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Abstract: This paper gives an overview of LSCR (Leave-out Sign-dominant Cor-
relation Regions), a general technique for system identification. Under normal
conditions, observations contain information corrupted by disturbances and mea-
surement noise so that only an approximate description of the underlying system
can at best be obtained from a finite data set. This is similar to describing an object
seen through a frosted glass. Differently from standard identification methods that
deliver single models, LSCR generates a model set. As information increases, the
model set shrinks around the true system and, for any finite sample size, the set
is guaranteed to contain the true system with a precise probability chosen by the
user. LSCR only assumes a minimum amount of prior information on the noise.
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1. INTRODUCTION: FROM
NOMINAL-MODEL TO MODEL-SET

IDENTIFICATION

System identification is the science of deriving a
model from data.

In practical applications, the number of data
points an identification procedure can rely on is
always finite and, at times, scarce. Nevertheless,
most results in identification are of asymptotic
nature, that is they tell us what happens when
the number of data points tends to infinity. While
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results are useful in indicating fundamental
ative links between the identification set-
d the expected properties of the identi-
odel, when it comes to quantitative assess-
, they necessarily have to be used on an
ximate basis. Moreover, contributions have
red showing that the asymptotic theory can
ce misleading quantitative results in some

identification endeavors, Garatti et al.
,2006).

is paper, an attempt to bridge this gap is
: We here introduce, review and expand the
(Leave-out Sign-dominant Correlation Re-
approach. LSCR is a system identification
dology that provides rigorous results for any
data set, no matter how small.



1.1 The need for something more than a nominal
model

Suppose we want to identify a system S by select-
ing a model in a model class M. Even when S
belongs to the model class, we cannot expect that
the model M̂ identified from a finite data sample
coincides with S due to a number of accidents
affecting our data: measurement noise, presence
of disturbances acting on the system, etc.

Example 1. Consider the system

yt = θ0ut + wt, (1)

where ut is input, yt output and wt is an unmea-
sured disturbance. Let ut = 1 for all t and identify
θ by means of least-squares:

θ̂ =

(
N∑

t=1

u2
t

)−1 (
N∑

t=1

utyt

)
=

1
N

N∑
t=1

yt,

where N is the number of data points. The estima-
tion error θ̂−θ0 = 1

N

∑N
t=1 yt−θ0 = 1

N

∑N
t=1(θ

0+
wt) − θ0 = 1

N

∑N
t=1 wt does converge to zero

when N → ∞ under natural assumptions on wt.
However, for any finite N , 1

N

∑N
t=1 wt cannot be

expected to be zero and a system-model mismatch
is present. �

If a probabilistic description of the uncertain
elements is adopted, under general circumstances
the only probabilistic claim we are in a position
to make is that

Pr{M̂ = S} = 0,

clearly a useless statement if our intention is that
of crediting the model with reliability. Thus, when
an identification procedure only returns a nominal
model, we certainly cannot trust it to coincide
with the true system and - when this model is used
for any purpose - it is done in the hope that the
system-model mismatch does not affect the final
result too badly. While this way of proceeding is
practical, it is not grounded on a solid theoretical
basis.

A scientific use of an identified nominal model
requires instead that this model be complemented
with additional information, information able to
certify the model accuracy.

1.2 Model-set identification

A way to obtain certified results is to move from
nominal-model to model-set identification. An ex-
ample explains the idea.
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ple 2. (continuation of Example 1). In sys-
1), suppose that wt is white and Gaussian
zero mean and unitary variance. Then, θ̂ −

1
N

∑N
t=1 wt is a Gaussian random variable

variance equal to 1/N and we can easily
a probability to the event {|θ̂ − θ0| ≤ γ}

y given finite N by looking up a Gaussian
The practical use of this result is that - after

ating θ̂ from data - an interval [θ̂ − γ, θ̂ + γ]
e computed having guaranteed probability
tain the true parameter value. �

re general terms, the situation can be de-
as in Figure 1: Given any finite N , the

eter estimate θ̂ is affected by random fluctu-
so that it has probability zero to exactly hit
stem parameter value. Considering a region
d θ̂, however, elevates the probability that θ0

gs to the region to a nonzero - and therefore
ingful - value.

. Random fluctuation in parameter estimate.

bservation points to a simple, but important

xploiting the information conveyed by a fi-
ite number of data points can in standard
ituations at best generate a model set to
hich the system belong. Any further at-

empt to provide sharper estimation results
e.g. one single model) goes beyond the avail-
ble information level and generates results
hat cannot be guaranteed.

consequence, considering identification pro-
es returning parameter sets - as opposed to
parameter values - is a sensible approach in
tempt to provide guaranteed results.

g made this conceptual point, it is also
tant to observe that this in no way deny the
tance of nominal models: Nominal models
y an important practical role in many areas
s simulation, prediction and control. Thus,



constructing nominal models is often a significant
step towards finding a solution of a problem. Yet,
in order to judge the quality of the solution one
should also account for uncertainty, as given by a
model uncertainty set.

1.3 The role of a-priori information

Any system identification process is based on two
sources of information:

(i) a-priori information, that is we a-priori know
that S belongs to a system set S;

(ii) a-posteriori information, that is data col-
lected from the system.

Without any a-priori information we can hardly
generate any guaranteed result. In Example 2, we
assumed quite a bit of a-priori information: The
system structure was known; and the fact that the
noise was Gaussian with variance 1 was exploited
in the construction of the confidence region.

Having said that a-priori information cannot be
totally renounced, it is also important to point
out that a good theory should demand as little
prior as possible. Indeed:

– stringent prior conditions reduce the theory’s
applicability;

– in real applications, stringent prior condi-
tions may be difficult to verify even when
they are actually satisfied.

Going back to Example 2, let us ask the following
question: Can we reduce prior knowledge and
still provide guaranteed results? Some answer is
provided in the following example continuation.

Example 3. (continuation of Example 2). Suppose
now that the variance of wt is σ2 and that it
is unknown and no upper bound on its value is
available. We still want to quantify the probability
of the event {|θ̂ − θ0| ≤ γ} and we also want that
this probability to be guaranteed for any situation
allowed by our a-priori knowledge, that is for any
value of σ2.

Since θ̂ − θ0 is Gaussian with variance σ2/N , for
any given γ > 0 (even very large), supσ2 Pr{|θ̂ −
θ0| ≤ γ} = 0, so that the only statement valid for
all possible σ2 is

Pr{|θ̂ − θ0| ≤ γ} ≥ 0,

which is evidently a void statement.

A natural question is: Is the situation hopeless
and do we have to give up on finding guaranteed
results or can we attempt some other approach?
To answer, let us try to put the problem under a
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nt light: A well known fact from statistics
t

θ̂ − θ0√
1

N(N−1)

∑N
t=1(yt − θ̂)2

Student t-distribution (Richmond (1964))
N − 1 degrees of freedom, independently of
lue of σ2. Thus, given a γ, using tables of

tudent t-distribution one can determine a δ
hat

r

⎧⎨
⎩ |θ̂ − θ0|√

1
N(N−1)

∑N
t=1(yt − θ̂)2

≤ γ

⎫⎬
⎭ = δ,

the important fact is that the result holds
tter what σ2 is. Hence:

Pr
{
|θ̂ − θ0| ≤ γ(y)

}
= δ (2)

γ(y) = γ

√√√√ 1
N(N − 1)

N∑
t=1

(yt − θ̂)2.

atter is the desired accuracy evaluation re-
ne selects a γ and computes the correspond-
curacy variable γ(y) using data. The table
Student t-distribution is then used to find
obability δ of the confidence interval. �

emarks on Example 3 are in order:

f σ2 is unknown, we have seen that no
ccuracy result - save the void one - can
e established for a fixed deterministic γ.
et, by allowing γ to be data dependent (i.e.
y substituting γ with γ(y)) a meaningful
onclusion like (2) can be derived. This fact
ells us that we need to let the data speak
nd the uncertainty set size has to depend
n observed data.
he random variable θ̂−θ0√

1
N(N−1)

∑N

t=1
(yt−θ̂)2

is

function of data, and the distribution of
he data themselves depends on the noise
ariance σ2. Despite this, the distribution of

θ̂−θ0

1
N(N−1)

∑N

t=1
(yt−θ̂)2

is independent of σ2.

n the statistical literature, this is called
‘pivotal’ variable because its distribution

oes not depend on the variable elements
f the problem. The existence of a pivotal
ariable is crucial in this example to establish
result that is guaranteed for any σ2.

tunately, finding pivotal variables is gener-
ard even for very simple examples:



Example 4. Consider now the autoregressive sys-
tem

yt + θ0yt−1 = wt,

where again wt is zero-mean Gaussian with un-
known variance σ2. Finding a pivotal variable for
this situation is already a very hard problem. �

Thus, the approach outlined in Example 3 does
not appear to be easy to generalize. Nevertheless,
the concept of ‘pivotal’ distribution - or, more
generally, of ‘pivotal’ result - has a general appeal
and we shall come back to it at a later stage in
this paper.

1.4 Content of the present paper

In this paper, we provide an overview of LSCR
as a methodology to address the above described
problems of determining guaranteed model sets in
system identification. LSCR delivers data-based
confidence sets that contain the true parameter
value with guaranteed probability for any finite
data sample and it requires minimal knowledge
on the noise affecting the system.

The main idea behind the LSCR method is to
compute empirical correlation functions and to
leave out those regions in parameter space where
the correlation functions take on positive or nega-
tive values too many times. This principle, which
is the reason for he name of the method, is based
on the fact that for the true parameter value
the correlation functions are sums of zero mean
random variables and, therefore, it is unlikely that
nearly all of them will be positive or nearly all of
them will be negative.

Part I of the paper deals with the case where the
system S belongs to the model class M.

In many cases, however, the structure of S is only
partially known, and - even when S is known
to belong to a certain class S - we at times
deliberately look for a model in a restricted model
class M because S is too large to work with. In
these cases, asking for a probability that S ∈ M
looses any meaning and we should instead ask
whether M contains a suitable approximation or
‘projection’ of S. Part II of this paper contains
results for systems with unmodeled dynamics.

Further generalizations to a nonlinear set-up are
given in Part III.

The presentation is mainly based on examples
to help readability, while general results are only
sketched.

It goes without saying that the perspective of this
paper of reviewing LSCR is a matter of choice and
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techniques exist to deal with finite sample
fication. Without any claim or attempt of
leteness, some of these techniques are briefly
oned in the next section.

A SHORT LITERATURE REVIEW OF
E SAMPLE SYSTEM IDENTIFICATION

ioneering work of Vapnik and Chervonenkis
,1971) provided the foundations of what be-
the field of statistical learning theory, e.g.
k (1998), Cherkassky and Mulier (1998),
sagar (2002). By using exponential inequal-
uch as the Hoeffding inequality (Hoeffding
)) and combinatorial arguments, they de-
rigorous uniform probabilistic bounds on
ifference between expected values and em-
l means computed using a finite number of
points. An underlying assumption was that
ata points were independent and identically
uted, an assumption not often satisfied in

tem identification setting. Since the 1990s
s have appeared which extend the uniform
rgence results to dependent data sequences
as M -dependent sequences, and α-, β- and
ing sequences, e.g. Yu (1994), Bosq (1998),
dikar and Vidyasagar (2002). These ideas
applied to problems in identification and
tion developing non-asymptotic bounds on
timation and prediction accuracies. See e.g.
a and Masry (1996,1998), Campi and Ku-
1998), Goldenshluger (1998), Weyer et al.
), Weyer (2000), Meir (2000), Venkatesh and
h (2001), Campi and Weyer (2002), Weyer
ampi (2002), Vidyasagar and Karandikar

,2006), Bartlett (2003).

nite sample results with roots in learning
gave bounds on the difference between

ted and empirical means, and the bounds
depending on the number of data points,
ot on the actually seen data. For this reason
ould be quite conservative for the particular

at hand. A way around conservatism is
ke active use of the data and construct the
s using data coming from the system under
igation. Data based methods for evaluation
del quality using bootstrap and subsampling
Efron and Tibshirani (1993), Shao and Tu
), Politis (1998), Politis et al. (1999)) have
explored in Tjärnström and Ljung (2002),
ti and Lovera (2000) and Dunstan and Bit-
(2003). However, few truly rigorous finite
e results for model quality assessment are
ble for these techniques. Using subsampling
iques, Campi et al. (2004) obtained some
nteed results for generalised FIR systems.
so Hjalmarsson and Ninness (2004) and Nin-
nd Hjalmarsson (2004) for non-asymptotic



variance expressions for frequency function esti-
mates.

Data based finite sample results have also been de-
rived in the context of model validation by Smith
and Dullerud (1996), and the set membership ap-
proach to system identification, e.g. Milanese and
Vicino (1991), Vicino and Zappa (1996), Giarre’ et
al. (1997a,b), Garulli et al. (2000, 2002), Milanese
and Taragna (2005).

Along a different line of thought, finite sample
properties of worst case identification in deter-
ministic frameworks were studied in Dahleh et al.
(1993,1995), Poolla and Tikku (1994) and Harri-
son et al. (1996). Spall (1995) considered uncer-
tainty bounds for M-estimators with small sample
sizes. Non-parametric identification methods with
finite number of data points have been studied
by Welsh and Goodwin (2002) (see also Heath
(2001)), while Ding and Chen (2005) have stud-
ied the recursive least squares method in a finite
sample context.

The LSCR method presented in this paper is mak-
ing use of subsampling techniques, and in partic-
ular it extends the results of Hartigan (1969,1970)
to a dynamical setting. Loosely speaking, one
could view LSCR as a stochastic set membership
approach to system identification, where the set-
ting we consider is the standard stochastic setting
for system identification from e.g. Ljung (1999)
or Söderström and Stoica (1988), but where the
outcomes are sets of models as in set membership
identification.

PART I: Known system
structure

3. LSCR: A PRELIMINARY EXAMPLE

We start with a preliminary example that readily
provides some insight in the LSCR technique.
More general results and comments are given in
the next section.

Consider again the system of Example 4:

yt + θ0yt−1 = wt. (3)

Assume we know that wt is an independent pro-
cess and that it has a symmetric distribution
around zero. Apart from this, no knowledge on
the noise is assumed: It can have any (unknown)
distribution: Gaussian; uniform; flat with small-
area spikes at high-value locations describing the
chance of outliers; etc. Its variance can be any
(unknown) number, from very small to very large.
We do not even make any stationarity assumption

on wt

time.
be int
struct
1.

9 data
they a
wt ar
(they
a con
set.

Fig. 2

We ne
the pr
LSCR
result

Rewr
ramet

The p
the m
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and allow that its distribution varies with
The assumption that wt is independent can
erpreted by saying that we know the system
ure: It is an autoregressive system of order

points were generated according to (3) and
re shown in Figure 2. The values of θ0 and

e for the moment not revealed to the reader
will be disclosed later). Our goal is to form
fidence region for θ0 from the available data

. Data for the preliminary example.

xt adopt a user’s point of view and describe
ocedure in order to solve this problem with
. Later on comments regarding the obtained
s will be provided.

ite the system as a model with generic pa-
er θ:

yt + θyt−1 = wt.

redictor and prediction error associated with
odel are

= −θyt−1, εt(θ) = yt − ŷt(θ) = yt + θyt−1.

we compute the prediction errors εt(θ) for
. . . , 8, and calculate

ft−1(θ) = εt−1(θ)εt(θ), t = 2, . . . , 8.

that, ft−1(θ) are functions of θ that can
be computed from the available data set.
we take the average of some of these func-

in many different ways. Precisely, we form 8
ges of the form:

gi(θ) =
1
4

∑
k∈Ii

fk(θ), i = 1, . . . , 8, (4)

the sets Ii are subsets of {1, . . . , 7} con-
g the elements highlighted by a bullet in
ble below. For instance: I1 = {1, 2, 4, 5},
1, 3, 4, 6}, etc.. The last set, I8, is an excep-
set: It is empty and we let g8(θ) = 0. The

ons gi(θ), i = 1, . . . , 7, can be interpreted



as empirical 1-step correlations of the prediction
error.

I1

I2

I3

I4

I5

I6

I7

I8

1 2 3 4 5 6 7
• • • •
• • • •
• • • •

• • • •
• • • •
• • • •

• • • •

The functions gi(θ), i = 1, . . . , 7, obtained for the
data in Figure 2 are displayed in Figure 3.

empirical correlations

Fig. 3. The gi(θ) functions.

Now, a simple reasoning leads us to conclude that
these gi(θ) functions have a tendency to intersect
the θ-axis near θ0 and that, for θ = θ0, they
take on positive or negative value with equal
probability. Why is it so? Let us re-write one of
these functions, say g1(θ), as follows:

g1(θ) =
1
4

∑
k∈{1,2,4,5}

[yk + θyk−1][yk+1 + θyk]

=
1
4

∑
k∈{1,2,4,5}

[(yk + θ0yk−1) + (θ − θ0)yk−1]

×[(yk+1 + θ0yk) + (θ − θ0)yk]

=
1
4

∑
k∈{1,2,4,5}

[wk + (θ − θ0)yk−1]

×[wk+1 + (θ − θ0)yk]

= (θ − θ0)2
1
4

∑
k∈{1,2,4,5}

yk−1yk

+(θ − θ0)
1
4

∑
k∈{1,2,4,5}

wkyk

+(θ − θ0)
1
4

∑
k∈{1,2,4,5}

yk−1wk+1

+
1
4

∑
k∈{1,2,4,5}

wkwk+1.
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k∈{1,2,4,5} wkwk+1 = 0, the intersection
he θ-axis is obtained for θ = θ0. The vertical
acement’ 1

4

∑
k∈{1,2,4,5} wk−1wk is a random

le with equal probability of being positive or
ive; moreover, due to averaging, vertical dis-
n caused by noise is de-emphasized (it would
re de-emphasized with more data). So, we
like to claim that θ0 will be ‘somewhere’
here the average functions intersect the θ-

Moreover - following the above reasoning -
cognize that for θ = θ0 it is very unlikely
lmost all the gi(θ), i = 1, . . . , 7, functions

the same sign, and we therefore discard the
ost and leftmost regions where at most one

on is less than zero or greater than zero. The
ing interval [−0.04, 0.48] is the confidence
for θ0.

per reasoning (given in Appendix A for not
ing the continuity of discourse here) reveals
fairly strong claim on the obtained interval

e made:

ESULT: the confidence region constructed
his way has exact probability 1−2·2/8 = 0.5
o contain the true parameter value θ0.

comments are in order:

he interval is stochastic because it depends
n data; the true parameter value θ0 is not
nd it has a fixed location that does not
epend on any random element. Thus, what
he above RESULT says is that the interval
s subject to random fluctuation and covers
he true parameter value θ0 in 50% of the
ases.

. 10 more trials.

o better understand the nature of the re-
ult, we performed 10 more simulation trials
btaining the results in Figure 4. Note that
0 and wt were as follows: θ0 = 0.2, wt inde-



pendent with uniform distribution between
−1 and +1.

(2) In this example, probability is low (50%)
and the interval is rather large. With more
data, we obtain smaller intervals with higher
probability (see also the next section).

(3) The LSCR algorithm was applied with no
knowledge on the noise level or distribution
and, yet, it returned an interval whose prob-
ability was exact, not an upper bound. What
is the key here is that the above RESULT is
a ‘pivotal’ result as the probability remains
the same no matter what the noise charac-
teristics are.

(4) The result was established along a totally dif-
ferent inference principle from standard Pre-
diction Error Minimization (PEM) methods.
In particular - differently from the asymp-
totic theory of PEM - LSCR does not con-
struct the confidence region by quantifying
the variability in an estimate.

(5) We also mention a technical aspect: The piv-
otal RESULT holds because {Ii, i = 1, . . . , 8}
form a group under the symmetric difference
operation, that is (Ij ∪ Ik)− (Ij ∩ Ik) returns
another set in {Ii, i = 1, . . . , 8} for any j and
k. For instance, (I1 ∪ I2) − (I1 ∩ I2) = I3.

4. LSCR FOR GENERAL LINEAR SYSTEMS

4.1 Data generating system

Consider now the general linear system in Figure
5.

Fig. 5. The system.

We assume that wt and ut are independent pro-
cesses. This does not mean however that we are
confining ourselves to an open-loop configuration
since closed-loop systems can be reduced to the
set-up in Figure 5 by regarding wt and ut as
external signals, see Figure 6.

G(θ0) and H(θ0) are stable rational transfer func-
tions. H(θ0) is monic and has a stable inverse. wt

is a zero-mean independent sequence (noise). No
a-priori knowledge of the noise level is assumed.

The basic assumption we make is that the system
structure is known and, correspondingly, we take
a full-order model class of the form:

Fig. 6
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. Closed-loop recast as open-loop.

yt = G(θ)ut + H(θ)wt,

that the true transfer functions G(θ0) and
are obtained for θ = θ0 and for no other pa-
er than this. We assume that θ is restricted
t Θ such that H(θ) is monic and G(θ), H(θ)
−1(θ) are stable for all θ ∈ Θ.

oal is to construct an algorithm that works
following way (see Figure 7): A finite input-
t data set is given to the algorithm together
probability p̄. The algorithm is required to
a confidence region that contains the true

th probability p̄ under assumptions on the
as general as possible.

ALGO
region for

. The algorithm.

onstruction of confidence regions

art by describing procedures for the determi-
of confidence sets Θε

r based on correlation
rties of ε (the prediction error) at different
nstants (this generalizes the preliminary ex-
in Section 3) and of confidence sets Θu

s

on cross-correlation properties of ε and u.
neral, confidence regions Θ̂ for θ0 can be
ucted by taking the intersection of a few
Θε

r and Θu
s sets and this is discussed at the

f this section.

edure for the construction of Θε
r

ompute the prediction errors

t(θ) = yt − ŷt(θ) = H−1(θ)yt − H−1(θ)G(θ)ut



for a finite number of values of t, say t =
1, 2, . . . , K;

(2) Select an integer r ≥ 1. For t = 1+r, . . . , N +
r = K, compute

f ε
t−r,r(θ) = εt−r(θ)εt(θ);

(3) Let I = {1, . . . , N} and consider a collection
G of subsets Ii ⊆ I, i = 1, . . . ,M , forming a
group under the symmetric difference opera-
tion (i.e. (Ii∪Ij)−(Ii∩Ij) ∈ G, if Ii, Ij ∈ G).
Compute

gε
i,r(θ) =

∑
k∈Ii

f ε
k,r(θ), i = 1, . . . , M ;

(4) Select an integer q in the interval [1, (M +
1)/2) and find the region Θε

r such that at
least q of the gε

i,r(θ) functions are bigger than
zero and at least q are smaller than zero. �

The above procedure is the same as the one
used for construction of the confidence set in the
preliminary example in Section 3. In that example
we had H−1(θ) = 1 + θz−1, G(θ) = 0, and
K = 8, N = 7, r = 1,M = 8 and q = 2.
Normalization 1

4 in the preliminary example was
introduced for the purpose of interpreting the
gi(θ) functions as empirical averages but it could
have been dropped similarly to point 3 in the
above procedure without affecting the final result.

In the procedure, the group G can be freely se-
lected. Thus, if e.g. I = {1, 2, 3, 4}, a suitable
group is G = {{1, 2}, {3, 4}, ∅, {1, 2, 3, 4}}; an-
other one is G = {{1}, {2, 3, 4}, ∅, {1, 2, 3, 4}};
yet another one is G = all subsets of I. While
the theory presented holds for any choice and
the region Θε

r is guaranteed to be a confidence
region in any case (see Theorem 1 below), the
feasible choices are limited by computational con-
siderations. For example, the set of all subsets
cannot be normally chosen as it is a truly large
set. Gordon (1974) discusses how to construct
groups of moderate size where the subsets contain
approximately half of the elements in I and such
a procedure is also summarized in Appendix B.
These sets are particularly well suited for use in
point 3 of the above procedure.

The intuitive idea behind the construction in the
procedure is that, for θ = θ0, the functions gε

i,r(θ)
assume positive or negative value at random, so
that it is unlikely that almost all of them are
positive or that almost all of them are negative.
Since point 4 in the construction of Θε

r discards
regions where all gε

i,r(θ)’s but a small fraction
(q should be taken to be small compared to M)
are of the same sign, we expect that θ0 ∈ Θε

r

with high probability. This is put on solid math-
ematical grounds in Theorem 1 below, showing
that the probability that θ0 ∈ Θε

r is actually
1− 2q/M . Thus, q is a tuning parameter that has
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selected such that a desired probability of
nfidence region is obtained. Moreover, as q
ses, we exclude larger and larger regions of
hence Θε

r shrinks and the probability that
ε
r decreases.

rocedure for construction of the sets Θu
s is in

me spirit. The only difference being that the
ical auto-correlations in point 2 are replaced
pirical cross-correlations between the input
and the prediction error.

edure for the construction of Θu
s

ompute the prediction errors

t(θ) = yt − ŷt(θ) = H−1(θ)yt − H−1(θ)G(θ)ut

or a finite number of values of t, say t =
, 2, . . . , K;
elect an integer s ≥ 0. For t = 1+s, . . . , N +
= K, compute

fu
t−s,s(θ) = ut−sεt(θ);

et I = {1, . . . , N} and consider a collection
of subsets Ii ⊆ I, i = 1, . . . , M , forming a

roup under the symmetric difference opera-
ion. Compute

gu
i,s(θ) =

∑
k∈Ii

fu
k,s(θ), i = 1, . . . ,M ;

elect an integer q in the interval [1, (M + 1)/2)
nd find the region Θu

s such that at least q
f the gu

i,s(θ) functions are bigger than zero
nd at least q are smaller than zero. �

ext theorem gives the exact probability that
ue parameter θ0 belongs to one particular
above constructed sets. The proof of this

m - as well as comments on the technical
ption on densities - can be found in Campi
eyer (2005).

em 1. Assume that the variables wt and
admit densities and that wt is symmetrically
uted around zero. Then, the sets Θε

r and Θu
s

ucted above are such that:

Pr{θ0 ∈ Θε
r}= 1 − 2q/M, (5)

Pr{θ0 ∈ Θu
s}= 1 − 2q/M. (6)

ollowing comments pinpoint some important
ts of this result:

he procedures return regions of guaranteed
robability despite that no a-priori knowl-
dge on the noise level is assumed: The noise
evel enters the procedures through data only.
his could be phrased by saying that the
rocedures let the data speak, without a-
riori assuming what they have to tell us.



(2) As expected, noise level does impact the final
result as the shape and size of the region
depend on noise via the data.

(3) Evaluations (5) and (6) are nonconservative
in the sense that 1 − 2q/M is the exact
probability, not a lower bound of it.

Each one of the sets Θε
r and Θu

s is a non-
asymptotic confidence set for θ0. However, each
one of these sets is based on one correlation only
and will usually be unbounded in some direc-
tions of the parameter space, and therefore not
particularly useful. A general practically useful
confidence set Θ̂ can be obtained by intersecting
a number of the sets Θε

r and Θu
s , i.e.

Θ̂ = ∩nε
r=1Θ

ε
r ∩nu

s=1 Θu
s . (7)

An obvious question is how to choose nε and
nu in order to obtained well shaped confidence
sets that are bounded and concentrated around
the true parameter θ0. It turns out that the
answer depends on the particular model class
under consideration and this issue will be further
discussed in Section 6.

We conclude this section with a fact which is
immediate from Theorem 1.

Theorem 2. Under the assumptions of Theorem
1,

Pr{θ0 ∈ Θ̂} ≥ 1 − (nε + nu)2q/M,

where Θ̂ is given by (7).

The inequality in the theorem is due to that the
events {θ0 /∈ Θε

r}, {θ0 /∈ Θu
s}, r = 1, . . . , nε,

s = 1, . . . , nu, may be overlapping.

Theorem 2 can be used in connection with robust
design procedures: If a problem solution is robust
with respect to Θ̂ in the sense that a certain
property is achieved for any θ ∈ Θ̂, then such
a property is also guaranteed for the true system
with the selected probability 1 − (nε + nu)2q/M .

5. EXAMPLES

Two examples illustrate the developed methodol-
ogy. The first one is simple and permits an easy
illustration of the method. The second is more
challenging.

5.1 First order ARMA system

Consider the ARMA system

yt + a0yt−1 = wt + c0wt−1, (8)
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a0 = −0.5, c0 = 0.2 and wt is an inde-
nt sequence of zero mean Gaussian random
les with variance 1. 1025 data points were

ated according to (8). As a model class we
t+ayt−1 = wt+cwt−1, |a| < 1, |c| < 1, with
ated predictor and prediction error given by

c) =−cŷt−1(a, c) + (c − a)yt−1,

c) = yt − ŷt(a, c) = yt + ayt−1 − cεt−1(a, c).

der to form a confidence region for θ0 =
) we calculated

(a, c) = εt−1(a, c)εt(a, c), t = 2, . . . , 1024,

(a, c) = εt−2(a, c)εt(a, c), t = 3, . . . , 1025,

hen computed

,1(a, c) =
∑
k∈Ii

f ε
k,1(a, c), i = 1, . . . , 1024,

,2(a, c) =
∑
k∈Ii

f ε
k,2(a, c), i = 1, . . . , 1024,

the group in Appendix B. Next we discarded
values of a and c for which zero was among
largest and smallest values of gε

i,1(a, c) and
, c). Then, according to Theorem 2, (a0, c0)
gs to the constructed region with probability
st 1− 2 · 2 · 12/1024 = 0.9531. The obtained
ence region is the blank area in Figure 8.
rea marked with x is where 0 is among the
allest values of gε

i,1, the area marked with
here 0 is among the 12 largest values of

ikewise for gε
i,2 with the squares representing

0 belongs to the 12 largest elements and the
the 12 smallest. The true value (a0, c0) is

d with a star. As we can see, each step in
nstruction of the confidence region excludes
icular region.

the algorithm for the construction of Θ̂ we
obtained a bounded confidence set with a
nteed probability based on a finite number of
points. As no asymptotic theory is involved
s a rigorous finite sample result. For com-
n, we have in Figure 8 also plotted the 95%
ence ellipsoid obtained using the asymptotic
(Ljung (1999), Chapter 9). The two confi-
regions are of similar shape and size, con-
g that the non-asymptotic confidence sets
actically useful, and - unlike the asymptotic
ence ellipsoids - they do have guaranteed
bility for a finite sample size.

closed-loop system

ollowing example was originally introduced
ratti et al. (2004) to demonstrate that the



Fig. 8. Non-asymptotic confidence region for
(a0, c0) (blank region) and asymptotic con-
fidence ellipsoid. 
 = true parameter, � =
estimated parameter using a prediction error
method.

asymptotic theory of PEM can at times deliver
misleading results even with a large amount of
data points. It is reconsidered here to show how
LSCR works in this challenging situation.

Consider the system of Figure 9 where

Fig. 9. The closed-loop system.

F (θ0) =
b0z−1

1 + a0z−1
, a0 = −0.7, b0 = 0.3

H ′(θ0) = 1 + h0z−1, h0 = 0.5,

wt is white Gaussian noise with variance 1 and
the reference ut is also white Gaussian, with
variance 10−6. Note that the variance of the
reference signal is very small as compared to the
noise variance, that is there is poor excitation. It
is perhaps interesting to note that the present
situation - though admittedly artificial - is a
simplification of what often happens in practical
identification, where poor excitation is due to
the closed-loop operation of the system. 2050
measurements of u and y were generated to be
used in identification.

We first describe what we obtained using PEM
identification.

A full order model was identified. The amplitude
Bode diagrams of the transfer function from u

to y
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of the identified model and of the real
are plotted in Figure 10. From the plot,

mismatch between the real plant and the
fied model is apparent, a fact that does not
too much of a surprise considering that the
nce signal is poorly exciting. An analysis
cted in Garatti et al. (2004) shows that,
ut = 0, the asymptotic PEM identification
as two isolated global minimizers, one is θ0

second one is a spurious parameter, say θ∗;
ut �= 0 but small as is the case in our actual
iment, θ∗ does not minimize the asymptotic
anymore, but random fluctuations in the
fication cost due to the finiteness of the data
may as well result in that the estimate gets

ed near the spurious θ∗, generating a totally
identified model.

0. The identified u − y transfer function.

let us now see what we obtained as a 90%
ence region with the asymptotic theory.
e 11 displays the confidence region in the
ncy domain: Surprisingly, it concentrates
d the identified model, so that in a real
fication procedure where the true transfer
on is not known we would conclude that the
ated model is reliable, a totally misleading
. We will come back to this point later and
s a bit further the theoretical reason for such
behavior.

n now to the LSCR approach. LSCR was
in a totally ‘blind’ manner, that is with
ncern at all for the identification set-up
cteristics; in particular, we did not pay any
ion to the existence of local minima: The
d is guaranteed by the theory and it will
in all possible situations covered by the
.

present setting, the prediction error is given

t(θ) =
1

1 + hz−1
yt



Fig. 11. 90% confidence region for the identified
u − y transfer function obtained with the
asymptotic theory.

− bz−1

(1 + az−1)(1 + hz−1)
(ut − yt)

=
1 + (a + b)z−1

(1 + az−1)(1 + hz−1)
yt

− bz−1

(1 + az−1)(1 + hz−1)
ut.

The group was constructed as in the Appendix B
(2l = 2048), and we computed

gε
i,r(θ) =

∑
k∈Ii

εk−r(θ)εk(θ), r = 1, 2, 3,

in the parameter space, making the standard as-
sumptions that G(θ) and H(θ) (i.e. the u to y
and w to y closed-loop transfer functions) were
stable (|a + b| < 1) and that H(θ) has a stable
inverse (|a| < 1, |h| < 1). We excluded the regions
in the parameter space where 0 was among the 34
smallest or largest values of any of the three corre-
lations above to obtain a 1−3·2·34/2048 = 0.9004
confidence set. The confidence set is shown in
Figure 12. The set consists of two separate regions,
one around the true parameter θ0 and one around
θ∗, the spurious minimizer. This illustrates the
global features of the approach: LSCR produces
two separate regions as the overall confidence set
because information in the data is intrinsically in-
effective in telling us which one of the two regions
contain the true parameter.

Figures 13 and 14 show the close-ups of the two
regions. The ellipsoid in Figure 13 is the 90%
confidence set with the asymptotic PEM theory:
When the PEM estimate gets trapped near θ∗, the
confidence ellipsoid all concentrates around this
spurious θ∗ because the PEM asymptotic theory is
local in nature (it is based on a Taylor expansion)
and is therefore unable to explore locations far
from the identified model. This is the reason why
in Figure 11 we obtained a frequency domain
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2. 90% confidence set.

3. Asymptotic confidence 90% ellipsoid (-),
nd the part of the non-asymptotic confi-
ence set around θ∗ (- -).

4. Close-up of the non-asymptotic confi-
ence region around θ0.

ence region unable to capture the real model
tainty. The reader is referred to Garatti et al.
) for more details.

6. LSCR PROPERTIES

e have seen in Section 4, Theorems 1 and
ntify the probability that θ0 belongs to the



constructed regions. However, this theorem deals
only with one side of the story. In fact, a good
evaluation method must have two properties:

– the provided region must have guaranteed
probability (and this is what Theorems 1 and
2 deliver);

– the region must be bounded, and, in partic-
ular, it should concentrate around θ0 as the
number of data points increases.

We next discuss how this second property can be
achieved by choosing nε and nu in (7). It turns out
that the choice depends on the model class, and
we here consider ARMA and ARMAX models,
while general linear model classes are dealt with
in Campi and Weyer (2005).

6.1 ARMA models

Data generating system and model class

The data generating system is given by

yt =
C(θ0)
A(θ0)

wt,

where

A(θ0) = 1 + a0
1z

−1 + · · · + a0
nz−n,

C(θ0) = 1 + c0
1z

−1 + · · · + c0
pz

−p,

and θ0 = [a0
1 · · · a0

n c0
1 · · · c0

p]
T . In addition to

the assumptions in Section 4.1 and in Theorem 1,
we assume that A(θ0) and C(θ0) have no common
factors and that wt is wide-sense stationary with
spectral density Φw(ω) = λ2

w > 0.

The model class is

yt =
C(θ)
A(θ)

wt,

where

A(θ) = 1 + a1z
−1 + · · · + anz−n,

C(θ) = 1 + c1z
−1 + · · · + cpz

−p,

θ = [a1 · · · an c1 · · · cp]T , and the assumptions
in Section 4.1 are in place.

Confidence regions for ARMA models

We next give a result taken from Campi and
Weyer (2005) which shows how a confidence re-
gion which concentrates around the true parame-
ter as the number of data points increases can be
obtained for ARMA systems.

Theorem 3. Let εt(θ) = A(θ)
C(θ)yt be the prediction

error associated with the ARMA model class.
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θ = θ0 is the unique solution to the set
ations:

E[εt−r(θ)εt(θ)] = 0, r = 1, . . . , n + p.

em 3 shows that if we simultaneously impose
correlation conditions, where n and p are the
of the A(θ) and C(θ) polynomials, then the
olution is the true θ0. Guided by this idea,
nsider n + p sample correlation conditions,
t nε = n + p in (7):

Θ̂ = ∩n+p
r=1 Θε

r.

em 2 guarantees that this set contains θ0

probability 1 − (n + p)q/M , and Theorem
ails that the confidence set concentrates
d θ0.

RMAX models

generating system and model class

der now system

yt =
B(θ0)
A(θ0)

ut +
C(θ0)
A(θ0)

wt,

A(θ0) = 1 + a0
1z

−1 + · · · + a0
nz−n,

B(θ0) = b0
1z

−1 + · · · + b0
mz−m,

C(θ0) = 1 + c0
1z

−1 + · · · + c0
pz

−p,

0 = [a0
1 · · · a0

n b0
1 · · · b0

m c0
1 · · · c0

p]
T . In

on to the assumptions in Section 4.1 and in
em 1, we assume that A(θ0) and B(θ0) have
mmon factors and - similarly to the ARMA
we assume a stationary environment. Pre-
wt is wide-sense stationary with spectral

y Φw(ω) = λ2
w > 0 and ut is wide-sense

nary too and independent of wt.

odel class is

yt =
B(θ)
A(θ)

ut +
C(θ)
A(θ)

wt,

A(θ), B(θ), C(θ) have the same structure
the true system.

dence regions for ARMAX models

ext theorem taken from Campi and Weyer
) shows that we can choose correlation equa-
such that the solution is unique and equal
provided that the input signal ut is white.

em 4. Let εt(θ) = A(θ)
C(θ)yt − B(θ)

C(θ)ut be the
tion error associated with the ARMAX



model class. If ut is white with spectral density
Φu(ω) = λ2

u > 0, then θ = θ0 is the unique
solution to the set of equations:

E[ut−sεt(θ)] = 0, s = 1, . . . , n + m,

E[εt−r(θ)εt(θ)] = 0, r = 1, . . . , p.

Guided by this result, we choose nε = p and
nu = n + m in (7) to arrive at the following
confidence region for ARMAX models:

Θ̂ = ∩p
r=1Θ

ε
r ∩n+m

s=1 Θu
s .

Interestingly enough, the conclusion of Theorem
4 does not hold true for colored input sequences,
see Campi and Garatti (2003). On the other hand,
assuming that ut is white is often unrealistic.
This impasse can be circumvented by resorting to
suitable prefiltering actions, as indicated in Campi
and Weyer (2005).

6.3 Properties of LSCR

To summarize, LSCR has the following properties:

– for suitable selections of the correlations, the
region shrinks around θ0;

– for any sample size, θ0 belongs to the con-
structed region with given probability, de-
spite that no assumption on the level of noise
is made.

7. COMPLEMENTS

In this Part I, the only restrictive assumption
on noise was that it had symmetric distribution
around zero. This assumption can be relaxed as
briefly discussed here.

(i) Suppose that wt in Section 4 has median
0, i.e. Pr{wt ≥ 0} = Pr{wt < 0} = 0.5
(note that this is a relaxation of the sym-
metric distribution condition). Then, the-
ory goes through by considering everywhere
sign(εt(θ)) instead of εt(θ), where ‘sign’ is
signum function: sign(x) = 1 if x > 0,
sign(x) = −1 if x < 0 and sign(x) = 0 if
x = 0.

(ii) When wt is independent and identically but
not symmetrically distributed, we can obtain
symmetrically distributed data by consider-
ing the difference between two subsequent
data points, that is (yt − yt−1) = G(θ)(ut −
ut−1)+H(θ)(wt−wt−1); here, wt−wt−1, t =
2, 4, 6, . . . are independent and symmetrically
distributed around 0 and we can refer to this
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difference’ system to construct confidence
egions.

RT II: Presence of
odeled dynamics

s second part, we discuss the possibility to
ith unmodeled dynamics within the LSCR

work: Despite that the true system is not
the model class, we would like to derive

nteed results for some parts of the system.

art by describing the problem of identifying
-order u to y transfer function, without
ng a model for the noise. Then, we turn to
onsider unmodeled dynamics in the u to y
er function. General ideas are only discussed
ans of simple examples.

IDENTIFICATION WITHOUT NOISE
DESCRIPTION: AN EXAMPLE

der the system

yt = θ0ut + nt.

se that the structure of the u to y transfer
on is known. Instead, the noise nt describes
her sources of variation in yt apart from ut

e do not want to make any assumption on
t is generated. Correspondingly, we want
ur results regarding the value of θ0 are valid
y (unknown) deterministic noise sequence nt

no constraints whatsoever. When the noise
chastic, the result will then hold for any
ation of the noise, that is surely.

is section, we assume that we have access
system for experiment: We are allowed to

ate a finite number, say 7, of input data
based on the collected outputs - we are
to construct a confidence interval Θ̂ for θ0

ranteed probability.

roblem looks very challenging indeed: Since
oise can be whatever, it seems that the
ed data are unable to give us a hand in
ucting a confidence region. In fact, for any
θ0 and ut, a suitable choice of the noise

nce can lead to any observed output signal!
s see how this problem can be circumvented.

e proceeding, we feel advisable to make clear
is meant here by ‘guaranteed probability’.
aid that nt is regarded as a deterministic
nce, and the result is required to hold true
y nt, that is uniformly in nt. The stochastic
nt is instead the input sequence: We will



select ut according to a random generation mech-
anism and we require that θ0 ∈ Θ̂ with a given
probability value, where the probability is with
respect to the random choice of ut.

We first indicate input design and then the pro-
cedure for construction of the confidence interval
Θ̂.

Input design

Let ut, t = 1, . . . , 7, be independent and identi-
cally distributed with distribution

ut =
{

1, with probability 0.5
−1, with probability 0.5.

Procedure for construction of the confi-
dence interval Θ̂

Rewrite the system as a model with generic pa-
rameter θ:

yt = θut + nt.

We construct a prediction by dropping the noise
term nt whose characteristics are unknown:

ŷt(θ) = θut, εt(θ) = yt − ŷt(θ) = yt − θut.

Next, we compute the prediction errors εt(θ) from
the observed data for t = 1, . . . , 7 and calculate

ft(θ) = utεt(θ), t = 1, . . . , 7.

The rest of the construction is the same as for the
preliminary example of Section 3: We consider the
same group of subsets as given in the bullet table
in that example and construct the gi(θ) functions
as in (4). Then, we extract the interval where at
least two functions are below zero and at least
two are above zero. The reader can verify that the
theoretical analysis for the example in Section 3
goes through here to conclude that the obtained
interval has probability 0.5 to contain the true θ0.
Interestingly, the property of wt to be independent
and symmetrically distributed have been replaced
here by analogous properties of the input signal;
the advantage is that - if the experiment can be
designed - these properties can be easily enforced
and no restrictive conditions on the noise are
required anymore.

A simulation example was run where θ0 = 1 and
the noise was the sequence shown in Figure 15.
This noise sequence was obtained as a realization
of a biased independent Gaussian process with
mean 0.5 and variance 0.1. The obtained gi(θ)
functions and the corresponding confidence region
are given in Figure 16.
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5. Noise sequence.

empirical correlations

6. The gi(θ) functions.

NMODELED DYNAMICS IN THE U TO
RANSFER FUNCTION: AN EXAMPLE

se that a system has structure

yt = θ0
0ut + θ0

1ut−1 + nt,

- for estimation purposes - we use the
ed order model

yt = θut + nt.

oise has been indicated with a generic nt

nify that it can be whatever, and not just a
signal. In fact, a perspective similar to the
us section is taken and we regard nt as a

ic unknown deterministic signal.

determining a region for the parameter θ,
ensible question to ask is: Does this region
in with a given probability the system pa-
er θ0

0 linking ut to yt?

erpreting the above question we are ask-
hether the projection of the true transfer
on θ0

0 + θ0
1z

−1 onto the 1-dimensional space
ed by constant transfer functions is con-
in the estimated set with a certain prob-

.



We generate an input signal ut in the same way
as in the previous section, this time over the
time interval t = 0, . . . , 7, and inject it into the
system. Then, the predictor and prediction error
are constructed the same way as in the previous
section, while we add a sign function to ft(θ):

ft(θ) = sign(utεt(θ)), t = 1, . . . , 7. (9)

Corresponding to the true parameter value, i.e.
θ = θ0

0, an easy inspection reveals that sign(utεt(θ0
0))

= sign(ut(θ0
1ut−1 + nt)) is an independent and

symmetrically distributed process (it is in fact
a Bernoullian process taking on values ±1 with
probability 0.5 each). Thus, with ft(θ) as in (9),
the situation is similar to what we had in the pre-
vious section and again the theory goes through
to prove that an interval for θ constructed as in
the previous section has probability 0.5 to contain
θ0
0, despite the presence of unmodeled dynamics.

A simulation example was run with θ0
0 = 1,

θ0
1 = 0.5 and where the noise was again the

realization of a biased Gaussian process given
in Figure 15. As sign(utεt(θ)) only can take on
the values −1, 1 and 0, it is possible that two
or more of the gi(θ) functions will take on the
same value on an interval (in technical terms,
the assumption on the existence of densities in
Theorem 1 does not hold). This tie can be broken
by introducing a random ordering (e.g. by adding
a random constant number between −0.1 and 0.1
to the gi(θ) functions) and one can see that the
theory remains valid. The obtained gi(θ) functions
and confidence region are in Figure 17.

Fig. 17. The gi(θ) functions.

Though presented on simple examples, the ap-
proaches illustrated in Sections 8 and 9 to deal
with unmodeled dynamics bear a general breath
of applicability.
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RT III: Nonlinear sys-
s

stingly, the identification set-up developed
vious sections in a linear setting generalizes
ally to nonlinear systems. Such an extension
sented in this part III with reference to a
e example.

. IDENTIFICATION OF NONLINEAR
SYSTEMS: AN EXAMPLE

der the following nonlinear system

yt = θ0(y2
t−1 − 1) + wt, (10)

wt is an independent and symmetrically
uted sequence and θ0 is an unknown pa-
er.

ystem can be made explicit with respect to
follows:

wt = yt − θ0(y2
t−1 − 1),

by substituting θ0 with a generic θ and re-
g the so-obtained right-hand-side as wt(θ) -
ve

wt(θ) = yt − θ(y2
t−1 − 1).

that wt(θ) coincides in this example with the
tion error for the model with parameter θ. It
true, however, that the above construction

ates the prediction error for any nonlinear
. For example, if we make explicit system

θ0yt−1wt with respect to wt we get wt =
t−1, and further substituting a generic θ we

wt(θ) = yt/θyt−1. This is not the prediction
since the predictor is in this case ŷt(θ) = 0,
t the prediction error is here given by yt −
t. Note also that for linear systems wt(θ) is
s equal to the prediction error εt(θ) so that
nstruction suggested here for the generation
θ) generalizes the construction of εt(θ) for
systems.

an inspection of the proof in Appendix A
s that the only property that has a role
termining the result that the confidence
contains θ0 with a given probability is that
= wt. Since this same property holds here

t(θ), i.e. wt(θ0) = wt, we can argue that
eding in the same way as for the preliminary
ple of Section 3 where εt(θ) is replaced by

still generates in the present context a
nteed confidence region.

all so simple? It is indeed, as far as the
ntee that θ0 is in the region is concerned.
ark side of the medal is that second order



statistics are in general not enough to spot the
real parameter value for nonlinear systems, so that
results like those in Section 6 do not apply to
conclude that the region shrinks around θ0.

In actual effects, if e.g. θ0 = 0 and E[w2
t ] = 1,

some easy computation reveals that E[wt−r(θ)wt(θ)]
= 0 for any θ and for any r > 0 so that the second-
order statistics are useless.

Now, the good news is that LSCR can be up-
graded to higher-order statistics with little effort.
A general presentation of the related results can
be found in Dalai et al. (2005). Here, it suffices
to say that we can e.g. consider the third-order
statistic E[wt(θ)2wt+1(θ)] and the theory goes
through unaltered.

As an example, we generated 9 samples of yt,
t = 0, . . . , 8 for system (10) where wt is zero-mean
Gaussian with variance 1. Then, we constructed

gi(θ) =
1
4

∑
k∈Ii

wk(θ)2wk+1(θ), i = 1, . . . , 8,

where the sets Ii are as in Section 3. These
functions are displayed in Figure 18. The interval
marked in blue where at least two functions are
below zero and at least two are above zero has
probability 0.5 to contain θ0 = 0.

empirical 3rd-order correlations

Fig. 18. The gi(θ) functions.

11. CONCLUSIONS

In this paper we have provided an overview of
the LSCR method for system identification. Most
of the existing theory for system identification is
asymptotic in the number of data points while
in practice one will only have a finite number
of samples available. Although the asymptotic
theory often delivers sensible results when applied
heuristically to a finite number of data points, the
results are not guaranteed. The LSCR method
delivers guaranteed finite sample results, and it
produces a set of models to which the true system
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gs with a given probability for any finite
er of data points.

ustrated by the simulation examples, the
d is not only grounded on a solid theoret-
asis, but it also delivers practically useful
ence sets.

SCR method takes a global approach and
hen the situation requires, produce a con-

e set which consists of disjoint regions, and
it has advantages over confidence ellipsoids
on the asymptotic theory.

lowing the user to choose the input signal,
SCR method can be extended to deal with
deled dynamics, and it can also be extended
-linear systems by considering higher-order

tics.
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ppendix A. PROOF OF THE RESULT

e confidence region construction, we elim-
the regions in parameter space where all
ons gi(θ), i = 1, . . . , 7, are above zero, or
st one of them is below zero and where

nctions are below zero, or at most one of
is above zero. Therefore, the true parameter
θ0 falls outside the confidence region when
esponding to θ = θ0 - all functions gi(θ),
. . . , 7, are bigger than g8(θ) = 0, or at most
f them is smaller than g8(θ) and where all
ons are smaller than g8(θ), or at most one
m is bigger than g8(θ). We claim that each
these events has probability 1/8 to happen,
t the total probability that θ0 falls outside
nfidence region is 4 · 1/8 = 0.5, as claimed
RESULT.

ext concentrate on one condition only and
ute the probability that ‘all functions gi(θ0),
, . . . , 7, are bigger than g8(θ0) = 0’. The
bility of the other conditions can be derived
rly.

onsidered condition writes

w1w2 + w2w3 + w4w5 + w5w6 > 0
w1w2 + w3w4 + w4w5 + w6w7 > 0
w2w3 + w3w4 + w5w6 + w6w7 > 0
w1w2 + w2w3 + w6w7 + w7w8 > 0
w1w2 + w3w4 + w5w6 + w7w8 > 0
w2w3 + w3w4 + w4w5 + w7w8 > 0
w4w5 + w5w6 + w6w7 + w7w8 > 0.

(A.1)

mpute the probability that all these 7 in-
ities are simultaneously true let us ask the
ing question: What would we have writ-
instead of comparing gi(θ0), i = 1, . . . , 7,

g8(θ0) we would have compared gi(θ0), i =
8, with g1(θ0)? The conditions would have

1w2 + w3w4 + w4w5 + w6w7

> w1w2 + w2w3 + w4w5 + w5w6

2w3 + w3w4 + w5w6 + w6w7

> w1w2 + w2w3 + w4w5 + w5w6

1w2 + w2w3 + w6w7 + w7w8

> w1w2 + w2w3 + w4w5 + w5w6

1w2 + w3w4 + w5w6 + w7w8

> w1w2 + w2w3 + w4w5 + w5w6

2w3 + w3w4 + w4w5 + w7w8

> w1w2 + w2w3 + w4w5 + w5w6

4w5 + w5w6 + w6w7 + w7w8

> w1w2 + w2w3 + w4w5 + w5w6

> w1w2 + w2w3 + w4w5 + w5w6,



or, moving everything to the left-hand-side,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−w2w3 + w3w4 − w5w6 + w6w7 > 0
−w1w2 + w3w4 − w4w5 + w6w7 > 0
−w4w5 − w5w6 + w6w7 + w7w8 > 0
−w2w3 + w3w4 − w4w5 + w7w8 > 0
−w1w2 + w3w4 − w5w6 + w7w8 > 0
−w1w2 − w2w3 + w6w7 + w7w8 > 0
−w1w2 − w2w3 − w4w5 − w5w6 > 0.

If we now let w̃2 = −w2, w̃5 = −w5, the latter
condition re-writes as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

w̃2w3 + w3w4 + w̃5w6 + w6w7 > 0
w1w̃2 + w3w4 + w4w̃5 + w6w7 > 0
w4w̃5 + w̃5w6 + w6w7 + w7w8 > 0
w̃2w3 + w3w4 + w4w̃5 + w7w8 > 0
w1w̃2 + w3w4 + w̃5w6 + w7w8 > 0
w1w̃2 + w̃2w3 + w6w7 + w7w8 > 0
w1w̃2 + w̃2w3 + w4w̃5 + w̃5w6 > 0.

(A.2)

Except for the ‘ ˜ ’ showing up here and there,
this latter set of inequalities is the same as the
original set of inequalities (A.1) (the order in
which the inequalities are listed is changed but
the inequalities altogether are the same - this is a
consequence of the group property of the sets Ii).
Moreover, since the wt variables are symmetrically
distributed, the change of sign implied by the ‘˜’ is
immaterial as far as the probability of satisfaction
of the inequalities in (A.2) is concerned, so that
we can conclude that (A.1) and (A.2) are satisfied
with the same probability.

Now, instead of comparing the gi(θ0)’s with
g1(θ0), we could have compared with g2(θ0), or
with g3(θ0) or ... or with g7(θ0) arriving all the
time to a similar conclusion that the probability
does not change. Since these 8 events (g1(θ0) is the
smallest, g2(θ0) is the smallest, etc.) are disjoint
and cover all possibilities and all of them have the
same probability, we finally draw the conclusion
that each and every event has exactly probability
1/8 to happen. It remains therefore proven that
the initial condition (A.1) is satisfied with proba-
bility 1/8 and this concludes the proof.

Appendix B. GORDON’S CONSTRUCTION
OF THE INCIDENT MATRIX OF A GROUP

Given I = {1, . . . , N}, the incident matrix for
a group {Ii} of subsets of I is a matrix whose
(i, j) element is 1 if j ∈ Ii and zero otherwise. In
Gordon (1974), the following construction proce-
dure for an incident matrix R̄ is proposed where
I = {1, . . . , 2l −1} and the group has 2l elements.

Let R(1) = [1], and recursively compute (k =
2, 3, . . . , l)

R(2k

where
vector
Then,

Gordo
when
2l − 1

64
− 1) =

⎡
⎣ R(2k−1 − 1) R(2k−1 − 1) 0

R(2k−1 − 1) J − R(2k−1 − 1) e

0T eT 1

⎤
⎦ ,

J and e are, respectively, a matrix and a
of all ones, and 0 is a vector of all zeros.
let

R̄ =
[

R(2l − 1)
0T

]
.

n (1974) also gives construction of groups
the number of data points is different from
.
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