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Summary. System design in presence of uncertainty calls for experimentation, and
a question that arises naturally is: how many experiments are needed to come up
with a system meeting certain performance requirements?
This contribution represents an attempt to answer this fundamental question. Re-
sults are confined to a specific set-up where adaptation is performed according to a
worst-case perspective, but many considerations and reflections are central to adap-
tation in general.

1 Introduction

Given a system S, consider the problem of designing a device D that achieves
some desired behavior when interacting with S. The specification of the ‘de-
sired behavior’ depends on the intended use of the device, and is usually
expressed in terms of some signal sD(ω), with reference to certain operating
conditions ω ∈ Ω of interest (Figure 1).

Fig. 1. Characterization through signal sD(ω) of device D while interacting with
system S in the operating condition ω
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Example 1 (simulator). Suppose that the device should act as a simulator
of the system when the system input u takes on value in a given class of
signals U . In this case, ω = u and the desired behavior for the device can
be expressed in terms of the multidimensional signal sD(u) = (y(u), yD(u)),
where yD(u) and y(u) represent the outputs of the device and of the system
fed by the same input signal u ∈ U (see Figure 2). Signal sD(u) should be
such that yD(u) ' y(u), for every operating condition of interest, that is for
every u ∈ U . ut

Fig. 2. Device D acting as a simulator of system S

Example 2 (disturbance compensator). Suppose that the output of system S
is affected by some additive disturbance and the device D is introduced for
compensating the disturbance according to the feedforward scheme in Figure
3. In this case the operating condition is defined by the disturbance realiza-
tion d. If we denote by yD(d) the controlled output of the system when the
disturbance realization is d, then the desired behavior can be expressed in
terms of the signal sD(d) = yD(d) and sD(d) should be small for every d in
some set D. ut

Fig. 3. Device D acting as a disturbance compensator for system S

Devising a suitable D for a system S requires knowledge of some sort on S.
Most literature in science and engineering relies on a model-based approach,
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namely it is assumed that a mathematical model for S is a-priori available.
Alternatively, the knowledge on S can be accrued through experimentation.
This latter approach, considered herein, is referred to as ‘adaptive design’,
[1, 2, 3, 4, 5], since the problem is to adapt D on the basis of experiments in
the face of the lack of a-priori knowledge on system S.

In adaptive design, one fundamental question to ask is:

How extensively do we need to experiment in order to come up
with a device meeting certain performance requirements?

This fundamental –and yet largely unanswered– question is the theme this
contribution is centered around.

In this paper, a worst-case perspective with respect to the possible operat-
ing conditions is adopted, and we provide an answer to the above question
in this specific set-up. For one answer, many more are the answers that this
contribution is incapable to provide, which will also be enlightened along our
way.

2 Worst-case approach to adaptation

Worst-case performance

Suppose that the performance of device D operating in condition ω is quanti-
fied by a cost c(sD(ω)). Then, the worst-case performance achieved by D over
the set Ω of operating conditions is

max
ω∈Ω

c(sD(ω)),

and, correspondingly, one wants to design

D? = arg min
D

max
ω∈Ω

c(sD(ω)). (1)

c? denotes the worst-case performance of deviceD?, that is c? = maxω∈Ω c(sD?(ω)).

In e.g. the simulator Example 1, ω = u and one can take c(sD(u)) =
‖y(u) − yD(u)‖2, the 2-norm of the error signal y(u) − yD(u). c? can then
be interpreted as an upper bound to the largest 2-norm discrepancy between
the system behavior and the behavior of the simulator D? in the same oper-
ating condition:

‖y(u)− yD?(u)‖2 ≤ c?, ∀u ∈ U.

In the disturbance compensator Example 2, a sensible cost is the 2-norm
c(sD(d)) = ‖yD(d)‖2. Then, the best disturbance compensator D? satisfies:

‖yD?(d)‖2 ≤ c?, ∀d ∈ D.
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In many cases, the device D is parameterized by a vector γ ∈ <k, in which
case we write Dγ to indicate device D with parameter γ, and hence designing
a device corresponds to selecting a value for γ. Then, with the shorthand

Jγ(ω) := c(sDγ (ω)),

the min-max optimization problem (1) can be rewritten as the following robust
optimization program with k + 1 optimization variables:

RP : min
γ,c∈<k+1

c subject to: (2)

Jγ(ω) ≤ c, ∀ω ∈ Ω.

Note that, given a γ, the slack variable c represents an upper bound on the
cost Jγ(·) achieved over Ω by the device with parameter γ. By solving (2) we
seek that γ? that corresponds to the smallest upper bound c?.

Adaptive design

In model-based design, the cost Jγ(ω) can be evaluated based on the model,
and then γ? is found by solving the robust optimization program (2). Instead,
when system S is unknown or only partially known, the cost Jγ(ω) cannot be
explicitly computed so that the constraints in (2) are not known. However,
one can conceive of evaluating the constraints experimentally. What exactly
this means is discussed in the sequel.

Each constraint is associated with an operating condition ω ∈ Ω. To evalu-
ate experimentally a constraint in a specific condition, say ω̂ ∈ Ω, that is to
determine experimentally the domain of feasibility in the (γ, c)’s space where
the constraint Jγ(ω̂) ≤ c holds, one should run a set of experiments, all in
the ω̂ condition, each of which performed with a different device Dγ , γ ∈ <k.
In this way sDγ (ω̂) is measured for every γ and Jγ(ω̂) can be computed. An
objection to this way of proceeding is that it would require in principle to test
the performance achieved with every and each device Dγ in place. It is an
interesting fact that in many situations the overwhelming experimental effort
involved in testing many times with different Dγ ’s can be avoided, and just
one single experiment is enough for the purpose of computing Jγ(ω̂).

Take e.g. the simulator Example 1. In this example, if û is injected into S,
signal ŷ = S[û] can be collected, along with signal û itself. Based on this
single experiment, one can then compute y(û) − yDγ (û) = ŷ − Dγ [û] for all
γ’s, where Dγ [û] is obtained by filtering û with Dγ , an operation that can be
executed as an off-line post-process of signal û. After y(û)− yDγ (û) has been
computed, the constraint ‖y(û)− yDγ (û)‖2 = Jγ(û) ≤ c is evaluated.

The same conclusion that one experiment is enough can also be drawn for Ex-
ample 2 whenever both the system and the device are linear. Indeed, swapping
the order of S and Dγ , we have:



How many experiments are needed to adapt? 5

yDγ (d) = S[Dγ [d]] + d = Dγ [S[d]] + d. (3)

If we run an experiment in which disturbance d̂ is measured and this dis-
turbance is also injected as input to the system (i.e. D is set to 1 during
experimentation in the scheme of Figure 3), from the measured system out-
put ŷ = S[d̂] + d̂ and from d̂ itself we can then determine

yDγ (d̂) = Dγ [S[d̂]] + d̂ (using (3))

= Dγ [ŷ − d̂] + d̂,

where computation of Dγ [ŷ− d̂] is executed off-line similarly to the simulator
example. By computing ‖yDγ (d̂)‖2 = Jγ(d̂) constraint Jγ(d̂) ≤ c is then eval-
uated.

In the sequel we shall assume that one single experiment in condition ω̂ suf-
fices to determine constraint Jγ(ω̂) ≤ c. This assumption is not fulfilled in all
applications of the adaptive scheme, and further discussion on this point is
provided in Section 5.

Remark 1. The reader may have noticed that lack of knowledge, for which
adaptation is required, can enter the problem in different ways. In Example
1, it was system S to be unknown. In the disturbance compensator Example
2, again uncertainty stayed with the system S, but even the set D for d could
be unknown.
The seemingly different nature of the uncertainty in S and in D can be leveled
off by adopting a more abstract behavioral perspective, [6], where the system
is just seen as a set of behaviors, i.e. of possible realizations of system signals.
In such framework, uncertainty simply corresponds to say that the set of
behaviors defining the system is not a-priori known. ut
We are now facing the central issue this contribution is centered around,
that is: an exact solution of the robust optimization program (2) requires to
consider as many experiments as the number of elements in Ω, normally an
infinite number. The impossibility to carry out this task suggests introducing
approximate schemes where only a finite number of ω’s, that is a finite num-
ber of experiments, are considered. Thus, we can at this point more precisely
spell out the question we posed at the end of Section 1, and ask:

How many experiments do we need to perform to come up with
a design that approximates the solution D? of (2) to a desired
level of accuracy?

3 The experimental effort needed for adaptation

The fact that one concentrates on a finite number of operating conditions only
may appear naive. The interesting fact is that this way of proceeding can be
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cast within a solid mathematical theory providing us with guarantees on the
level of accuracy obtained.

Fix an integer N , and let ω(1), ω(2), . . . , ω(N) ∈ Ω be the operating condi-
tions of N experiments run on the system to evaluate the N corresponding
constraints for the robust program (2). The robust optimization problem re-
stricted to the N experienced scenarios ω(i), i = 1, 2, . . . , N , reduces to the
following finite optimization problem referred in the sequel to as ‘scenario
program’:

SPN : min
γ,c∈<k+1

c subject to: (4)

Jγ(ω(i)) ≤ c, i = 1, 2, . . . , N.

As for the selection of the scenarios ω(i), i = 1, 2, . . . , N , we suppose that they
are extracted from set Ω according to some probability distribution P that
reflects the likelihood of the different ω situations. This is naturally the case
in the disturbance compensator Example 2, assuming the environment ran-
domly selects the disturbance realizations according to an invariant scheme.
If the scenarios are selected by the designer of the experiment, like u in Ex-
ample 1, probability P is artificially introduced to describe the likelihood of
the different operating conditions.

Let (γ?
N , c?

N ) be the solution of SPN . c?
N quantifies the performance of the

device with parameter γ?
N over the extracted operating conditions ω(1), ω(2),

. . . , ω(N). Moreover, we clearly have c?
N ≤ c?, the optimal cost with all the

constraints in place, that is, for the extracted scenarios, we have designed a
very efficient device, in actual effects one that even outperforms device D?.
We cannot be satisfied with this sole result, however, since, due to the limited
number of scenarios, there is no guarantee whatsoever with respect to the
much larger multitude of possible operating conditions, all those that have
not been seen when performing the design of γ?

N . Hence, the following ques-
tion arises naturally: what can we claim regarding the performance of the
designed device for all other operating conditions ω ∈ Ω, those that were not
experienced while doing the design according to SPN in (4)? Answering this
question is necessary to provide accuracy guarantees and to pose the method
on solid grounds.

The posed question is of the ‘generalization type’ in a learning-theoretic sense:
we want to know how the solution (γ?

N , c?
N ) generalizes from experienced op-

erating conditions to unexperienced ones. For ease of explanation, we shall
henceforth concentrate on robust optimization problems of convex-type, since
this case can be handled in the light of a powerful theory that has recently
appeared in the literature of robust optimization, [7, 8]. The non-convex case
can be dealt with along a more complicated approach and is not discussed
herein.
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RESULT: Select a ‘violation parameter’ ε ∈ (0, 1) and a ‘confidence pa-
rameter’ β ∈ (0, 1).
If N satisfies

k∑

i=0

(
N
i

)
εi(1− ε)N−i ≤ β, (5)

then, with probability no smaller than 1− β, the solution (γ∗N , c∗N ) to (4)
satisfies all constraints of problem (2) with the exception of those cor-
responding to a set of operating conditions whose probability is at most
ε.

Bound (5) can be found in [9], a contribution still in the general vein of
the theoretical approach opened up in [7, 8].

Let us try to understand in detail the meaning of this result. If we neglect
for a moment the part associated with the confidence parameter β, then, the
result simply says that, by extracting a number N of operating conditions as
given by (5) and running the corresponding N experiments to evaluate the
constraints appearing in (4), the solution (γ∗N , c∗N ) to (4) violates the con-
straints corresponding to other, unexperienced, operating conditions with a
probability that does not exceed a user-chosen level ε. This means that the
so-determined c∗N provides an upper bound for the cost Jγ?

N
(ω) valid for every

operating condition ω ∈ Ω with the exclusion of at most an ε-probability set.

As for the probability 1−β, one should note that (γ∗N , c∗N ) is a random quan-
tity because it depends on the randomly extracted operating conditions ω(1),
ω(2), . . . , ω(N). It may happen indeed that these conditions are not represen-
tative enough (one could even extract N times the same operating condition!).
In this case no generalization is expected, and the fraction of operating con-
ditions violated by (γ∗N , c∗N ) will be larger than ε. Parameter β controls the
probability of extracting unrepresentative operating conditions, and the fi-
nal result that (γ∗N , c∗N ) violates at most an ε-fraction of operating conditions
holds with probability 1− β. One important practical fact is that, due to the
structure of the equation in (5), β can be set to be so small (say β = 10−6)
that it is virtually zero for any practical purpose, and this does not lead to
a significant increase in the value of N (see also the numerical example in
Section 4).

For the reader’s convenience, the discussion in this section is summarized in
a recipe for a practical implementation of the overall adaptive design scheme.

PRACTICAL RESULT: Select a violation parameter ε ∈ (0, 1), let
β = 10−6, and compute the least integer N satisfying (5). Run N random
experiments and compute the corresponding N constraints for problem (4).
Then, the solution γ?

N of (4) achieves performance c?
N on all operating

conditions but an ε fraction of them, and, moreover, c?
N is ‘better than the

best’, in the sense that c?
N ≤ c?.
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Before closing the section, the following final remark is worth making in the
light of equation (5):

The number of experiments N that are needed to adapt the
device does not depend on the system complexity; it instead
only depends on the complexity of the device Dγ through the
size k of its parametrization γ.

Thus reality can be any complex and still we can evaluate the experimen-
tal effort by only looking at the device being designed.

4 A numerical example

We consider the problem of inverting the nonlinear characteristic between
input u and output y(u, d) of a system affected by an additive output distur-
bance d (Figure 4), over the range of values U = [0, 1] for u (input-output
equalization).

Fig. 4. Inverting a nonlinear characteristic through a device

The device is fed by y(u, d) and produces output yDγ (u, d) = γ1y(u, d)2 +
γ2y(u, d)+γ3. The performance of the device with parameter γ = (γ1, γ2, γ3) ∈
<3 is given by maxu,d∈U×D Jγ(u, d), where Jγ(u, d) = |yDγ (u, d) − u| and D
is the (unknown) range of values for d. In words, this performance expresses
the largest deviation off the perfect equalization line yD = u.

We chose ε = 0.1, β = 10−6, and according to (5) N was 205.

The scenario program (4) is in this case

min
γ,c∈<4

c subject to: (6)

|γ1y(u(i), d(i))2 + γ2y(u(i), d(i)) + γ3 − u(i)| ≤ c, i = 1, 2, . . . , 205,

where u(1), u(2), . . . , u(205) are random values for u independently extracted
from U according to the uniform distribution Pu over [0, 1], and d(1), d(2),
. . . , d(205) are random values for d independently created by the environment
during experimentation according to some (unknown) stationary distribution
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Pd.

The 205 constraints in (6) can be evaluated by running 205 experiments on
the system where the output samples y(i) = y(u(i), d(i)), i = 1, 2, . . . , 205, are
collected together with u(i), i = 1, 2, . . . , 205. Figure 5 shows the outcomes of
the experiments. Note that the collected output data present some dispersion
due to the presence of the additive disturbance d.
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Fig. 5. Outcome of the experiments: samples of input u and output y(u, d)

By solving (6) we obtained γ?
205 = (0.424, 0.650, −0.081) and c?

205 = 0.108.

c?
205 is the maximum equalization error for the extracted scenarios. In Fig-

ure 6, we plot the input and equalized output pairs (u(i), yDγ?
205

(u(i), d(i))),
i = 1, 2, . . . , 205, and the region u±c?

205 := {(u, y) : u−c?
205 ≤ y ≤ u+c?

205, u ∈
U}. u± c?

205 is the strip of minimum width centered around the perfect equal-
ization line yD = u that contains all the 205 input and equalized output pairs.

In the light of the practical result at the end of the previous section, device
γ?
205 carries a guarantee that the equalized output yDγ?

205
(u, d) differs from u

of at most c?
205 = 0.108 for all u’s and d’s except for a subset of probability

P = Pu×Pd smaller than or equal to 0.1; moreover, the region of equalization
u± c?

205 is contained within u± c?. This result holds irrespectively of D and
Pd, which are unknown to the designer of the device.

The actual nonlinear characteristic and disturbance d used to generate the
data in Figure 5 are shown in Figure 7 together with the designed device
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Fig. 6. Input u and equalized output yDγ?
205

(u, d) for the extracted scenarios, and

the region of equalization u± c?
205

with parameter γ?
205. In this example, the parameter of the device could have

been designed so as to exactly invert the nonlinear characteristic. However,
the obtained γ?

205 is different from such a choice, because the device aims at
inverting the nonlinear characteristic between u and y while also reducing the
effect of d on the reconstructed value for the input u.

Fig. 7. Actual nonlinear characteristic and disturbance characteristics, along with
the designed device

5 Conclusions

The main goal of this contribution is that of attracting the reader’s atten-
tion to the fundamental issue of evaluating the experimental effort needed to
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perform adaptive design, and some answers have been provided in a specific
worst-case context.

Many are the aspects that our discussion has left unsolved, and open to further
investigation:

• it is not always the case that one experiment provides all the information
needed to evaluate a constraint. In the disturbance compensator exam-
ple, for instance, if either the system or the device are not linear it is
not possible to swap their order, and constraint evaluation calls for many
experiments with virtually all possible devices in place. More generally,
more experiments are needed when the input to the system depends on
the device being designed.

• a perspective different from the worst-case approach can be used for adap-
tive design. For example, device quality could be assessed by its average
performance, [10, 11, 12], rather than its worst-case performance over the
set of operating conditions of interest.

Addressing these problems is a difficult task that requires much additional
effort.
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