice).

Example 6: Consider the nonlinear plant

y(t) = 0.9y(¢t — 1) + tanh(u(t — 1)) (12)
where tanh(z) = (e” — e ™)/(e” 4+ e~") is the hyperbolic
tangent, and suppose that the reference model is y(¢) = r(t—1).
As is easily seen, the ideal controller is

u(t) = tanh™" (v(t)) (13)

where

v(t) =v(t —1)+e(t) —09e(t — 1) (14)

21

0.5r \
input signal

0.4r1 )
03rf = ]
0.2H :; filtered input signal b
0.14 - i
oM, . ,I”"'llllllllllllll\IIII||||11l||||4[IIII¢IIIIKII1—

0 20 40 60 80 100

Time

Fig. 4. Plant input @ and filtered input F[#].

with initial conditions v(—1) = 0 and e(—1) = 0 [just solve
recursively (12)-(14) to see that y(¢) = r(t — 1)]. Consider
now a PI (proportional-integral) controller class Cy

=%

thatis u(t) = u(t — 1) + (0.2 4 0)e(t) — fe(t — 1), where the
integral coefficient is set to 0.2 and the proportional coefficient
f has to be selected (we have fixed the integral coefficient to
facilitate the visualization of the results).

In order to design the controller, plant P has been fed
with a step input ¢ of amplitude 0.5 (see Fig. 4). Using the
corresponding output 7, the performance indices J(f%) and
Jyrpr(61) (with and without filtering) have been computed
and their contour plots are displayed in Fig. 5(a)—(c). By in-

specting these three figures, the following observations can be
drawn.

+ e) e(t)

All three two-dimensional indexes share the same min-
imum point (# = 0, and 9 = 1), corresponding to
the ideal controller. This confirms that, if the controller
class is not under-parameterized, the VRFT approach
provides the exact solution, regardless of data-filtering.

. The shape of the contour plot of .J(#71) reveals that this
performance index is not a quadratic function of .
Instead, JyrpT(6™T) is quadratic, since Cy+ linearly
depends on §+.

. Even if J(0T) and the nonfiltered Jygrpr(07) [figures
(A) and (B)] share the same minimum, it is apparent
that their shape is completely different. Instead, notice
that the effect of using the filter F' is to rotating and
warping Jyrpr(671) [figure (C)] in order to make it
equal to the second-order expansion of .J(6) around
its minimum.

. The PI performance indices (which depend on the pa-

rameter § only) can be obtained by cutting the original
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Fig. 5.

(A) performance index J

(B) performance index J

i~ (NOT filtered)

— -

(C) performance index J,

\RET (filtered)

Contour plots of performance indexes. (A) J(61). (B) Jyrrr(61)

(not filtered). (C) Jyrrr(67) (filtered).

two-dimensional performance indices with the hyper-
plane § = 0. In the figures, the arrows show how the
global minimizer #f = [0 1]7 moves to the mini-
mizer of the reduced-order performance indexes. Ap-
parently, thanks to the fact that the filtered Jygrpr(67)
is the second-order expansion of J(#1), the minimizer
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(B) virtual reference response of the closedloop systems
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Fig. 6. (A) Reduced-order performance indices. (B) Closed-loop response to

the virtual reference input 7—plant (12).

of J(#) and the minimizer of the filtered Jyrrr(6)
are very close; on the contrary, the minimizer of the
nonfiltered Jygrpr(#) drifts away from the minimizer
of J(#). This fact can be even better appreciated from
Fig. 6(a), where J(6) and Jyrpr(8) (filtered and non-
filtered) are displayed. It is apparent that the minimizer
of J(6) (in 8 = 1.02) is close to the minimizer of the
filtered Jyrpr(f) (in # = 0.92), whereas the mini-
mizer of the nonfiltered Jygpr(#) (in § = 0.06) is far
from the correct solution.

Fig. 6(b) shows the closed-loop output when the refer-
ence signal is 7 and the controller has been designed
with the filtered and nonfiltered JyvRrpT.

As an additional remark, the reader may be interested
in noting the effect of the filter F' on u (see Fig. 4):
The effect of F' looks pretty much like a high-pass
filtering where the transient phase is emphasized and
the steady-state part of the signal is almost annihilated.
This is in line with Remark 11.
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(B) virtual reference response of the closedloop systems
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Fig. 7. (A) Reduced-order performance indexes. (B) Closed-loop response to
the virtual reference input r—plant (15).

Plant (12) exhibits a linear dependence on y(¢ — 1). This
choice allowed us to present the simulation results in a more ex-
plicit way, since we were able to represent the ideal controller
in the recursive form (13) and (14).

We next consider a variation of plant (12) with a nonlinear
dependence on y(t — 1)

y(t) = 10 tanh(0.1y(¢t — 1)) + tanh(u(t — 1)). (15)

A repeat of the experiment as for plant (12) gave the results of
Fig. 7(a) and (b). The interpretation is pretty much akin to that
for (12). What the reader should note is that the ideal controller
is here a truly complicated system, not amenable of a simple
recursive representation as in (13) and (14). Nevertheless, com-
putation of Jyrpr(#) is possible without knowledge of the ideal
controller. *

V. IMPLEMENTATION ISSUES
A. Filter
When M is given by (4), the (I — M D) : v(1:N) — z(1:N)
part of the filter in (11) can be implemented recursively as
2(t) = —arz(t — 1) — -+ — an,,, 2(t — npry)
—(bo(t —1)+ -+ bp,,, vt —np))
+ (v(t) +arv(t — 1) + - 4 any,, v(t — nary))

with initial conditions = 0. This is a linear invariant system with
transfer function 1 — M (z71).
Instead, (0P[u]/0u)|; : u(0:N — 1) — v(1:N) can be im-
plemented recursively as follows:
Ip
dy(t —1) @,y

again with initial conditions = 0. This is a linear time-variant
system whose implementation, as noted in the previous section,
requires the identification of the plant in a neighborhood of the
trajectory obtained for v = .

Implementation of F' is obtained by applying the previous
equations in cascade.

B. Quadratic Optimization

If Cy[¢] is linear in 6, then Jygrpr(f) is quadratic, and there-
fore easy to minimize. This happens, e.g., for the controller class

u(t) = 01s1(e(t),...,e(t —nce)) + - -+
+0y 50, (e(t), ..., e(t — nce))

where s1, ..., s,, are given (possibly nonlinear) functions. In
this case

F[Cylel] = 61 F[Cr[e]] + - - + O, FCo, [€]

and the quantities C;[é] can be precomputed as
si(é(t),...,é(t — nce)) and then filtered through F,
so that the quadratic cost can be constructed and minimized
without any iterative implementation of a minimization
procedure.
More specifically, letting
F[C[e]] = [F[Ci[e]]

F[C,[e]] F[Cy,[e]]]

(F'[C[é]] is a matrix of dimension N X ng) and

0=1[6, 6, Oy |
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F[Cglé]] can be rewritten as
F[Gyle]] = FCle]]o
so that

Jvrrr(9) = [|FIC[e])f — Fla]||*. (16)

The minimizer of (16) is obtained by solving the linear equation

FICIEN"(F[C[elle — Fla]) = 0. (17
Equation (17) has a simple (and well-known) interpretation: The
solution  is the parameter vector which makes the regressor
matrix F'[C[e]] (which represents the input data vector of the
model) uncorrelated with the model residual error (F[C[¢]]6 —
F[i]). This interpretation of f will be further elaborated on in
Section VI, where the issue of the treatment of noise will be
considered.

Finally, note that a particular instance of the previously
described setting is obtained when s;(e(t),...,e(t — nce))
are achieved by expanding given transfer functions (3;(z~1)
and by truncating them after N terms. In this case, the
si(e(t),...,e(t — nce)) can be recursively computed.

C. Treatment of Noise

So far, we have assumed that the input/output measured data
% and y (and, correspondingly, the virtual reference 7 and the
virtual error ¢) are noise-free. This assumption has helped to
avoid a notational burden and to keep the presentation of the
method tidy and clean.

In practice, the noise-free assumption is realistic only when
the input/output data set is generated by a software simulator of
the plant. However, when we have on-field measurements col-
lected from the real plant P, we must assume that the measured
system output—say ¥,,—is affected by noise, namely

Yn =y +n

where ¢ is the noise-free output, and 7 is the noise. Correspond-
ingly (with obvious meaning of the symbols) we can compute a
“noisy virtual reference” 7,,, and a “noisy virtual error” é,,.

Consider now the case of a linearly parameterized controller,
as outlined at the end of the previous section. In this case, the
“noisy” regressor matrix F'[C[é,]] can be rewritten as

F[C[ea]) = FIC[H]) + ¥ (18)

where F[C[é]] is the noise-free regressor matrix, and ¥ :=
F[Clé,]] — F|C]é]] is the noise matrix (obviously, ¥ = 0 if
n = 0).

If the noisy output signal y,, is used, the VRFT method re-
duces to the following equation:

F[Ce )] (F[C[en]lo — Fla]) = 0 (19)

and the solution, say f,,, is in general different from fif & #0.
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In order to overcome this problem, a simple and effective ap-
proach is to resort to instrumental variable (IV) techniques, [22].
This can be done in many different manners and we here only
outline a possible way. Let us assume that it is possible to make
a second (noisy) experiment on the plant with the same input
signal u; the corresponding output—say y,,—will differ from
9, for the noise part only, namely

=g+

Since n* and 7 correspond to two different experiments, we can
assume that they are independent. Using ¢, the IV regressor
matrix F[C[é*]] can be constructed and, similarly to (18), we
write

F[C[e%]] = FIC[E)] + v
Then, (19) is replaced by its IV counterpart
FlC[e ] (F[Clen]]9™ — Fla]) = 0.

The analysis of this equation to show that the solution 6* is such
that 6* ~ (and that 6* = § when N — o) follows standard
routes in IV analysis.

In case of nonlinearly parameterized controllers, treatment of
noise is more complex and it is a problem worthy of further
consideration.

VI. MULTIPASS PROCEDURE FOR REFINING THE EXPERIMENTAL
CONDITIONS IN WHICH DATA ARE COLLECTED

In Sections III-V, the VRFT algorithm has been described
for the tuning of a controller when the reference signal is 7 :=
M ~[], where § is the actually measured plant output. As we
have already noticed, this one-shot tuning of the controller of-
tentimes suffices since it makes the closed-loop system behave
similarly to M for a reasonable large class of reference signals,
including that of interest. In this section, we further discuss this
issue: When VRFT does not directly generate a suitable con-
troller for the a-priori specified reference 7 (which is, in gen-
eral, different from M ~*[§]), one can then resort to a multipass
procedure, as described here.

Suppose that at pass & a controller C}, has been designed. To
move one pass ahead and design C}.41 we proceed as follows:
First, reference 7 is injected in the control system with C}, in
the loop and the corresponding output y; is measured; y is
then used to determine the next virtual reference signal, 71 =
M ~'y.], and VRFT is used with 71 to design Cy1.

It has been observed in simulation examples that this proce-
dure produces virtual references 7, that rapidly approach 7, so
that, after few passes, VRFT generates a controller well-suited
for the reference signal 7 of interest. A complete analysis of this
observed behavior goes beyond the scopes of this paper; how-
ever, a simplified analysis is presented with the objective of pro-
viding insight in why such a behavior can be expected.

Let H}, be the closed-loop operator from r to y at step k, and
assume no noise is present so that y, = Hy[7]. We assume that
VRFT delivers a controller C; which is perfectly performing
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in correspondence of the used virtual reference M ~! Hy[] (no-
tation M ~! H}[7] means that operator M ~! Hj—obtained by
applying in cascade H}, and then M —!—is applied to 7. Sim-
ilar notations are in use elsewhere), namely

Hy 1 M YH[F] = Hy[7). (20)

Also, let Ay, := Hy M=t — I and & := H}[F] — M[7].

To clarify ideas, let us first focus on a linear (single-
input-single-output) setup and assume that Hy, is invertible. In
this case

Orp1 = Hp17 — M7 = MH, *HyM ™ (Hy 17 — M7)
=MH;"(HM ' Hy17 — Hy7)
=MH_(Hp1 M~ Hy# — Hy)

[using (20)] = MH, '(Hy# — Hy7)

=0

21

sothat Hy 17 = M7 and the new virtual reference M — g k1T
is downright 7 and convergence is obtained in one step. More-
over, (21) also gives

Apa M7 — Ay (M7 + 6)

= —Aps16p = —(Hppt MY — I)(Hy 7 — M7)
—Hya M~ Hy#o 4+ Hy 17 + Hp# — M7
[using (20)] = Hy417 — M7
[using (21)] = 0.

(22)

We interpret this result by saying that Ay 1 := Hpy M1 =T
has learned how to compensate for the mismatch §y.

In a nonlinear setting, (20) tells us that Hy; behaves the
same as the linear M for signal M ~' Hy[7]. Thus, if M ~! Hy[7]
is not too different from 7 (this, in turn, requires that the first
controller in the multipass procedure is not too poor) we can
intuitively expect that Hy; behaves not too nonlinearly in a
neighborhood of 7 and a condition similar to (22) will still hold.

Assumption

—  AG[[Ap 1 [MF] = Apy i [MT + 0i]l| < pll0kl], for

some p < 1. *

Note that since p is only required to be < 1, this assumption
is rather mild.

Under Assumption A.4, we have

[l0k+1]l
— s [M7 = [using 0)
= [| Ak 41 [MF] — Hp ot M~V HL[F] + Hi[F]|
= | Ak 41 [MF] = (Hpga M1 = D[M7 + Hy[F] — M7]|
= |Ak2[M7] = Appa [M7 + 8i] || < pllok]|

which entails that 6, — 0 and therefore that the virtual reference
M~ Hy[7] tends to 7.

The convergence analysis of this section has similarities with
repetitive processes; see, e.g., [23], [24], and the recent inter-
esting paper [25]. Yet, the adaptive setup of this section looks
outside the so-far developed repetitive processes framework and
it would be interesting to see whether concepts from repetitive
processes can be extended to VRFT.

APPENDIX
PROOF OF THEOREM 2

We start by noting some elementary facts. First

i = Cye [e]. (23)

In fact, @ = P~1[j] = P~'[(I - MD)~Y(I — MD)j] =
P~Y[(I - MD) Y(M#— MDj)] = P~Y[(I - MD) *Mé]=
COle] = Cye [¢]. Next

y= ygg' . (24)

In fact, § = Pla] = [using (23)] = P[Cegr [€]]=
P[Ceg- [f — Dg]] and yeg- = P[Cag- [’F - Dya(-)(-]]. Thus,
both y and Yo correspond to 7 in the r to ¥y map given by
Yy = P[C(,ar [r — Dy]]. Since in such a map to a r it corresponds
only one y, we conclude that y = Yo > that is (24). From (24),
we also immediately have

7= Dy, = ¢. 25)

Finally

U= Cyt[F = Dy ]. (26)

In fact, & = [using (23)] = Cj+ [€] = [using (25)] = Cp+ [F —
0 0
Dyear].
Now, letting 29+ := F[Cy+[€]] — F[u] and wyg+ := yg+ — 7,
we can rewrite the costs as

JvrrT(07) = |79+ |7

—  Notation: By (9zg+/067) it is meant the matrix
whose (4, j)th element (i = row;j = column) is
(Omg+(7)/ 89;’) (so, different columns correspond
to derivatives with respect to different parameters,
and down the columns we have time evolution). This
applies similarly to all other signals.

The derivatives of JygrpT and J can be expressed as

8JVRFT (19+) o 6:179T+ T+

J(07F) = |lwe+||*.

a0+ o0+
Oxg+ ..
:23:21 (80%) (this is a row)
oJ(0F) Ok, we+
a0+ — oht
ow
_ T f+ PR
=2wyy ( 90+ ) (this is a row)
82JVRFT(9+) o T 82$9+
ogrz U\ op+e

+2 8x9+ r 8:179+
09+ 00+

2I(0%) 1 ( 2w+ )

ap+2  ~ “Ter \ g2
492 8’(1)9+ T 8w9+ )
o9+ oo+
In the last two expressions, (9%zg+/06%%) and

(0%*wg+ /06F2) should be defined with some precision.
However, we omit to do so since we will only compute the
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second-order derivatives for #T = 47, where the multiplying
terms z,, and wj, are zero [see (23) and (24)], so that the
product is zero.

Using (23) and (24) in the previous expressions yields

JVRFT(0+)|93- = J(0+)|03_ = 0;

AJyrrr(07) _9J(01) .
P PRV
T
O Jvrrr(01)| [ O+ Ozg+ ,
06+2 o a0+ oF a0+ ot '
T
82J(0+) —9 8w9+ 8w9+
06+2 oF a0+ o a0+ oF
Thus, if
(9.’179+ o 8’!1)9+
o0+ o 06+ o @7

then the filter objective (10) is met. F' is now selected so that
(27) holds.

—  Notation: By (9P[u]/0u) it is meant the matrix
whose (7, 7)th element (i = row;j = column) is
OP[u)(i)/Ou(j — 1) (so, different columns corre-
spond to derivatives with respect to input at different
time instants, and down the columns we have time
evolution). This applies similarly to all other systems.

We compute explicit expressions for the two sides of (27) and

then equalize them. As for the left-hand side, we have (using
linearity of F)

a$9+
a0+

_ OF[Cy+[e]]

_ = _r 0Cy+ €]
b5

o0+
b0 b;

(28)

To compute the right-hand side, note first that [since Cp+ [¢] =
0
u, see (23)]

OP[u] acegr [e] B aP[Ce;r [e]]
ou |, Oe | o de .
_O(I — MD)""Mle]
B Oe s
=(I-MD)™'M. (29)

We then have

e+ | OP[Cy+[F — Dyp+]|
e 96+ ot
_ o)
T du

C,+[F=Dy, ]
00 00

OCy+ [ = Dy,

X
o6+ o
0Cyy [e] ODyy+
de D07 |y

7—Dy, 4
0
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Now, using (25) and (26)

8y9+ - 8P[u] 809+ [é]
06+ 93_ ou 00+ o
9Cq+lel| 9Dy,
de | o6t o
and, hence
Y+ oP[u]| 9Cq:lel| oDy,
06+ o ou |, Oe 00+ o
_ OP[u]| 0Cy+|é]
T ou |, 00 |y
Substituting (29), we obtain
Oyg+ _1,, O0Dyp+
I-MD)""M ——
06+ |, * ) I |y
_ OP[u]| 0Cy+|é]
- Ou |, 06t o
from which, by multiplying by (I — M D)
yp+ Iye+ 9Dyg+
—MD M ——
9% |y S T
OP[u]| 0Cy+]e]
={I—-MD .
( ) ou |, 06+ o
Thus
Owg+ _ Y+
a0+ oF 00+ o
OP[u]| 0Cy+]€]
= -MD
( ) ou 06+ o (30)

Comparing (28) with (30), we finally obtain

OP[u] )
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