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Abstract

Reportedly, guaranteeing the controllability of the estimated system is a crucial problem in adaptive control. In this
paper, we introduce a least-squares-based identi�cation algorithm for stochastic SISO systems, which secures the uniform
controllability of the estimated system and presents closed-loop identi�cation properties similar to those of the least-squares
algorithm. The proposed algorithm is recursive and, therefore, easily implementable. Its use, however, is con�ned to cases
in which the parameter uncertainly is highly structured. c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

It is well known [1,2,4–6,10,13–15,17,18] that the
possible occurrence of pole-zero cancellations in the
estimated model hampers the development of adaptive
control algorithms for possibly nonminimum-phase
systems. As a matter of fact, many well-established
stability and performance results exist which are ap-
plicable under a uniform controllability assumption of
the estimated model (see e.g. [3,20,21]). On the other
hand, however, standard identi�cation algorithms do
not guarantee such a controllability property in the ab-
sence of suitable persistence of excitation conditions,
as it turns out to be often the case in closed-loop op-
erating conditions.
Many contributions have appeared in the literature

over the last decade to address the controllability
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problem in adaptive control. A �rst approach consists
in the a posteriori modi�cation of the least-squares es-
timate [4,5,13,14]. By exploiting the properties of the
least-squares covariance matrix, these methods secure
controllability, while preserving the valuable closed-
loop properties of the least-squares identi�cation al-
gorithm. The main drawback of this approach is that
its computational complexity highly increases with
the order of the system (see [14]). Therefore, an on-
line implementation of these methods turns out to be
generally impossible. A second approach [10, 15, 17]
directly modi�es the identi�cation algorithm so as
to force the estimate to belong to an a priori known
region containing the true parameter and such that
all the models in that region are controllable. These
methods lead to easily implementable algorithms, but
they are suitable for systems subject to bounded noise
only. The design of recursive (and, therefore, on-line-
implementable) identi�cation methods able to guaran-
tee the model controllability in the case of stochastic
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unbounded noise is still an open problem at the
present stage of the research. A further class of
approaches is characterized by the design of the
controller according to a method di�erent from the
standard certainty equivalence strategy. In [11], an
overparameterized representation of the plant and the
controller is used to de�ne a control scheme taking
the form of an adaptively tuned linear controller with
an additional nonlinear time-varying feedback signal.
In [1], instead, the system is reparameterized in the
form of an approximate model which is controllable
regardless of the numerical value of the parameters.
Finally, it is worth mentioning the interesting strat-
egy introduced in [16, 18] which adopts a logic-based
switching controller for solving the controllability
problem. All these alternatives to the standard cer-
tainty equivalence strategy, however, deal with the
case when the system is deterministic, i.e. when there
is no stochastic noise acting on the system.
In this paper, we introduce a recursive least-squares-

based identi�cation algorithm for systems subject to
stochastic white noise which ensures the uniform con-
trollability of the estimated model. Our method is ap-
plicable under a stringent condition concerning the a
priori knowledge on the uncertainty region to which
the true parameter belongs (see Assumption 3 in Sec-
tion 2). Such a condition may or may not be satis-
�ed depending on the application at hand. In the case
such a knowledge is in fact available, our identi�ca-
tion algorithm represents an e�cient and easily im-
plementable method to circumvent the controllabil-
ity problem. Moreover, as we shall show in Section
3, our identi�cation algorithm retains the closed-loop
identi�cation properties of the standard least-squares
method (Theorem 2 in Section 3). This is of crucial
importance in adaptive control applications (see e.g.
[7, 8]). In this regard, the interested reader is referred
to contribution [19], where a stability result is worked
out for adaptive pole placement on the basis of such
properties.

2. The system and the uncertainty region

We consider a discrete-time stochastic SISO system
described by the following ARX model:

A(#◦; q−1)yt =B(#◦; q−1) ut + nt; (1)

where A(#◦; q−1) and B(#◦; q−1) are polynomials in
the unit-delay operator q−1 depending on the system

parameter vector #◦= [a◦1 a
◦
2 : : : a

◦
n b

◦
d b

◦
d+1 : : : b

◦
d+m]

T.
Precisely, they are given by

A(#◦; q−1)= 1−
n∑
i=1

a◦i q
−i

and

B(#◦; q−1)=
d+m∑
i=d

b◦i q
−i :

We make the assumption that n¿0 and m¿0, since
if n=0 or m=0 the controllability issue automati-
cally disappears. As for the stochastic disturbance pro-
cess {nt}, it is described as a martingale di�erence
sequence with respect to a �ltration {Ft}, satisfying
the following conditions:
(A.1) supt E[|nt+1|�=Ft]¡∞, almost surely for

some �¿2,
(A.2) lim inf t→∞ (1=t)

∑t
k=1 n

2
k¿0.

In this paper, a new identi�cation algorithm for
system (1) is introduced, which secures the esti-
mated model controllability, while preserving the
least squares algorithm closed-loop identi�cation
properties. These results are worked out under the
assumption that the following a priori knowledge is
available:
(A.3) #◦ is an interior point of S( �#; r)={#∈Rn+m+1:

‖# − �#‖6r}; where the n + m + 1-dimensional
sphere S( �#; r) is such that all models with parameter
#∈ S( �#; r) are controllable.
Assumption (A.3) is certainly a stringent condition.

It requires that the a priori parameter uncertainty is
restricted enough so that the uncertainty region can
be described as a sphere completely embedded in the
controllability region. In this connection, the center �#
of the sphere should be thought of as a nominal, a pri-
ori known, value of the uncertain parameter #◦, ob-
tained either by physical knowledge of the plant or
by some coarse o�-line identi�cation procedure. The
identi�cation algorithm should then be used to re�ne
the parameter estimate during the normal on-line op-
erating condition of the control system so as to better
tune the controller to the actual plant characteristics.

3. The recursive identi�cation algorithm

Letting

’t = [yt : : : yt−(n−1) ut−(d−1) : : : ut−(d+m−1)]T (2)
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be the observation vector, system (1) can be given the
usual regression-like form

yt =’Tt−1#
◦ + nt: (3)

The recursive algorithm for the estimation of param-
eter #◦ is given by the following recursive procedure
(see below for an interpretation of this procedure):
1. Compute Pt according to the following steps:
set T0 =Pt−1;
for i=1 to n+ m+ 1, set

i
↓

�i= [0 : : : 1 : : : 0]T

and compute

Ti= Ti−1 − (�t − �t−1)Ti−1�i�Ti Ti−1
1 + (�t − �t−1)�Ti Ti−1�i

;

then,

Pt = Tn+m+1 −
Tn+m+1’t−1’Tt−1Tn+m+1
1 + ’Tt−1Tn+m+1’t−1

: (4.1)

2. Compute the least-squares type estimate #̂t accord-
ing to the equation

#̂t = #̂t−1 + Pt’t−1(yt − ’Tt−1#̂t−1)
+ Pt(�t − �t−1)( �#− #̂t−1); (4.2)

where

rt = rt−1 + ‖’t−1‖2; (4.3)

�t =(log(rt))1+�; �¿0: (4.4)

3. If #̂t =∈ S( �#; r), project the estimate #̂t onto the
sphere S( �#; r):

�#t =

{
#̂t if #̂t ∈ S( �#; r);
#̂t− �#

‖#̂t− �#‖ r +
�# otherwise:

(4.5)

In Theorem 1 below we show that Eqs. (4.1)–(4.4)
recursively compute the minimizer of a performance
index of the form
t∑
k=1

(yk − ’Tk−1#)2 + �t‖#− �#‖2: (5)

In view of this, an easy interpretation of the algo-
rithm (4.1)–(4.5) is possible. In Eq. (5), the �rst term∑t

k=1(yk−’Tk−1#)2 is the standard performance index
for the least-squares algorithm, while the second term

�t‖# − �#‖2 penalizes those parameterizations which
are far from the a priori nominal parameter value �#.
In the performance index (5), a major role is played
by the scalar function �t which is aimed at providing a
fair balancing between the penalized part and the least
squares part of the performance index. This function
should grow rapidly enough in order that the penalty
for the estimates far away from the centre of the sphere
can assert itself. On the other hand, the penalization
term �t‖#− �#‖2 should be mild enough to avoid de-
stroying the closed-loop properties of the least squares
algorithm. As a matter of fact, in Theorem 1 below, we
show that the coe�cient �t in front of ‖#− �#‖2 grows
rapidly enough so that term �t‖# − �#‖2 asserts itself
in such a way that in the long run the estimate #̂t be-
longs to S( �#; r). As a consequence, the projection op-
erator in Eq. (4.5) is automatically switched o� when
t is large enough. The fact that the estimate becomes
free of any projection in the long run, used in con-
junction with the fact that the penalization term grows
slowly enough, permits one to prove useful proper-
ties of our identi�cation algorithm. In Theorem 2, we
in fact show that �#t exhibits closed-loop properties
which are similar to those of the standard recursive
least squares estimate. These properties would be lost
if the projection would not be switched o�.

Theorem 1. (i) The parameter estimate #̂t obtained
through the recursive procedure (4.1)–(4.4) initial-
ized with

#̂0 = �#;
r0 = tr(Q) (Q=QT¿0);
P0 = [Q + (log(r0))1+�I ]−1

(6)

is the minimizer of the performance index

Dt(#)=Vt(#) + �t‖#− �#‖2; (7)

where

Vt(#)=
t∑
k=1

(yk − ’Tk−1#)2 + (#− �#)TQ(#− �#) (8)

is the standard least-squares performance index with
regularization term (#− �#)TQ(#− �#) and

�t =

(
log

(
t∑
k=1

‖’k−1‖2 + tr(Q)
))1+�

: (9)

(ii) Assume that ut is Ft-measurable. Then, there
exists a �nite time instant �t such that #̂t ∈ S( �#; r),
t¿�t, almost surely.
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Proof. (i) It is not hard to see that Dt(#) is a quadratic
function of #, whose minimizer #̂t is given by

#̂t =

[
t∑
k=1

’k−1’Tk−1 + Q + �t I

]−1

×
[

t∑
k=1

yk’k−1 + (Q + �t I) �#

]
:

In order to determine a recursive expression for #̂t ,
we de�ne the matrix Pt as

Pt :=

[
t∑
k=1

’k−1’Tk−1 + Q + �t I

]−1
;

so that

#̂t =Pt

[
t∑
k=1

yk’k−1 + (Q + �t I) �#

]
: (10)

It is easy to show that the term
∑t

k=1 yk’k−1 on the
right-hand side of this last equation can be written as

t∑
k=1

yk’k−1 = yt’t−1 +
t−1∑
k=1

yk’k−1

= yt’t−1 + P−1
t−1#̂t−1 − (Q + �t−1I) �#:

By substituting this last expression and the recursive
expression for P−1

t given by

P−1
t =P−1

t−1 + ’t−1’
T
t−1 + (�t − �t−1)I (11)

in Eq. (10), we conclude that #̂t can be determined as a
function of the previous estimate #̂t−1 in the following
way:

#̂t = Pt{yt’t−1 + [P−1
t − ’t−1’Tt−1

− (�t − �t−1)I ]#̂t−1 − (Q + �t−1I) �#
+ (Q + �t I) �#}

= #̂t−1 + Pt’t−1(yt − ’Tt−1#̂t−1)
+ Pt(�t − �t−1)( �#− #̂t−1);

which is just the recursive expression of #̂t in Eq.
(4.2).
The fact that �t given by Eq. (9) can be recursively

computed through Eqs. (4.3) and (4.4) with the ini-
tialization r0 = tr(Q) given in Eq. (6) is a matter of a
simple veri�cation.
Finally, the fact that step 1 in the algorithm actually

computes the inverse of matrix P−1
t given in Eq. (11)

is a simple application of the matrix inversion lemma
and is left to the reader. This completes the proof of
(i).

(ii) Denote by #̂
LS
t the minimizer of the least-

squares performance index Vt(#) and set

Qt =
t∑
k=1

’k−1’Tk−1 + Q: (12)

It is then easy to show that #̂t =argmin#∈Rn+m+1 Dt(#)

can be expressed as a function of #̂
LS
t as follows:

#̂t =(Qt + �tI)−1Qt#̂
LS
t + �t(Qt + �tI)−1 �#:

By subtracting �#, we get

#̂t − �# = (Qt + �t I)−1Qt(#◦ − �#)

+ (Qt + �tI)−1Qt(#̂
LS
t − #◦):

Thus, the norm of #̂t − �# can be upper bounded as
follows:

‖#̂t − �#‖6 ‖#◦ − �#‖+ ‖(Qt + �tI)−1Q1=2t ‖
×‖Q1=2t (#̂

LS
t − #◦)‖: (13)

We apply now Theorem 1 in [12] so as to upper bound

the term ‖Q1=2t (#̂
LS
t − #◦)‖. Since ut is assumed to

be Ft-measurable, and also considering Assumption
(A.1), by this theorem we obtain the following upper
bound:

‖Q1=2t (#̂
LS
t − #◦)‖2 =O(log(tr(Qt))); a:s: (14)

The term ‖(Qt + �tI)−1Q1=2t ‖ can instead be handled
as follows.
Denote by {�1; t ; : : : ; �n+m+1; t} the eigenvalues of

the positive-de�nite matrix Qt . Since Qt is symmet-
ric and positive-de�nite, there exists an orthonormal
matrix Tt such that Qt = Tt diag(�1; t ; : : : ; �n+m+1; t)T−1

t

and Q1=2t = Tt diag(�
1=2
1; t ; : : : ; �

1=2
n+m+1; t)T

−1
t . Then,

(Qt + �tI)−1Q
1=2
t

= Tt(T−1
t (Qt + �tI)Tt)−1T−1

t Q1=2t TtT
−1
t

= Tt diag

(
�1=21; t

�1; t + �t
; : : : ;

�1=2n+m+1; t
�n+m+1; t + �t

)
T−1
t :

This implies that

‖(Qt + �tI)−1Q1=2t ‖= max
i=1;:::;n+m+1

(
�1=2i; t

�i; t + �t

)
: (15)
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Consider now the function: f(x)= x1=2=(x + �t);
x¿0: Such a function has an absolute maximum value
1
2�

−1=2
t in x= �t . It then obviously follows from Eq.

(15) that

‖(Qt + �tI)−1Q1=2t ‖6 1
2�

−1=2
t : (16)

Substituting the estimates (14) and (16) in Eq. (13),
we obtain

‖#̂t − �#‖6‖#◦ − �#‖+ h1
(
log(tr(Qt))

�t

)1=2
;

h1 being a suitable constant.
Observe now that from Eq. (3) it follows that

n2k62max{‖#◦‖2; 1}[y2k + ‖’k−1‖2]. Taking into
account that the autoregressive part of model (3)
is not trivial (n¿0), this in turn implies that
n2k62max{‖#◦‖2; 1}[‖’k‖2 + ‖’k−1‖2], from which
it is easily shown that

t∑
k=1

n2k6h2
t+1∑
k=1

‖’k−1‖2;

where h2 is a suitable constant. From Assumption
(A.2) and de�nition (12) of Qt , we then get

lim
t→∞ tr(Qt)=∞:

Since by de�nition (9), �t =(log(tr(Qt)))1+�, we then
obtain that ∀�¿0 there exists a time instant � such
that ‖#̂t − �#‖6‖#◦ − �#‖+ �, ∀t¿�. By Assumption
(A.3), this implies that there exists a �nite time instant
�t such that #̂t ∈ S( �#; r), ∀t¿�t. This proves (ii).

Part (ii) in Theorem 1 shows that #̂t ∈ S( �#; r), t¿�t.
This implies that the projection operation (4.5) is dis-
connected in the long run and, yet, the estimate lies
inside the sphere S( �#; r). Since each model whose pa-
rameter belongs to S( �#; r) is controllable, from this the
uniform controllability of the estimated model easily
follows. In addition, thanks to the fact that the pro-
jection is disconnected, in Theorem 2 below we shall
be able to show that the estimate �#t preserves closed-
loop properties similar to those of the least-squares
algorithm. The properties of the estimate �#t stated in
Theorem 2 are fundamental for a successful applica-
tion of our identi�cation algorithm in adaptive con-
trol schemes suitable for possibly nonminimum-phase
systems. In particular, property (i) is widely recog-
nized as crucial for a correct selection of the control
law, see e.g. [4, 5, 14, 15]. Securing property (ii) is

important for obtaining stability and performance re-
sults, see e.g. [8, 7]. We also refer the reader to [19]
for a pole placement application where properties (i)
and (ii) have been exploited.
Recall that a standard measure of the controllability

of model yt =’Tt−1#+nt is given by the absolute value
of the determinant of the Sylvester matrix given by

Sylv(#) =




1
−a1 1

−a2 −a1 . . .
... −a2 . . . 1

−as
... −a1

−as −a2
. . .

...
−as︸ ︷︷ ︸

s

bd

bd+1
. . .

...
. . . bd

bs bd+1
. . .

...
bs




︸ ︷︷ ︸
s

;

(17)

where s=max{n; d+ m} (see e.g. [9]). In particular
|det(Sylv(#))| 6=0 is equivalent to say that the model
whose parameter is # is controllable.

Theorem 2 (Properties of the estimate �#t). (i) There
exists a constant c¿0 such that |det(Sylv( �#t))|¿c,
∀t, almost surely.
(ii) Assume that ut is Ft-measurable. Then, the

identi�cation error satis�es the following bound:

‖#◦ − �#t‖2 = O



(log

(
t∑
k=1

‖’k−1‖2
)
)1+�

�min

(
t∑
k=1
’k−1’Tk−1

)

;

almost surely: (18)

Proof. (i) Since the absolute value of the Sylvester
matrix determinant is a continuous function of the
system parameter # and it is strictly positive for any
#∈ S( �#; r) (see Assumption (A.3)), we can take

c := min
#∈ S( �#; r)

|det(Sylv(#))|¿0: (19)

Point (i) then immediately follows from the de�nition
of �#t in Eq. (4.5).
(ii) Let us rewrite the performance index Dt(#)

as a function of the least-squares estimate #̂
LS
t =
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argmin#∈Rn+m+1 Vt(#):

Dt(#) =(#− #̂LSt )T
[

t∑
k=1

’k−1’Tk−1 + Q

]
(#−#̂LSt )

+ �t‖#− �#‖2 + Vt(#̂LSt ):

From the de�nition of #̂t , it follows that

(#̂t − #̂LSt )T
[

t∑
k=1

’k−1’Tk−1 + Q

](
#̂t − #̂LSt

)
+ �t‖#̂t − �#‖2

6(#◦ − #̂LSt )T
[

t∑
k=1

’k−1’Tk−1 + Q

]
(#◦ − #̂LSt )

+ �t‖#◦ − �#‖2
= O(�t); (20)

almost surely, where the last equality is a consequence
of the already cited Theorem 1 in [12] and of the
boundedness of #◦. Consider now the equation

(#◦ − #̂t)T
[

t∑
k=1

’k−1’Tk−1 + Q

]
(#◦ − #̂t)

62
{(
#◦ − #̂LSt

)T

×
[

t∑
k=1

’k−1’Tk−1 + Q

](
#◦ − #̂LSt

)

+
(
#̂
LS
t − #̂t

)T[ t∑
k=1

’k−1’Tk−1 + Q

]

×
(
#̂
LS
t − #̂t

)}
:

Since in view of Eq. (20) both terms on the right-hand
side are almost surely O(�t), we get

(#◦ − #̂t)T
[

t∑
k=1

’k−1’Tk−1 + Q

]
(#◦ − #̂t)=O(�t)

almost surely. From this,

‖#◦ − #̂t‖2 =O


 �t

�min

(
t∑
k=1
’k−1’Tk−1 + Q

)

; a:s:

Since �#t = #̂t , ∀t¿�t (point (ii) in Theorem 1) and also
recalling de�nition (9) of �t , point (ii) immediately
follows.

Remark 1. The convergence rate of the standard least-

squares estimate #̂
LS
t is given by ([12], Theorem 1),

‖#◦ − #̂LSt ‖2 =O




log
(

t∑
k=1

‖’k−1‖2
)

�min

(
t∑
k=1
’k−1’Tk−1

)

 :

This is slightly better than the bound (18) due to the
exponent 1 + � in this last bound. On the other hand,
the least squares algorithm does not guarantee the es-
timated model controllability.

4. Conclusions

In the present contribution, we have introduced a
new identi�cation algorithm securing the estimated
model controllability, which is widely recognized as
a central problem in adaptive control. The proposed
approach requires some a priori knowledge on the re-
gion to which the true parameter belongs, but, in con-
trast with the alternative stream of methods suitable
for stochastic systems [4, 5, 13, 14], it has the main
advantage to be easily implementable. It is therefore
suggested as an e�ective solution to the controllabil-
ity problem in all the situations in which the required
a priori knowledge is available.
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