Copyright © 1996 IFAC
13th Triennial World Congress, San Francisco, USA

3b-04 2

DO SELF-TUNING CONTROL SYSTEMS TUNE?

Sergio Bittanti'

and Marco Cllpi’

'Dipartimento di Elettronica, Politecnico di Milanc
piazza Leonardo da Vinci 32, 20133 Milano, Italy
FAX: ++39.2.23993587, EMAIL: Bittanti®elet.polimi.it

L .
Dipartimento di Elettronica per 1’Automazione, Universita’ di Brescia
via Branze 38, 25123 Brescia, Italy
FAX: ++39.30.380014, EMAIL:Campigelet.polimi.it

Abstract: Yes, provided that a suitable notion of tuning is taken.

Keywords: Self-tuning control, Recursive least squares; Tuning, Stability,

Optimality

1. TUNING AND IDEAL TUNING
OF SELF-TUNING CONTROL SYSTEMS

1.1 Mathematical framework
Consider the noise-free SISO plant
P: AW gy = B iq Dult-d),

where

n :

AWT;gH) =1 - Taq,

i=1
o -1 = .o -i
B(® ;q )} = Zbiq '

iet

b:¢o, dzl.

Here, u(-) is the control variable, y{(-} the plant

output and
0° = [a° & --- a b° b --- b)
1 2 [ 1
is the plant parameter vector.

plant P is initialized at time t=1 with deterministic
values y(0), y(-1}.,..., y{-n+1), u(0), ul-1), ...,

u(-d-m+1) .
We assume that q'a(d°;q"") and q"B(8°:q") are coprime.

The main motivation for adaptive control is the lack of

knowledge on some characteristics of the plant. Herein,

the following hypothesis is made: the structure of the
equation is known, i.e. d, m and n are known, but the
true parameter vector o' is not available.
Correspondingly, one can resort to an identification

algorithm to get a model of the plant.

Consider the family of (deterministic) ARX wodels

parameterized in the vector ¢ = [a a --- & b b ---
T 1 2 n o 1
bl :
£y
w(0) Alo;q N y(t) = B(#:;q Hule-d), (1)
with

n
A@igh =1 - Taq’,
i=1
i -
B(® iq ) = Zbiq'i.

i=o0
Then, denoting by #{t) the parameter estimate at time
«

t, the estimated model is given by M(9({t)).

-
In this paper, we assume that estimate 9(t) is computed

through the Recursive Least Squares (RLS)

jdentification algorithm. Rewrite model (1) as:
T,
M(V): y(t) = ¢(t-1)'8,

where the observation vector ¢(t-1) is given by



p(t-1) = [y(t-1) y(e-2} --- y(t-n)

ult-d) u(t-d-1) --- ult-d-m1~.

Then, ®¥(t) is recursively computed by means of the

equations:
D(t) = d(t-1) + p(c)«:(c-l)[y(:) - v(c-n’o(c-n],
8(0) = 0,

P{t-1)p(t-1e(t-1) TP(t-1)
P(t) = P(t-1) - . '
1 + ¢(t-1) " P(t-1)p(t-1)

P(0) = P(0)T > O.

We finally introduce a general linear control law for

model M(#). This is defined by the equation:

C®):  ult) = R(O:q Dult) +« S(8:q )y(t)

+ TO;q Y (),

with

o
R:qM = Ir0q"
i=1

-3 ﬁ -i
S(¥;q ) = Zsiw)q .

ie0

&
TW;q" = % :iw)q",
ie-y

y'(-) being a bounded reference signal.

The above control law is general indeed, and

encompasses as special cases all the most popular
techniques which have been proposed in the literature.
Among others, we mention: infinite-horizon LQ control
(Anderson and Moore, 1989); pole-placement (Astrém and
Wittenmark, 1980); receding-horizon control (Mosca and

Zhang, 1992) and (Chisci and Mosca, 1993).

We will conform to the certainty equivalence principle,
which amounts to take C(I;(C)) as present control law
for the true plant. Therefore, the real system, that is
the true plant together with the actual control law

(see Fig.1) is given by the equations:

AW ;g Hy(t) = B8 g Nult-d)

DO O 1 () = RO(E) ;g ult) + SO ;g Hylt)
+ TO(E) ;q Ny (e) .

1.2 Ideal tuning and tuning

The original hope of adaptive control was that the self
adjustment of the controller would eventually result in
the same performance as that achievable if the true

plant were known. In other words, real system
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Figure 1. Real System

E(0 ,0(t)) was hoped to behave in the long run as the
ideal system precisely given below (Fig.2):

AT:g y(t) = B0 ;g Hult-a)

£(0°,8%) -
u(t) =R :q Hule) + S0°:q Myt
+ 0%y (o).
b))
. u(t) )
c®°) P >

!

Figure 2. Ideal System

Denoting by w: (qq) the transfer function between y'
and y, this leads to the following definition:

Definition 1 (Ideal tuning)
Real system LC(8°,0(t)) is said to be ideally tuning if

lim

[y(t) - w:(q“)y'(c)] - 0. .
LS -]

Ideal tuning can indeed be achieved in some special
cases such as minimum variance (Goodwin et al.

1992)

1981;
Bittanti et al.,
1994).

and pole-placement (van

Schuppen, However, it is also well known that

ideal tuning does not hold in general. Then, the

question arises whether it is possible to set a general
theory of tuning {(which holds true independently of the
adopted control law) by resorting to a weaker notion of

tuning. This is precisely formalized in the following.

At time t, according to the certainty equivalence
principle, model M{J(t)) is regarded as if it were the

actual plant and the controller calibrates its

parameters so as to achieve a desired behavior for such

a model. Therefore, the so-called imaginary system
(Fig.3):
y*)
I u(®) A )
Cd®) M@(©) >
Figure 3. Imaginary System



AL ;g Dyle) = BOE):q Tult-d)

D), 8(E)) § () - R(B(L):q lult) + S@(t);q Dy(e)

« T(O(t) ;g Ny (v,

represents the desired behavior at time t. If we push

our luck and assume for a moment that the estimate
- -

converges,

say 0(t) » ¥(=), then the imaginary system

would tend to the following time-invariant system

{asymptotic imaginary system, Fig.4):

AB(®);q y(t) = B(B(w)iq Hult-ad)

E@ (@, 8@) 1 ) o R(8{) ;g ult) + S(Bm) g Dyt
+ T{0{w) ;qvl)y' {t),

()
—

-

Figure 4. Asymptotic Imaginary System

wt) ¥®)

M(B(=))

C(8(=))

We say that the adaptive control system is tuning if

its behavior resembled the one of the asymptotic

imaginary system:

Definition 2 (Tuning)

Real system £(0°,0(t)) is said to be tuning if

lim
0

[y(t) - wl(q*)y'tt)] -0,
where

-1
W ig) =

B{®(®;:q 2)q *T(B (@ iqg ")

A(o(m);q“)[1-n(o(m):q")] - BB ;g g s @ g )

is the transfer function between y' and y in the

asymptotic imaginary system. ]

In this paper we provide a unitary approach which
permits to analyze any adaptive control systems under

reasonable assumptions. Our main result is that,

differently from ideal tuning, tuning holds in general
without extra assumptions on the actual system under
control such as its stability or the minimum-phase

condition.

1.3 A bibliographical note

In this paper, we only study the tuning property in the
mathematically elementary case in which the system is

noise-free. Moreover, the assumption that the

asymptotic imaginary system is controllable will be
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made (see Sect.1.4). It is important to note that this

standpoint is taken in the present contribution only
for the sake of simplicity and clarity of exposition.
As a matter of fact, a full creatment of the matter is
now available (even though only partially published)

and can be found in the contributions listed below.

A complete analysis of the tuning property in a
deterministic context with examples and a tutorial
style is provided in (Bittanti and Campi,

1995). The

noisy case is dealt with in (Campi, 1994) still under
the assumption that the asymptotic imaginary system is

controllable. The

controllability problem of the
asymptotic imaginary system is the subject of many
papers. Among them, those that are more closely related
to the approach assumed in this

contribution are

(Lozano and Zhao, 1994) in a deterministic setting and

(Campi, 1996) in a stochastic framework.

1.4 Results

Assume that the following assumptions hold true.

Assumption 1 ]
The controller parameters ri(ﬂ) . si(ﬁ) and t (¥) are
- 1

continuous in ¥ (w}. ]

Assumption 2
-

The asymptotic imaginary system (¥ (w) ,0({m)) is stable.
| ]

Remark

Many well established techniques ensure agymptotic
stability and continuity of the controller parameters
when applied to a known time-invariant plant under the
sole condition that the plant is contrcllable. This is
for LQ control, pole-placement,

the case

receding-horizon control, to quote but a few. n

In this section we state the main results of this
contribution, the proofs of which are provided in the

next section.

First, the RLS algorithm provides estimates which are
generally convergent. The asymptotic estimate is or is
not coincident with the true parameterization depending

on the excitation characteristics of signals. This

constitutes a comfortable starting point for the

forthcoming analysis.

pefinition 3 (Excitation and unexcitation subspaces -

(Bittanti et al., 1990)) .

@
xBTS er-De(1-1)x < @ }

The subspace & = {
T=1

is named unexcitation subspace.



Its orthogonal complement & = &t is named -excitation
subspace. [}

Theorem 1 (RLS properties)
The RLS estimate ¥(t) is asymptotically convergent:

1im 9(t) = O(w).

o
Moreover, denoting by 0'(»») and l’: the projections of
d(w) and 0 onto the excitation subspace &, it turns

out that
P (@) =~ 8. =
B [ 1

Under Assumptions 1 and 2, signals u(-) and y(-) keeps
bounded.

Theorem 2 (Stability)
If Assumptions 1 and 2 are met with, then there exists

a constant c¢ such that
|utt)| < c and |y(t}| < ¢, vt. a

Finally, wunder the same assumptions, the tuning

property holds in general.

Theorem 3 (Tuning)

If Assumptions 1 and 2 are met with, then the real

system £(8°,8(t)) is tuning according to Definition 2.
[}

We emphasize that Theorem 3 guarantees that the
adaptively controlled true system (real system) behaves
closely to the nonadaptively controlled asymptotically
identified system (asymptotic imaginary system). In no
way, this conclusion entails that the performance of
the real system is close to the one which would be
obtained if the real plant were actually known (ideal

tuning) .

The above set of theorems provides a unitary theory
which cen be applied to any RLS-based adaptive scheme
regardless of the control law used and with no extra
assumption on the true system such as the minimum-phase

condition.

2. PROOFS

Proof of Theorem 1

Introduce the parameter error
F) = oy - 9.
The following recursion for d(t) is easily derived
(2)

Fit) = Blr-1) - P(thp(t-1)e(e-1)78{t-1).

Then, by noting that the recursion for p(t) "’ is
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* (3)

p() = P(e-1) " + plt-De(e-1)7,
we get
P(t) " B(e)
- B(e)? BlE-1) - plE-le(e-1)TD(E-1)
- Pe-1)7 B(e-1),

which corresponds to

p(ey? [o(:) - v‘] = const.

Since P(t) converges, this obviously implies that ¥(t)

is convergent to some limit ¥(w).
Introduce now the Lyapunov-like function
vig) = B0 R(e) H.

From (2) and (3), the recursive expression for V(t) can

be worked out:

fote-1)Tde-10?

vit) = v(t-1) - z .
1 + p(t-1) P(t-1)p(t-1)
This implies that functicn Vv{t) is monotonically
decreasing, so that
vV{0) = VI(t).

t
S elr-L1p(r-1)7,
T=1

By observing that P{t)’ = P(O)™" «

one obtains

vio) 2 B MBI,

where
b T
M(t) = ¥ @lr-l)p(7-1)".
T=1
From this
1im 3 () M(t) B (=) < o, ()
o
where

Fio) = i) - B°.

Partition now 8(») in the excitation and unexcitation
components: B (w) = 5B(m) + 75"(«») {where Bl(»)ee and
Bu(mleé). Then, from (4) we ocbtain (g (7-1) [p (7-1)]

denotes projection of ¢(7-1) onto & [£]):

® > lim a(m)TM(t)a(m)
£
t 2
- lim ¥ [w(r-u’mm)]
e Tel
T T 2
= lim 3 [w (r-1)"8 (0} + ¢ (r-1)75 (o)]
E B u v
t0 Tal



€
2 lim {E'm)' b3 wl(r-l)wi(r-l)"]ﬁl(o;
e Tal
- T i T|=
+ 0u(a) [Zvu(r—l)wv(r-l) ]0“(m)
Tel
t T 1/2
-2 [Bi(w)’[ Lo tr-1p (7-1) ]o.(w)] x
T=1

t g 1/2
x [Bv(o)r 721.,;“(1-1)%(1-1) ]l’u(m)] .

In view of the very definition of excitation subspace,

this inequality entails that 3:('”) =0. n

Proof of Theorem 2

Set

elt) = @le-1)7 (8" - D{E)).

T
Then, the time evolution of vector z(t) = {y(t) ult}]

generated by £(8°;9(t)) is given by the equation

e(t)
2(t) = D(B(t);q zlt-1) + . (5

T(B(0) :q )Y (€)

where matrix

-del

[1- Aw(t),-q")]q B(W(t) ;g Hg
D(s(e);q ) =

s(8(t);q Mg R(O(£) ;9 g

~ “

describes the dynamics of Z(0(t);0(t)).

Since the asymptotic imaginary system is stable
(Assumption 2), the movement of the autonomous system
z(t) = D(S(m):q'l)z(td) initialized at time t tends
exponentially to zero: lz(t)l s upALlli(co)“. p<l,
st=t-t , where z(t) = [y(t) y(t-1)

uft)

-+ yl(t+l-max{n,g})
u(t-1) --- u(t+i-max{d+m,@})])’. Taking into
account that (;(t) > l;(m) and D(l’;q'l) is continuous in
!;(m), for the autonomous imaginary system (z(t) =
D<z;<t),-q“)z(:—1)) we then have {z(t)] = apA'lli(co)II +

'y(co,At)ﬂi(to)ll, where y(-,-) is such that y(t ,at)>0,

t:o"‘m, At fixed. Choose 4f such that ap™* = € < 1 and t-:D
such that |y(t ,at)| = & < 1-¢, ve 2t . Then, vt af ,
one has ||§(t°+AE)|[ s (e+a)lli(:°)l|, from which the
uniform exponential stability of the autonomous
imaginary system follows. Turn now to consider the real
system. In view of the stability of the autonomous
imaginary system and representation (5) of 2(0°;1;(t)),
z{t) generated by the real system can be bounded as

follows:
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t " e(r)
lz)ll = c + ¢ 3 ve R . .
Ta1 T{(O(r):q Dy (1)

T IS
sc +oc 2 letr-n 070 |
Tel

3 -
+ e, 3T gy (],

T=1

(6)

cl, c2 and v<1 being suitable constants. By virtue of

the boundedness of the reference output, the term

t -
€T - .
g, Iv fTo(r) ;q Dy (r)| turns out to be itself
T=1

bounded. As for the second term on the right hand side

it can be handled as follows:

t -
c, TV -1 T 18" 00 |
Tel

t - -
t-7 T ° T °
sc, S {lwx(r-l) (9_-0_(7}) |+]o (r-1) (l’“-ﬂu(r))l}

T=1

t -
t-T °
= C2721v e tr-2)lle -0 (n

€ -
t-T °
+ 6, Tv e r-1) Mo -8 ()l

T=1l

The second term in this last expres‘sion tends to zero
because of the boundedness of ||l};—19u(1)|| and the fact
that wv(r-l) 5> 0 as 1 > o (see the definition of
unexcitation subspace). Therefore, bearing in mind the
from (6)

definition of observation vector, we finally

get

t a
-7 °
el = ¢, + c‘TZ‘v ""’:”'1)""0{":(”“

€ -
t-T °
sc + c‘fixv e r-1) o _-o_(n1,

being <, and <, suitable constants.

Since o:-os(c) 5 0, this inequality implies that lle(o)]

remains bounded, from which the thesis immediately

follows. s

Proof of Theorem 3

By virtue of Assumption 3, polynomial A(t;(ao);qd)[l -
R(D (@) 1q™) B 5
that from the fact that w(t—l)r(t"’-z‘;(t)) - 0, we have

L B0 g g s (Blw) ;g Y) is Hurwitz, so

1 - RS g )

A(O(w),-q")[l-Rw(m);q")] - BB ;g g s We) gty

x e(e-1)7 (8% -8 (t))



1

1 - R(O(@):q )

Aw(m);q")[1-R<o(a),~q“)] - B(S(e):q g s (0im) g )

x {y(t) - [1 - A(o(c);q")]ym - aw(:);q“)q"’u(:)}

2 0.

Since 8(t) + 8(e) and |ytt)| is bounded (Theorem 2), we
can replace A(l;(t):q")y(t) in the previous expression
with A(l;(c);q'l)y(r.) . For an analogous reason, in place
of [1 - R(l;(n).-q")]B(\;(t);q'l)q'du(t), we can write
B(l;(t);q-l) n - R(t;(t-d);q'l)lq'du(t). which equals
B3 (0) 1Y) [SB(e-d) ;g My (t-d) + T(B(e-d ;g hy (-]
and this last expression can be finally replaced by
BB (e 1q ) [S(D(m) sq )y (e-d) + T :q M)y (t-d)). In

conclusion, we have

y(t) -

Bl ;g g T ;q ") ¥ ()

Aw(w);q")[x-n(uw);q'H] - B g g s B le) i)

- 0,

that is the self-optimality condition. | |
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